Machine Learning Lecture 3

Size: px
Start display at page:

Download "Machine Learning Lecture 3"

Transcription

1 Many slides adapted from B. Schiele Machine Learning Lecture 3 Probability Density Estimation II Bastian Leibe RWTH Aachen leibe@vision.rwth-aachen.de

2 Course Outline Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Discriminative Approaches (5 weeks) Linear Discriminant Functions Support Vector Machines Ensemble Methods & Boosting Randomized Trees, Forests & Ferns Generative Models (4 weeks) Bayesian Networks Markov Random Fields 2

3 Topics of This Lecture Recap: Parametric Methods Maximum Likelihood approach Bayesian Learning Non-Parametric Methods Histograms Kernel density estimation K-Nearest Neighbors k-nn for Classification Bias-Variance tradeoff Mixture distributions Mixture of Gaussians (MoG) Maximum Likelihood estimation attempt 3

4 Recap: Gaussian (or Normal) Distribution One-dimensional case Mean ¹ Variance ¾ 2 N(xj¹; ¾ 2 ) = p 1 ¾ (x ¹)2 exp ½ 2¼¾ 2¾ 2 Multi-dimensional case Mean ¹ Covariance N(xj¹; ) = ½ 1 exp 1 ¾ (2¼) D=2 j j1=2 2 (x ¹)T 1 (x ¹) Image source: C.M. Bishop,

5 Recap: Maximum Likelihood Approach Computation of the likelihood p(x n jµ) Single data point: Assumption: all data points X = fx 1 ; : : : ; x n g are independent Log-likelihood L(µ) = p(xjµ) = E(µ) = ln L(µ) = NX ln p(x n jµ) n=1 Estimation of the parameters µ (Learning) Maximize the likelihood (=minimize the negative log-likelihood) Take the derivative and set it to zero. Slide credit: Bernt E(µ) = X n=1 NY n=1 p(x p(x njµ) p(x n jµ)! = 0 5

6 Recap: Bayesian Learning Approach Bayesian view: Consider the parameter vector µ as a random variable. When estimating the parameters, what we compute is p(xjx) = p(xjx) = Z Z p(x; µjx)dµ p(x; µjx) = p(xjµ; X)p(µjX) p(xjµ)p(µjx)dµ Assumption: given µ, this doesn t depend on X anymore This is entirely determined by the parameter µ (i.e. by the parametric form of the pdf). Slide adapted from Bernt Schiele 6

7 Bayesian Learning Approach Discussion Likelihood of the parametric form µ given the data set X. Estimate for x based on parametric form µ Prior for the parameters µ p(xjx) = Z p(xjµ)l(µ)p(µ) R L(µ)p(µ)dµ dµ Normalization: integrate over all possible values of µ If we now plug in a (suitable) prior p(µ), we can estimate from the data set X. p(xjx) 7

8 Topics of This Lecture Recap: Bayes Decision Theory Parametric Methods Recap: Maximum Likelihood approach Bayesian Learning Non-Parametric Methods Histograms Kernel density estimation K-Nearest Neighbors k-nn for Classification Bias-Variance tradeoff Mixture distributions Mixture of Gaussians (MoG) Maximum Likelihood estimation attempt 8

9 Non-Parametric Methods Non-parametric representations Often the functional form of the distribution is unknown x Estimate probability density from data Histograms Kernel density estimation (Parzen window / Gaussian kernels) k-nearest-neighbor Slide credit: Bernt Schiele 9

10 Histograms Basic idea: Partition the data space into distinct bins with widths i and count the number of observations, n i, in each bin N =10 Often, the same width is used for all bins, i = This can be done, in principle, for any dimensionality D but the required number of bins grows exponentially with D! 10 Image source: C.M. Bishop, 2006

11 Histograms The bin width M acts as a smoothing factor. not smooth enough about OK too smooth 11 Image source: C.M. Bishop, 2006

12 Summary: Histograms Properties Very general. In the limit (N!1), every probability density can be represented. No need to store the data points once histogram is computed. Rather brute-force Problems High-dimensional feature spaces D-dimensional space with M bins/dimension will require M D bins! Requires an exponentially growing number of data points Curse of dimensionality Discontinuities at bin edges Bin size? Slide credit: Bernt Schiele too large: too much smoothing too small: too much noise 12

13 Statistically Better-Founded Approach Data point x comes from pdf p(x) P = Z Probability that x falls into small region R R p(y)dy If R is sufficiently small, p(x) is roughly constant Let V be the volume of R P = Z R p(y)dy ¼ p(x)v If the number N of samples is sufficiently large, we can estimate P as Slide credit: Bernt Schiele P = K N ) p(x) ¼ K NV 13

