Non parametric feature discriminate analysis for high dimension

Size: px
Start display at page:

Download "Non parametric feature discriminate analysis for high dimension"

Transcription

1 Non parametric feature discriminate analysis for high dimension Wissal Drira and Faouzi Ghorbel GRIFT Research Group, CRISTAL Laboratory, National School of Computer Sciences, University of Manouba, Tunisia Abstract - A method for the linear discrimination of non parametric binary classification is presented. It searches for the discriminate direction which maximizes the generalized Patrick-Fischer distance between the projected classconditional densities. The theoretical background is introduced with a new estimator using orthogonal function according to the Patrick-Fischer distance that gives the best scalar and multivariate extractor. The application of this method to the classification of some binary real data set leads to results better than those based on the traditional linear discriminate analysis (LDA) and the recursive Kernel estimator of the Patrick-Fischer distance. Keywords: Reduction dimension, Patrick-Fischer distance, linear discriminate analysis, features extraction, classification 1 Introduction In order to design properly the pattern recognizer system, it is necessary to consider the feature extraction and data reduction dimension problems. It is evident that the number of features needed to successfully perform a given recognition task depends on the discriminatory qualities of the chosen features. A suitable approach to feature extraction consists of generating a set of features which will tend to maximize the separation between classes. Once it could be derive a set of features which upon combining with the patterns of two or more pattern population by a suitable transformation, will generate a set of feature pattern that exhibit an increase in separation as measured between population and a reduction in the dimension, these features can be interpreted as being representative of the dissimilarities between population. It is well known that there exist two main types of criteria for the discriminate analysis. First, those based on matrices of dispersion that are expressed only in terms of moments of order less than or equal to two (LDA). They thus have advantages in the convergence rate of their estimators. However they are carriers only part of the statistical dispersion of information [4]. The second family is defined criteria from the probability density functions whether conditional or mixture. The separation of pattern classes has been considered from the point of view of utilizing a linear transformation which maximizes a distance between two probability densities as Chernoff, Kolmogorov or Patrick- Fischer one. In spite of its theoretical interest, its use still limited in practice due to the unrealizable of an explicit estimator of this distances in the non parametric case. In [1], Patrick and Fischer have been proposed a non parametric solution based on probability density functions. In the same paper they have been introduced a kernel estimate for the Patrick-Fischer distance. This distance is used for binary classification. It is important to note that this approach considers only the scalar extractor. The multivariate case is generalized by a recursive procedure by using the scalar extractor method [3]. In this paper, we intend to introduce a new estimate of the Patrick-Fischer distance based on the orthogonal functions. This estimate is adapted to the scalar and multivariate dimensional reductions. Thus, the paper will be organized as the following. In the first section, we recall some distances between the conditional probability density functions suggested in the literature for the discriminate analysis of binary classification. The proposed estimates of Patrick- Fischer distance will be introduced in the third section. In the fourth section some simulations will illustrate the performance of the proposed estimates. In the same section, we apply the orthogonal estimator of the Patrick-Fischer distance for classification in real data sets. 2 Formulation It is well known that the most suitable criteria for the discriminate analysis is defined from the distance between probability density functions whether conditional or mixture. We cite here the most important. The following quantity: d, Log π f π f dx is known as the Chernoff distance between two probability densities of the observation vector conditionally to classes 1 and 2.

2 Kolmogorov distance has a particular conceptual significance since it admits a direct link with the Bayes probability of error: d, dx Despite its theoretical interest, its use still limited in practice. The Patrick-Fischer distance admits the following expression: d, dx Generally, all these distances have links of underestimate and increase with the probability error of classification. Its minimization formulates an ideal criterion for the discriminate analysis which is difficult to apply in practice in non parametric and especially in the case of high dimensions due to the complexity required of these algorithms. In the case where we know the laws of the different random vectors of the conditional observation about the classes, a certain number of these distances can be estimated or approximated analytically. However in the non parametric case, this task is not easy. The distance which gets ready best for such developments is that defined by Patrick and Fischer. These distances assume that we are in the context of binary classification, i.e. the problem with two classes. 3 Multivariate reduction by an estimator of the Patrick-Fischer distance As we indicated, this class of methods qualified as non parametric is realized with an estimator of the Patrick-Fischer distance obtained via non parametric estimators of probability density functions. The method of orthogonal functions is a primary technique and has at least two main advantages in the context of discriminate analysis. On one hand, its mathematical formulation allows a certain facility of analytical calculation in the multivariate problem. On the other hand, its possibility of adaptation to the topological nature of the support densities to estimate provides a way to avoid the Gibbs phenomenon. This last remark will be crucial in extending this approach. In this section, we introduce a linear multivariate extractor by a new estimator of the Patrick-Fischer distance expressed in the d-dimension reduced space. In this sense, the estimator based on orthogonal functions of a joint probability density of a random vector V is written as follows:. represents the estimator of Fourier coefficient. Where {, 1.. designates a supervised learning sample distributed according to the conditional random vector of dimension d. represents the truncation parameter which acts as a smoothing factor. The estimator of the Patrick- Fischer distance using orthogonal functions can be expressed as a finite sum of generalized kernel of the method introduced by Parzen: With: 1, K, K,,,,, K, Where K, is the generalized scalar kernel. Using the orthogonality of the basis functions, we have for each pair of integers m and n: K,y, z K x, yk x, zdx By replacing in the expression of the Patrick-Fischer distance the various quantities by corresponding estimators, we obtain the following quantity as generalization to the scalar estimator of the PFD: 1 N K, K, 2Re K,, d is an unbiased estimator of the Patrick-Fischer distance. The estimator in the reduced space expressed as a function of the linear transformation W in R D :