14 Statistically Better-Founded Approach p(x) ¼ K NV fixed V determine K fixed K determine V Kernel Methods K-Nearest Neighbor Kernel methods Example: Determine the number K of data points inside a fixed window Slide credit: Bernt Schiele 14

15 Kernel Methods Parzen Window Hypercube of dimension D with edge length h: k(u) = K = ½ 1; jui 1 2 ; i = 1; : : : ; D 0; else NX n=1 Kernel function k( x x n h ) V = Z k(u)du = h d Probability density estimate: Slide credit: Bernt Schiele p(x) ¼ K NV = 1 Nh D NX n=1 k( x x n h ) 15

16 Kernel Methods: Parzen Window Interpretations 1. We place a kernel window k at location x and count how many data points fall inside it. 2. We place a kernel window k around each data point x n and sum up their influences at location x. Direct visualization of the density. Still, we have artificial discontinuities at the cube boundaries We can obtain a smoother density model if we choose a smoother kernel function, e.g. a Gaussian 16

17 Kernel Methods: Gaussian Kernel Gaussian kernel ¾ 1 k(u) = exp ½ u2 (2¼h 2 ) 1=2 2h 2 NX Z K = k(x x n ) V = k(u)du = 1 Kernel function n=1 Probability density estimate p(x) ¼ K NV = 1 N NX n=1 1 (2¼) D=2 h exp ½ jjx x njj 2 2h 2 ¾ Slide credit: Bernt Schiele 17

18 Gauss Kernel: Examples not smooth enough about OK too smooth h acts as a smoother. 18 Image source: C.M. Bishop, 2006

19 Kernel Methods In general Any kernel such that can be used. Then K = NX n=1 k(x x n ) And we get the probability density estimate Slide adapted from Bernt Schiele p(x) ¼ K NV = 1 N NX n=1 k(x x n ) 19

20 Statistically Better-Founded Approach p(x) ¼ K NV fixed V determine K fixed K determine V Kernel Methods K-Nearest Neighbor K-Nearest Neighbor Increase the volume V until the K next data points are found. Slide credit: Bernt Schiele 20

21 K-Nearest Neighbor Nearest-Neighbor density estimation Fix K, estimate V from the data. Consider a hypersphere centred on x and let it grow to a volume V? that includes K of the given N data points. Then K = 3 Side note Strictly speaking, the model produced by K-NN is not a true density model, because the integral over all space diverges. E.g. consider K = 1 and a sample exactly on a data point x = x j. 21

22 k-nearest Neighbor: Examples not smooth enough about OK too smooth K acts as a smoother. 22 Image source: C.M. Bishop, 2006

23 Summary: Kernel and k-nn Density Estimation Properties Very general. In the limit (N!1), every probability density can be represented. No computation involved in the training phase Simply storage of the training set Problems Requires storing and computing with the entire dataset. Computational cost linear in the number of data points. This can be improved, at the expense of some computation during training, by constructing efficient tree-based search structures. Kernel size / K in K-NN? Too large: too much smoothing Too small: too much noise 23

24 K-Nearest Neighbor Classification Bayesian Classification Here we have p(c j jx) = p(xjc j)p(c j ) p(x) p(x) ¼ K NV p(xjc j ) ¼ K j N j V p(c j jx) ¼ K j N j V N j N NV K = K j K p(c j ) ¼ N j N k-nearest Neighbor classification Slide credit: Bernt Schiele 24

25 K-Nearest Neighbors for Classification K = 3 K = 1 25 Image source: C.M. Bishop, 2006

26 K-Nearest Neighbors for Classification Results on an example data set K acts as a smoothing parameter. Theoretical guarantee For N!1, the error rate of the 1-NN classifier is never more than twice the optimal error (obtained from the true conditional class distributions). 26 Image source: C.M. Bishop, 2006

27 Bias-Variance Tradeoff Probability density estimation Histograms: bin size? M too large: too smooth M too small: not smooth enough Kernel methods: kernel size? h too large: too smooth h too small: not smooth enough K-Nearest Neighbor: K? K too large: too smooth K too small: not smooth enough Too much bias Too much variance This is a general problem of many probability density estimation methods Including parametric methods and mixture models Slide credit: Bernt Schiele 27

28 Discussion The methods discussed so far are all simple and easy to apply. They are used in many practical applications. However Histograms scale poorly with increasing dimensionality. Only suitable for relatively low-dimensional data. Both k-nn and kernel density estimation require the entire data set to be stored. Too expensive if the data set is large. Simple parametric models are very restricted in what forms of distributions they can represent. Only suitable if the data has the same general form. We need density models that are efficient and flexible! 28