3 1 K, K, 2 K,, Where W V represents the scalar product of two vectors V and W of the space R D and Re(z) is the real part of a complex z. The criterion for multivariate reduction dimension corresponding to these estimates is as follows: max This expression does not admit analytical solution. A numerical method of optimization can reach a maximum. Unlike the iterative algorithm presented in [3] that uses discriminate information carried by the successive marginal conditional distributions, this estimator is global in its definition and its optimization step. Therefore it carries all the statistical information discriminating in the reduced space. In the simulation section, we show the superiority of the global algorithm relative to the iterative one. 4 Performance evaluation 4.1 Simulation Studies In this section, the performance of the proposed estimate of the Patrick-Fischer distance (OPF) was tested for binary classification and compared to those of the LDA and the bivariate case generalized by the recursive procedure using the scalar extractor method with a kernel estimate of Patrick- Fischer distance (R1D-KPF) [2,3]. This experiment (Figure 1) is synthetic with Gaussian classes (Example 1), bimodal uniform classes (Example 2 and 3) and mixture of Gaussian classes (Example 4). The 2D extracted subspace illustrated in Figure 1 (a), (b) and (c) yields quite different results respectively for LDA, R1D-KPF and OPF. The objective of these experiments is to justify that when the data do not follow a Gaussian distribution, or even if the classes are Gaussian, but with similar class-conditional means or with different class-conditional covariances (heteroscedastic conditions), the traditional LDA method fails to find the optimal projection subspace. In addition, the subspace extracted by R1D-KPF does not also give the best projection, in particular, when the reduced dimension d>1, it s due to the iterativity in the optimization step. Whereas the proposed method perform well, like expected, because of its consideration of the conditional probability density functions of each class. 4.2 Experiments with a Real Data Set Classification experiments were performed using five data sets taken from the UCI Repository of machine learning databases [6] that come from a variety of applications. These data sets, labeled (a) to (e), have a various numbers of attributes D and various sample sizes N for the binary classification problem (see Table 1). In order to determine property all three transformations, problems related to near singular covariance matrices should be avoided. Such a problem can be solved by performing a PCA on the train set of every of the five data sets, where only the principal components with an eigenvalue bigger than one millionth of the total variance are kept [7]. For data set (e), the number of test instances is given in Table 1 as designated by its donors, so the transformation matrices W were estimated from the training data, which was then transformed to a subspace of appropriate dimension. For all other data sets, a k-fold cross-validation (CV) was used (Table 1). We have estimated the misclassification rate on test samples used to compare different methods for dimension reduction, in the d-dimensional reduced feature space. The classification error is estimated empirically based on the K- Nearest Neighbors, the Linear and the Quadratic s, which are chosen because they stay close to the assumption that most of the relevant information is in the first and second order central moments, i.e., the means and the (co)variances [7]. The per-data set-performances of these three reduction techniques are compared. To this end, per classifier, data set and dimension d, the mean estimated classification error over the multiple runs (N it =10) is determined (see Table 2). This gives a final estimate of the classification error for the respective settings. The overall optimal error rate over all transforms is typeset in bold and a * is added in superscript. The transforms that also gives, comparing to the optimal transformation, statistically imperceptible classification errors are written in bold. To compare the results, we have used a signed rank test where the desired level of significance is set to 0.01[5]. Tables 2 also give the Mean Classification Error (MCE) obtained when not performing any dimension reduction noted FULL. Table 1. Dataset description Data set Label D PC N Validation Breast cancer (a) fold Liver disorders (b) fold Diabetes (c) fold Diagnostic breast (d) fold cancer Heart (e)

4 Figure 1. Various 3D binary class examples where LDA fails. The class probabilities are uniform, i.e., π 1 =π 2. The optimal 2D subspace according to different feature extraction methods: (a) LDA, (b) R1D-KPF, and (c) OPF. Table 2. Observed MCE for the 5 data sets (a) to (e) for the reduced dimensions d=1 and d=2, Using the three mentioned s K-Nearest Neighbors, Linear and Quadratic classifiers and the three different reduction techniques indicated by LDA, R1D-Kernel Patrick-Fischer and Orthogonal Patrick-Fischer. Reducer K-Nearest Neighbors Linear Quadratic FULL LDA R1D- Kernel Patrick-Fischer Orthogonal Patrick-Fischer d=1 d=2 d=1 d=2 d=1 d=2 (a) * (b) * (c) * (d) * (e) * (a) * (b) * (c) * (d) * * (e) * (a) * (b) * (c) * (d) * (e) *

5 We start with two general observations: First, the quadratic classifier, in general, gives better results for most of the data sets. This may indicate that in most data sets, there is indeed separation information present in the second order moments of the class distributions. Second, the average error rates after reduction to d=1 or d=2 remain, in general, smaller than those in the full space, thus confirming that a gain in performance can be achieved by reducing the dimensionality of the problem. Also, note that the average error rates of the PF method compare favorably to those of other techniques for many subspace dimensions d (d = [1, 2]). This advantage seems to correlate with the difficulty of the classification problem. In particular, for linear and quadratic classifier, PF is uniformly (over all d) superior to other methods. In case of using the nearest mean classifier; we can see that the proposed Patrick-Fischer criteria as well as the LDA ranked better result than R1D-KPF. For the quadratic and linear classifiers, the optimal results were provided by R1D-KPF and OPF, with the best overall performance significantly different from the best performances of the LDA technique. Note that the performance of LDA is seriously limited by the constraint d < K (number of classes equal two). 5 Conclusion In this paper, a new method for dimensionally reduction is proposed. Its novelty lies on the using of a new estimation of the Patrick-Fischer distance by the orthogonal Fourier series expansion. The simulation and the real dataset experiments show that the suggested method increases the separability measure between the projected classes onto the reduced space consistently better than the well-known LDA method and the kernel estimator of the Patrick-Fischer distance. Since results given by the method proposed in this paper are very promising and could be used as an efficient step before a classification process, we will concentrate in our future work on the evaluation of the effectiveness of this method by studying the classification accuracy of a Bayesian classifier in term of probability of error. 6 References [1] E.A. Patrick and F.P. Fisher. Non parametric feature selection. IEEE Trans.On Inf. Theory, vol. IT-15, , 1969 [2] A. Hillion, P. Masson and C. Roux. A nonparametric approach to linear feature extraction; Application to classification of binary synthetic textures. 9th ICPR, , [3] W. Drira and F. Ghorbel. Classification in face recognition by multiclass probabilistic discriminate analysis. the 16th IEEE Mediteranean Electrotechnical Conference MELECON 2012, Hammamet, March 2012 [4] W. Drira, W. Neji and F. Ghorbel. Dimension reduction by an orthogonal series estimate of the probabilistic dependence measure. The International Conference on Pattern Recognition Applications and Methods ICPRAM 2012, Portugal, February 2012 [5] F. Ghorbel, S. Derrode and O. Alata. Récentes avancées en reconnaissance de formes statistique. First edition Arts Pi Tunisia, May [6] R.A. Fisher. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, vol. 7, , [7] P.A. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach. Prentice-Hall International, Inc., London, [8] P.M. Murphy and D.W. Aha. UCI Repository of Machine Learning Databases, [9] J.A. Rice. Mathematical Statistics and Data Analysis. Second ed. Belmont: Duxbury Press, [10] Loog M., Duin R.P.W., Haeb-Umbach R.. Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher Criteria. IEEE transaction on PAMI, vol. 23, n 7, [11] Nenadic Z.. Information Discriminant Analysis: Feature Extraction with an Information-Theoric Objective. IEEE transactions on Pattern Analysis and Machine Intelligence, vol. 29, n 8, [12] K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2(6): , [13] K. Fukunaga and J. M. Mantock, Nonparametric data reduction. Trans. IEEE Pattern Anal. and Machine lntell., PAMI-6,pp , 1984 [14] Aladjem M. E.. Linear discriminant analysis for twoclasses via removal of classification structure. IEEE Trans. Pattern Anal. Mach. Intell, vol. 19, p , [15] J. T. Tou and R. C. Gonzales. Pattern recognition Principles. Addison- Wesley Publishing Company, Inc. Advanced Book Program, 1974.

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering Introduction to Pattern Recognition Part II Selim Aksoy Bilkent University Department of Computer Engineering saksoy@cs.bilkent.edu.tr RETINA Pattern Recognition Tutorial, Summer 2005 Overview Statistical

More information

PATTERN CLASSIFICATION AND SCENE ANALYSIS

PATTERN CLASSIFICATION AND SCENE ANALYSIS PATTERN CLASSIFICATION AND SCENE ANALYSIS RICHARD O. DUDA PETER E. HART Stanford Research Institute, Menlo Park, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS New York Chichester Brisbane

More information

Chapter 4: Non-Parametric Techniques

Chapter 4: Non-Parametric Techniques Chapter 4: Non-Parametric Techniques Introduction Density Estimation Parzen Windows Kn-Nearest Neighbor Density Estimation K-Nearest Neighbor (KNN) Decision Rule Supervised Learning How to fit a density

More information

The Curse of Dimensionality

The Curse of Dimensionality The Curse of Dimensionality ACAS 2002 p1/66 Curse of Dimensionality The basic idea of the curse of dimensionality is that high dimensional data is difficult to work with for several reasons: Adding more

More information

Flexible-Hybrid Sequential Floating Search in Statistical Feature Selection

Flexible-Hybrid Sequential Floating Search in Statistical Feature Selection Flexible-Hybrid Sequential Floating Search in Statistical Feature Selection Petr Somol 1,2, Jana Novovičová 1,2, and Pavel Pudil 2,1 1 Dept. of Pattern Recognition, Institute of Information Theory and

More information

Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions

Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions Thomas Giraud Simon Chabot October 12, 2013 Contents 1 Discriminant analysis 3 1.1 Main idea................................