29 Topics of This Lecture Recap: Bayes Decision Theory Parametric Methods Recap: Maximum Likelihood approach Bayesian Learning Non-Parametric Methods Histograms Kernel density estimation K-Nearest Neighbors k-nn for Classification Bias-Variance tradeoff Mixture distributions Mixture of Gaussians (MoG) Maximum Likelihood estimation attempt 29

30 Mixture Distributions A single parametric distribution is often not sufficient E.g. for multimodal data Single Gaussian Mixture of two Gaussians 30 Image source: C.M. Bishop, 2006

31 Mixture of Gaussians (MoG) Sum of M individual Normal distributions f(x) x In the limit, every smooth distribution can be approximated this way (if M is large enough) p(xjµ) = MX p(xjµ j )p(j) j=1 Slide credit: Bernt Schiele 31

32 Mixture of Gaussians Notes p(xjµ) = MX p(xjµ j )p(j) j=1 p(xjµ j ) = N(xj¹ j ; ¾ 2 j ) = p(j) = ¼ j 0 ¼ j 1 1 p 2¼¾j exp with and. The mixture density integrates to 1: ( M X j=1 Z Likelihood of measurement x given mixture component j (x ¹ j) 2 2¾ 2 j ¼ j = 1 p(x)dx = 1 ) Prior of component j The mixture parameters are µ = (¼ 1 ; ¹ 1 ; ¾ 1 ; : : : ; ; ¼ M ; ¹ M ; ¾ M ) Slide adapted from Bernt Schiele 32

33 Mixture of Gaussians (MoG) Generative model j p(j) = ¼ j Weight of mixture component p(x) p(xjµ j ) Mixture component x p(x) p(xjµ) = Mixture density MX p(xjµ j )p(j) Slide credit: Bernt Schiele x j=1 33

34 Mixture of Multivariate Gaussians 34 Image source: C.M. Bishop, 2006

35 Mixture of Multivariate Gaussians Multivariate Gaussians MX p(xjµ) = p(xjµ j )p(j) p(xjµ j ) = j=1 1 exp (2¼) D=2 j j j1=2 ½ 1 ¾ 2 (x ¹ j) T 1 j (x ¹ j ) Mixture weights / mixture coefficients: p(j) = ¼ j Parameters: with 0 ¼ j 1 and M X j=1 ¼ j = 1 µ = (¼ 1 ; ¹ 1 ; 1 ; : : : ; ¼ M ; ¹ M ; M ) 35 Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006

36 Mixture of Multivariate Gaussians Generative model j p(j) = ¼ j p(xjµ 3 ) p(xjµ) = 3X ¼ j p(xjµ j ) j=1 p(xjµ 1 ) p(xjµ 2 ) 36 Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006

37 Mixture of Gaussians 1 st Estimation Attempt Maximum Likelihood Minimize Let s first look at ¹ j = 0 E = ln L(µ) = E NX n=1 ln p(x n jµ) ¹ j We can already see that this will be difficult, since ln p(xj¼; ¹; ) = Slide adapted from Bernt Schiele ( NX K ) X ln ¼ k N(x n j¹ k ; k ) n=1 k=1 This will cause problems! 37

38 Mixture of Gaussians 1 st Estimation p(x n jµ j ) = j K j n=1 k=1 p(x njµ k ) Ã! NX = 1 p(x n jµ j ) (x n ¹ j ) P K k=1 p(x njµ k ) n=1 X N 1 1 NX ¼ j N (x n j¹ j ; j ) = P (x n ¹ j ) P K k=1 ¼ K k=1 p(x (x n ¹ j )p(x n jµ j ) =! 0 njµ k ) kn (x n j¹ k ; k ) n=1 We thus obtain P N n=1 ) ¹ j = j(x n )x n P N n=1 j(x n j N (x n j¹ k ; k ) = 1 (x n ¹ j )N (x n j¹ k ; k ) = j (x n ) responsibility of component j for x n! = 0 38

39 Mixture of Gaussians 1 st Estimation Attempt But ¹ j = P N n=1 j(x n )x n P N n=1 j(x n ) I.e. there is no direct analytical = f (¼ 1 ; 1 ; 1 ; : : : ; ¼ M ; ¹ M ; M ) j Complex gradient function (non-linear mutual dependencies) Optimization of one Gaussian depends on all other Gaussians! It is possible to apply iterative numerical optimization here, but in the following, we will see a simpler method. 39