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

Dimension Reduction CS534

Dimension Reduction CS534 Dimension Reduction CS534 Why dimension reduction? High dimensionality large number of features E.g., documents represented by thousands of words, millions of bigrams Images represented by thousands of

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing ECG782: Multidimensional Digital Signal Processing Object Recognition http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Knowledge Representation Statistical Pattern Recognition Neural Networks Boosting

More information

Random projection for non-gaussian mixture models

Random projection for non-gaussian mixture models Random projection for non-gaussian mixture models Győző Gidófalvi Department of Computer Science and Engineering University of California, San Diego La Jolla, CA 92037 gyozo@cs.ucsd.edu Abstract Recently,

More information

Estimating the Bayes Risk from Sample Data

Estimating the Bayes Risk from Sample Data Estimating the Bayes Risk from Sample Data Robert R. Snapp and Tong Xu Computer Science and Electrical Engineering Department University of Vermont Burlington, VT 05405 Abstract A new nearest-neighbor

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Exploratory data analysis tasks Examine the data, in search of structures

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Spring 2018 http://vllab.ee.ntu.edu.tw/dlcv.html (primary) https://ceiba.ntu.edu.tw/1062dlcv (grade, etc.) FB: DLCV Spring 2018 Yu Chiang Frank Wang 王鈺強, Associate Professor

More information

Weighting and selection of features.

Weighting and selection of features. Intelligent Information Systems VIII Proceedings of the Workshop held in Ustroń, Poland, June 14-18, 1999 Weighting and selection of features. Włodzisław Duch and Karol Grudziński Department of Computer

More information

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints Last week Multi-Frame Structure from Motion: Multi-View Stereo Unknown camera viewpoints Last week PCA Today Recognition Today Recognition Recognition problems What is it? Object detection Who is it? Recognizing

More information

INF 4300 Classification III Anne Solberg The agenda today:

INF 4300 Classification III Anne Solberg The agenda today: INF 4300 Classification III Anne Solberg 28.10.15 The agenda today: More on estimating classifier accuracy Curse of dimensionality and simple feature selection knn-classification K-means clustering 28.10.15

More information

Lorentzian Distance Classifier for Multiple Features

Lorentzian Distance Classifier for Multiple Features Yerzhan Kerimbekov 1 and Hasan Şakir Bilge 2 1 Department of Computer Engineering, Ahmet Yesevi University, Ankara, Turkey 2 Department of Electrical-Electronics Engineering, Gazi University, Ankara, Turkey

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

Machine Learning. Supervised Learning. Manfred Huber

Machine Learning. Supervised Learning. Manfred Huber Machine Learning Supervised Learning Manfred Huber 2015 1 Supervised Learning Supervised learning is learning where the training data contains the target output of the learning system. Training data D

More information

Content-based image and video analysis. Machine learning

Content-based image and video analysis. Machine learning Content-based image and video analysis Machine learning for multimedia retrieval 04.05.2009 What is machine learning? Some problems are very hard to solve by writing a computer program by hand Almost all

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Reihe Informatik 10/2001. Efficient Feature Subset Selection for Support Vector Machines. Matthias Heiler, Daniel Cremers, Christoph Schnörr

Reihe Informatik 10/2001. Efficient Feature Subset Selection for Support Vector Machines. Matthias Heiler, Daniel Cremers, Christoph Schnörr Computer Vision, Graphics, and Pattern Recognition Group Department of Mathematics and Computer Science University of Mannheim D-68131 Mannheim, Germany Reihe Informatik 10/2001 Efficient Feature Subset

More information

MULTIVARIATE TEXTURE DISCRIMINATION USING A PRINCIPAL GEODESIC CLASSIFIER

MULTIVARIATE TEXTURE DISCRIMINATION USING A PRINCIPAL GEODESIC CLASSIFIER MULTIVARIATE TEXTURE DISCRIMINATION USING A PRINCIPAL GEODESIC CLASSIFIER A.Shabbir 1, 2 and G.Verdoolaege 1, 3 1 Department of Applied Physics, Ghent University, B-9000 Ghent, Belgium 2 Max Planck Institute

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

Dynamic Thresholding for Image Analysis

Dynamic Thresholding for Image Analysis Dynamic Thresholding for Image Analysis Statistical Consulting Report for Edward Chan Clean Energy Research Center University of British Columbia by Libo Lu Department of Statistics University of British

More information

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach Truth Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 2.04.205 Discriminative Approaches (5 weeks)

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Image Processing. Image Features

Image Processing. Image Features Image Processing Image Features Preliminaries 2 What are Image Features? Anything. What they are used for? Some statements about image fragments (patches) recognition Search for similar patches matching

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

More information

Machine Learning with MATLAB --classification

Machine Learning with MATLAB --classification Machine Learning with MATLAB --classification Stanley Liang, PhD York University Classification the definition In machine learning and statistics, classification is the problem of identifying to which

More information

3 Feature Selection & Feature Extraction

3 Feature Selection & Feature Extraction 3 Feature Selection & Feature Extraction Overview: 3.1 Introduction 3.2 Feature Extraction 3.3 Feature Selection 3.3.1 Max-Dependency, Max-Relevance, Min-Redundancy 3.3.2 Relevance Filter 3.3.3 Redundancy

More information

Practice EXAM: SPRING 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE

Practice EXAM: SPRING 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE Practice EXAM: SPRING 0 CS 6375 INSTRUCTOR: VIBHAV GOGATE The exam is closed book. You are allowed four pages of double sided cheat sheets. Answer the questions in the spaces provided on the question sheets.

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Machine Learning Lecture 3 Probability Density Estimation II 19.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Exam dates We re in the process

More information

FACE RECOGNITION USING SUPPORT VECTOR MACHINES

FACE RECOGNITION USING SUPPORT VECTOR MACHINES FACE RECOGNITION USING SUPPORT VECTOR MACHINES Ashwin Swaminathan ashwins@umd.edu ENEE633: Statistical and Neural Pattern Recognition Instructor : Prof. Rama Chellappa Project 2, Part (b) 1. INTRODUCTION

More information

Basis Functions. Volker Tresp Summer 2017

Basis Functions. Volker Tresp Summer 2017 Basis Functions Volker Tresp Summer 2017 1 Nonlinear Mappings and Nonlinear Classifiers Regression: Linearity is often a good assumption when many inputs influence the output Some natural laws are (approximately)

More information

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016 Machine Learning 10-701, Fall 2016 Nonparametric methods for Classification Eric Xing Lecture 2, September 12, 2016 Reading: 1 Classification Representing data: Hypothesis (classifier) 2 Clustering 3 Supervised

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Many slides adapted from B. Schiele Machine Learning Lecture 3 Probability Density Estimation II 26.04.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course

More information

Classification: Linear Discriminant Functions

Classification: Linear Discriminant Functions Classification: Linear Discriminant Functions CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Discriminant functions Linear Discriminant functions

More information

Bagging for One-Class Learning

Bagging for One-Class Learning Bagging for One-Class Learning David Kamm December 13, 2008 1 Introduction Consider the following outlier detection problem: suppose you are given an unlabeled data set and make the assumptions that one

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 26.04.206 Discriminative Approaches (5 weeks) Linear

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

Verification: is that a lamp? What do we mean by recognition? Recognition. Recognition

Verification: is that a lamp? What do we mean by recognition? Recognition. Recognition Recognition Recognition The Margaret Thatcher Illusion, by Peter Thompson The Margaret Thatcher Illusion, by Peter Thompson Readings C. Bishop, Neural Networks for Pattern Recognition, Oxford University

More information

What do we mean by recognition?

What do we mean by recognition? Announcements Recognition Project 3 due today Project 4 out today (help session + photos end-of-class) The Margaret Thatcher Illusion, by Peter Thompson Readings Szeliski, Chapter 14 1 Recognition What

More information

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06 Clustering CS294 Practical Machine Learning Junming Yin 10/09/06 Outline Introduction Unsupervised learning What is clustering? Application Dissimilarity (similarity) of objects Clustering algorithm K-means,

More information

COMBINED METHOD TO VISUALISE AND REDUCE DIMENSIONALITY OF THE FINANCIAL DATA SETS

COMBINED METHOD TO VISUALISE AND REDUCE DIMENSIONALITY OF THE FINANCIAL DATA SETS COMBINED METHOD TO VISUALISE AND REDUCE DIMENSIONALITY OF THE FINANCIAL DATA SETS Toomas Kirt Supervisor: Leo Võhandu Tallinn Technical University Toomas.Kirt@mail.ee Abstract: Key words: For the visualisation

More information

Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones

Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones What is machine learning? Data interpretation describing relationship between predictors and responses

More information

Some questions of consensus building using co-association

Some questions of consensus building using co-association Some questions of consensus building using co-association VITALIY TAYANOV Polish-Japanese High School of Computer Technics Aleja Legionow, 4190, Bytom POLAND vtayanov@yahoo.com Abstract: In this paper

More information

Center for Automation and Autonomous Complex Systems. Computer Science Department, Tulane University. New Orleans, LA June 5, 1991.