40 Mixture of Gaussians Other Strategy Other strategy: Observed data: Unobserved data: Unobserved = hidden variable : j x h(j = 1jx n ) = h(j = 2jx n ) = Slide credit: Bernt Schiele 40

41 Mixture of Gaussians Other Strategy Assuming we knew the values of the hidden variable ML for Gaussian #1 ML for Gaussian #2 assumed known j h(j = 1jx n ) = h(j = 2jx n ) = ¹ 1 = P N n=1 h(j = 1jx n)x n P N i=1 h(j = 1jx n) ¹ 2 = P N n=1 h(j = 2jx n)x n P N i=1 h(j = 2jx n) Slide credit: Bernt Schiele 41

42 Mixture of Gaussians Other Strategy Assuming we knew the mixture components assumed known p(j = 1jx) p(j = 2jx) j Bayes decision rule: Decide j = 1 if p(j = 1jx n ) > p(j = 2jx n ) Slide credit: Bernt Schiele 42

43 Mixture of Gaussians Other Strategy Chicken and egg problem what comes first? We don t know any of those! j In order to break the loop, we need an estimate for j. E.g. by clustering Next lecture Slide credit: Bernt Schiele 43

44 References and Further Reading More information in Bishop s book Gaussian distribution and ML: Ch and Bayesian Learning: Ch and Nonparametric methods: Ch Additional information can be found in Duda & Hart ML estimation: Ch. 3.2 Bayesian Learning: Ch Nonparametric methods: Ch Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006 R.O. Duda, P.E. Hart, D.G. Stork Pattern Classification 2 nd Ed., Wiley-Interscience,

Machine Learning Lecture 3

Machine Learning Lecture 3 Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 26.04.206 Discriminative Approaches (5 weeks) Linear

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Machine Learning Lecture 3 Probability Density Estimation II 19.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Exam dates We re in the process

More information

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach Truth Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 2.04.205 Discriminative Approaches (5 weeks)

More information

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures:

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures: Homework Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression 3.0-3.2 Pod-cast lecture on-line Next lectures: I posted a rough plan. It is flexible though so please come with suggestions Bayes

More information

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop Machine Learning Algorithms (IFT6266 A7) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

More information

Machine Learning and Pervasive Computing

Machine Learning and Pervasive Computing Stephan Sigg Georg-August-University Goettingen, Computer Networks 17.12.2014 Overview and Structure 22.10.2014 Organisation 22.10.3014 Introduction (Def.: Machine learning, Supervised/Unsupervised, Examples)

More information

COMPUTATIONAL STATISTICS UNSUPERVISED LEARNING

COMPUTATIONAL STATISTICS UNSUPERVISED LEARNING COMPUTATIONAL STATISTICS UNSUPERVISED LEARNING Luca Bortolussi Department of Mathematics and Geosciences University of Trieste Office 238, third floor, H2bis luca@dmi.units.it Trieste, Winter Semester

More information

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2015

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2015 Instance-based Learning CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2015 Outline Non-parametric approach Unsupervised: Non-parametric density estimation Parzen Windows K-Nearest

More information

Non-Parametric Modeling

Non-Parametric Modeling Non-Parametric Modeling CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Non-Parametric Density Estimation Parzen Windows Kn-Nearest Neighbor

More information

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques.

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques. . Non-Parameteric Techniques University of Cambridge Engineering Part IIB Paper 4F: Statistical Pattern Processing Handout : Non-Parametric Techniques Mark Gales mjfg@eng.cam.ac.uk Michaelmas 23 Introduction

More information

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques Mark Gales mjfg@eng.cam.ac.uk Michaelmas 2015 11. Non-Parameteric Techniques

More information

Content-based image and video analysis. Machine learning

Content-based image and video analysis. Machine learning Content-based image and video analysis Machine learning for multimedia retrieval 04.05.2009 What is machine learning? Some problems are very hard to solve by writing a computer program by hand Almost all

More information

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques Mark Gales mjfg@eng.cam.ac.uk Michaelmas 2011 11. Non-Parameteric Techniques

More information

Nonparametric Methods

Nonparametric Methods Nonparametric Methods Jason Corso SUNY at Buffalo J. Corso (SUNY at Buffalo) Nonparametric Methods 1 / 49 Nonparametric Methods Overview Previously, we ve assumed that the forms of the underlying densities

More information

Chapter 4: Non-Parametric Techniques

Chapter 4: Non-Parametric Techniques Chapter 4: Non-Parametric Techniques Introduction Density Estimation Parzen Windows Kn-Nearest Neighbor Density Estimation K-Nearest Neighbor (KNN) Decision Rule Supervised Learning How to fit a density