Center for Automation and Autonomous Complex Systems. Computer Science Department, Tulane University. New Orleans, LA June 5, 1991. Two-phase Backpropagation George M. Georgiou Cris Koutsougeras Center for Automation and Autonomous Complex Systems Computer Science Department, Tulane University New Orleans, LA 70118 June 5, 1991 Abstract

More information

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering SYDE 372 - Winter 2011 Introduction to Pattern Recognition Clustering Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 5 All the approaches we have learned

More information

Facial Expression Recognition Using Non-negative Matrix Factorization

Facial Expression Recognition Using Non-negative Matrix Factorization Facial Expression Recognition Using Non-negative Matrix Factorization Symeon Nikitidis, Anastasios Tefas and Ioannis Pitas Artificial Intelligence & Information Analysis Lab Department of Informatics Aristotle,

More information

Support Vector Machines for visualization and dimensionality reduction

Support Vector Machines for visualization and dimensionality reduction Support Vector Machines for visualization and dimensionality reduction Tomasz Maszczyk and W lodzis law Duch Department of Informatics, Nicolaus Copernicus University, Toruń, Poland tmaszczyk@is.umk.pl;google:w.duch

More information

Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms

Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 5, SEPTEMBER 2002 1225 Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms S. Sathiya Keerthi Abstract This paper

More information

We use non-bold capital letters for all random variables in these notes, whether they are scalar-, vector-, matrix-, or whatever-valued.

We use non-bold capital letters for all random variables in these notes, whether they are scalar-, vector-, matrix-, or whatever-valued. The Bayes Classifier We have been starting to look at the supervised classification problem: we are given data (x i, y i ) for i = 1,..., n, where x i R d, and y i {1,..., K}. In this section, we suppose

More information

Mixture Models and the EM Algorithm

Mixture Models and the EM Algorithm Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Finite Mixture Models Say we have a data set D = {x 1,..., x N } where x i is

More information

SYMBOLIC FEATURES IN NEURAL NETWORKS

SYMBOLIC FEATURES IN NEURAL NETWORKS SYMBOLIC FEATURES IN NEURAL NETWORKS Włodzisław Duch, Karol Grudziński and Grzegorz Stawski 1 Department of Computer Methods, Nicolaus Copernicus University ul. Grudziadzka 5, 87-100 Toruń, Poland Abstract:

More information

Naïve Bayes for text classification

Naïve Bayes for text classification Road Map Basic concepts Decision tree induction Evaluation of classifiers Rule induction Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Support

More information

Adaptive Metric Nearest Neighbor Classification

Adaptive Metric Nearest Neighbor Classification Adaptive Metric Nearest Neighbor Classification Carlotta Domeniconi Jing Peng Dimitrios Gunopulos Computer Science Department Computer Science Department Computer Science Department University of California

More information

Linear Discriminant Analysis for 3D Face Recognition System

Linear Discriminant Analysis for 3D Face Recognition System Linear Discriminant Analysis for 3D Face Recognition System 3.1 Introduction Face recognition and verification have been at the top of the research agenda of the computer vision community in recent times.

More information

On Kernel Density Estimation with Univariate Application. SILOKO, Israel Uzuazor

On Kernel Density Estimation with Univariate Application. SILOKO, Israel Uzuazor On Kernel Density Estimation with Univariate Application BY SILOKO, Israel Uzuazor Department of Mathematics/ICT, Edo University Iyamho, Edo State, Nigeria. A Seminar Presented at Faculty of Science, Edo

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2007 c 2007,

More information

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components Review Lecture 14 ! PRINCIPAL COMPONENT ANALYSIS Eigenvectors of the covariance matrix are the principal components 1. =cov X Top K principal components are the eigenvectors with K largest eigenvalues

More information

Data Complexity in Pattern Recognition

Data Complexity in Pattern Recognition Bell Laboratories Data Complexity in Pattern Recognition Tin Kam Ho With contributions from Mitra Basu, Ester Bernado-Mansilla, Richard Baumgartner, Martin Law, Erinija Pranckeviciene, Albert Orriols-Puig,

More information

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010 INFORMATICS SEMINAR SEPT. 27 & OCT. 4, 2010 Introduction to Semi-Supervised Learning Review 2 Overview Citation X. Zhu and A.B. Goldberg, Introduction to Semi- Supervised Learning, Morgan & Claypool Publishers,

More information

Clustering and Visualisation of Data

Clustering and Visualisation of Data Clustering and Visualisation of Data Hiroshi Shimodaira January-March 28 Cluster analysis aims to partition a data set into meaningful or useful groups, based on distances between data points. In some

More information

A review of data complexity measures and their applicability to pattern classification problems. J. M. Sotoca, J. S. Sánchez, R. A.

A review of data complexity measures and their applicability to pattern classification problems. J. M. Sotoca, J. S. Sánchez, R. A. A review of data complexity measures and their applicability to pattern classification problems J. M. Sotoca, J. S. Sánchez, R. A. Mollineda Dept. Llenguatges i Sistemes Informàtics Universitat Jaume I

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

Nonparametric Clustering of High Dimensional Data

Nonparametric Clustering of High Dimensional Data Nonparametric Clustering of High Dimensional Data Peter Meer Electrical and Computer Engineering Department Rutgers University Joint work with Bogdan Georgescu and Ilan Shimshoni Robust Parameter Estimation:

More information

Clustering Using Elements of Information Theory

Clustering Using Elements of Information Theory Clustering Using Elements of Information Theory Daniel de Araújo 1,2, Adrião Dória Neto 2, Jorge Melo 2, and Allan Martins 2 1 Federal Rural University of Semi-Árido, Campus Angicos, Angicos/RN, Brasil

More information

AN IMPROVED HYBRIDIZED K- MEANS CLUSTERING ALGORITHM (IHKMCA) FOR HIGHDIMENSIONAL DATASET & IT S PERFORMANCE ANALYSIS

AN IMPROVED HYBRIDIZED K- MEANS CLUSTERING ALGORITHM (IHKMCA) FOR HIGHDIMENSIONAL DATASET & IT S PERFORMANCE ANALYSIS AN IMPROVED HYBRIDIZED K- MEANS CLUSTERING ALGORITHM (IHKMCA) FOR HIGHDIMENSIONAL DATASET & IT S PERFORMANCE ANALYSIS H.S Behera Department of Computer Science and Engineering, Veer Surendra Sai University

More information

Feature Selection. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Feature Selection. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Feature Selection CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Dimensionality reduction Feature selection vs. feature extraction Filter univariate

More information

Non-Parametric Modeling

Non-Parametric Modeling Non-Parametric Modeling CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Non-Parametric Density Estimation Parzen Windows Kn-Nearest Neighbor

More information

Face Recognition Based On Granular Computing Approach and Hybrid Spatial Features

Face Recognition Based On Granular Computing Approach and Hybrid Spatial Features Face Recognition Based On Granular Computing Approach and Hybrid Spatial Features S.Sankara vadivu 1, K. Aravind Kumar 2 Final Year Student of M.E, Department of Computer Science and Engineering, Manonmaniam

More information

IMPROVED FACE RECOGNITION USING ICP TECHNIQUES INCAMERA SURVEILLANCE SYSTEMS. Kirthiga, M.E-Communication system, PREC, Thanjavur

IMPROVED FACE RECOGNITION USING ICP TECHNIQUES INCAMERA SURVEILLANCE SYSTEMS. Kirthiga, M.E-Communication system, PREC, Thanjavur IMPROVED FACE RECOGNITION USING ICP TECHNIQUES INCAMERA SURVEILLANCE SYSTEMS Kirthiga, M.E-Communication system, PREC, Thanjavur R.Kannan,Assistant professor,prec Abstract: Face Recognition is important

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Introduction to Mobile Robotics Clustering Wolfram Burgard Cyrill Stachniss Giorgio Grisetti Maren Bennewitz Christian Plagemann Clustering (1) Common technique for statistical data analysis (machine learning,

More information

NEAREST-INSTANCE-CENTROID-ESTIMATION LINEAR DISCRIMINANT ANALYSIS (NICE LDA) Rishabh Singh, Kan Li (Member, IEEE) and Jose C. Principe (Fellow, IEEE)

NEAREST-INSTANCE-CENTROID-ESTIMATION LINEAR DISCRIMINANT ANALYSIS (NICE LDA) Rishabh Singh, Kan Li (Member, IEEE) and Jose C. Principe (Fellow, IEEE) NEAREST-INSTANCE-CENTROID-ESTIMATION LINEAR DISCRIMINANT ANALYSIS (NICE LDA) Rishabh Singh, Kan Li (Member, IEEE) and Jose C. Principe (Fellow, IEEE) University of Florida Department of Electrical and

More information

Fuzzy Bidirectional Weighted Sum for Face Recognition

Fuzzy Bidirectional Weighted Sum for Face Recognition Send Orders for Reprints to reprints@benthamscience.ae The Open Automation and Control Systems Journal, 2014, 6, 447-452 447 Fuzzy Bidirectional Weighted Sum for Face Recognition Open Access Pengli Lu

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

Dimensionality Reduction using Hybrid Support Vector Machine and Discriminant Independent Component Analysis for Hyperspectral Image

Dimensionality Reduction using Hybrid Support Vector Machine and Discriminant Independent Component Analysis for Hyperspectral Image Dimensionality Reduction using Hybrid Support Vector Machine and Discriminant Independent Component Analysis for Hyperspectral Image Murinto 1, Nur Rochmah Dyah PA 2 1,2 Department of Informatics Engineering

More information

ATINER's Conference Paper Series COM

ATINER's Conference Paper Series COM Athens Institute for Education and Research ATINER ATINER's Conference Paper Series COM2012-0049 A Multi-Level Hierarchical Biometric Fusion Model for Medical Applications Security Sorin Soviany, Senior

More information

Trade-offs in Explanatory

Trade-offs in Explanatory 1 Trade-offs in Explanatory 21 st of February 2012 Model Learning Data Analysis Project Madalina Fiterau DAP Committee Artur Dubrawski Jeff Schneider Geoff Gordon 2 Outline Motivation: need for interpretable

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 2014-2015 Jakob Verbeek, November 28, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

Feature Selection for Image Retrieval and Object Recognition

Feature Selection for Image Retrieval and Object Recognition Feature Selection for Image Retrieval and Object Recognition Nuno Vasconcelos et al. Statistical Visual Computing Lab ECE, UCSD Presented by Dashan Gao Scalable Discriminant Feature Selection for Image

More information

Fisher Distance Based GA Clustering Taking Into Account Overlapped Space Among Probability Density Functions of Clusters in Feature Space

Fisher Distance Based GA Clustering Taking Into Account Overlapped Space Among Probability Density Functions of Clusters in Feature Space Fisher Distance Based GA Clustering Taking Into Account Overlapped Space Among Probability Density Functions of Clusters in Feature Space Kohei Arai 1 Graduate School of Science and Engineering Saga University

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

Contents. Preface to the Second Edition

Contents. Preface to the Second Edition Preface to the Second Edition v 1 Introduction 1 1.1 What Is Data Mining?....................... 4 1.2 Motivating Challenges....................... 5 1.3 The Origins of Data Mining....................

More information

Bayesian Estimation for Skew Normal Distributions Using Data Augmentation

Bayesian Estimation for Skew Normal Distributions Using Data Augmentation The Korean Communications in Statistics Vol. 12 No. 2, 2005 pp. 323-333 Bayesian Estimation for Skew Normal Distributions Using Data Augmentation Hea-Jung Kim 1) Abstract In this paper, we develop a MCMC

More information

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA Predictive Analytics: Demystifying Current and Emerging Methodologies Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA May 18, 2017 About the Presenters Tom Kolde, FCAS, MAAA Consulting Actuary Chicago,

More information

Search Engines. Information Retrieval in Practice

Search Engines. Information Retrieval in Practice Search Engines Information Retrieval in Practice All slides Addison Wesley, 2008 Classification and Clustering Classification and clustering are classical pattern recognition / machine learning problems

More information

MTTTS17 Dimensionality Reduction and Visualization. Spring 2018 Jaakko Peltonen. Lecture 11: Neighbor Embedding Methods continued

MTTTS17 Dimensionality Reduction and Visualization. Spring 2018 Jaakko Peltonen. Lecture 11: Neighbor Embedding Methods continued MTTTS17 Dimensionality Reduction and Visualization Spring 2018 Jaakko Peltonen Lecture 11: Neighbor Embedding Methods continued This Lecture Neighbor embedding by generative modeling Some supervised neighbor

More information

Learning from High Dimensional fmri Data using Random Projections

Learning from High Dimensional fmri Data using Random Projections Learning from High Dimensional fmri Data using Random Projections Author: Madhu Advani December 16, 011 Introduction The term the Curse of Dimensionality refers to the difficulty of organizing and applying

More information

What is machine learning?

What is machine learning? Machine learning, pattern recognition and statistical data modelling Lecture 12. The last lecture Coryn Bailer-Jones 1 What is machine learning? Data description and interpretation finding simpler relationship

More information

Locality Preserving Projections (LPP) Abstract

Locality Preserving Projections (LPP) Abstract Locality Preserving Projections (LPP) Xiaofei He Partha Niyogi Computer Science Department Computer Science Department The University of Chicago The University of Chicago Chicago, IL 60615 Chicago, IL

More information

ECONOMIC DESIGN OF STATISTICAL PROCESS CONTROL USING PRINCIPAL COMPONENTS ANALYSIS AND THE SIMPLICIAL DEPTH RANK CONTROL CHART

ECONOMIC DESIGN OF STATISTICAL PROCESS CONTROL USING PRINCIPAL COMPONENTS ANALYSIS AND THE SIMPLICIAL DEPTH RANK CONTROL CHART ECONOMIC DESIGN OF STATISTICAL PROCESS CONTROL USING PRINCIPAL COMPONENTS ANALYSIS AND THE SIMPLICIAL DEPTH RANK CONTROL CHART Vadhana Jayathavaj Rangsit University, Thailand vadhana.j@rsu.ac.th Adisak

More information

IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING

IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING SECOND EDITION IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING ith Algorithms for ENVI/IDL Morton J. Canty с*' Q\ CRC Press Taylor &. Francis Group Boca Raton London New York CRC

More information

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures:

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures: Homework Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression 3.0-3.2 Pod-cast lecture on-line Next lectures: I posted a rough plan. It is flexible though so please come with suggestions Bayes

More information

Using a genetic algorithm for editing k-nearest neighbor classifiers

Using a genetic algorithm for editing k-nearest neighbor classifiers Using a genetic algorithm for editing k-nearest neighbor classifiers R. Gil-Pita 1 and X. Yao 23 1 Teoría de la Señal y Comunicaciones, Universidad de Alcalá, Madrid (SPAIN) 2 Computer Sciences Department,

More information