More information

Notes and Announcements

Notes and Announcements Notes and Announcements Midterm exam: Oct 20, Wednesday, In Class Late Homeworks Turn in hardcopies to Michelle. DO NOT ask Michelle for extensions. Note down the date and time of submission. If submitting

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

Nonparametric Classification. Prof. Richard Zanibbi

Nonparametric Classification. Prof. Richard Zanibbi Nonparametric Classification Prof. Richard Zanibbi What to do when feature distributions (likelihoods) are not normal Don t Panic! While they may be suboptimal, LDC and QDC may still be applied, even though

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 2014-2015 Jakob Verbeek, November 28, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

Machine Learning Lecture 11

Machine Learning Lecture 11 Machine Learning Lecture 11 Random Forests 23.11.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory Probability

More information

Machine Learning Lecture 9

Machine Learning Lecture 9 Course Outline Machine Learning Lecture 9 Fundamentals ( weeks) Bayes Decision Theory Probability Density Estimation Nonlinear SVMs 19.05.013 Discriminative Approaches (5 weeks) Linear Discriminant Functions

More information

Computer Vision Lecture 6

Computer Vision Lecture 6 Course Outline Computer Vision Lecture 6 Segmentation Image Processing Basics Structure Extraction Segmentation Segmentation as Clustering Graph-theoretic Segmentation 12.11.2015 Recognition Global Representations

More information

Machine Learning Lecture 9

Machine Learning Lecture 9 Course Outline Machine Learning Lecture 9 Fundamentals ( weeks) Bayes Decision Theory Probability Density Estimation Nonlinear SVMs 30.05.016 Discriminative Approaches (5 weeks) Linear Discriminant Functions

More information

PATTERN CLASSIFICATION AND SCENE ANALYSIS

PATTERN CLASSIFICATION AND SCENE ANALYSIS PATTERN CLASSIFICATION AND SCENE ANALYSIS RICHARD O. DUDA PETER E. HART Stanford Research Institute, Menlo Park, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS New York Chichester Brisbane

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Clustering and EM Barnabás Póczos & Aarti Singh Contents Clustering K-means Mixture of Gaussians Expectation Maximization Variational Methods 2 Clustering 3 K-

More information

Dynamic Thresholding for Image Analysis

Dynamic Thresholding for Image Analysis Dynamic Thresholding for Image Analysis Statistical Consulting Report for Edward Chan Clean Energy Research Center University of British Columbia by Libo Lu Department of Statistics University of British

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

Perceptron as a graph

Perceptron as a graph Neural Networks Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University October 10 th, 2007 2005-2007 Carlos Guestrin 1 Perceptron as a graph 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0-6 -4-2

More information

SD 372 Pattern Recognition

SD 372 Pattern Recognition SD 372 Pattern Recognition Lab 2: Model Estimation and Discriminant Functions 1 Purpose This lab examines the areas of statistical model estimation and classifier aggregation. Model estimation will be

More information

Expectation Maximization: Inferring model parameters and class labels

Expectation Maximization: Inferring model parameters and class labels Expectation Maximization: Inferring model parameters and class labels Emily Fox University of Washington February 27, 2017 Mixture of Gaussian recap 1 2/26/17 Jumble of unlabeled images HISTOGRAM blue

More information

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate Density estimation In density estimation problems, we are given a random sample from an unknown density Our objective is to estimate? Applications Classification If we estimate the density for each class,

More information

An Introduction to PDF Estimation and Clustering

An Introduction to PDF Estimation and Clustering Sigmedia, Electronic Engineering Dept., Trinity College, Dublin. 1 An Introduction to PDF Estimation and Clustering David Corrigan corrigad@tcd.ie Electrical and Electronic Engineering Dept., University

More information

What is machine learning?

What is machine learning? Machine learning, pattern recognition and statistical data modelling Lecture 12. The last lecture Coryn Bailer-Jones 1 What is machine learning? Data description and interpretation finding simpler relationship

More information

Computer Vision Lecture 6

Computer Vision Lecture 6 Computer Vision Lecture 6 Segmentation 12.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Image Processing Basics Structure Extraction Segmentation

More information

Fisher vector image representation

Fisher vector image representation Fisher vector image representation Jakob Verbeek January 13, 2012 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.11.12.php Fisher vector representation Alternative to bag-of-words image representation

More information

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Emily Fox University of Washington February 3, 2017 Simplest approach: Nearest neighbor regression 1 Fit locally to each

More information

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints Last week Multi-Frame Structure from Motion: Multi-View Stereo Unknown camera viewpoints Last week PCA Today Recognition Today Recognition Recognition problems What is it? Object detection Who is it? Recognizing

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing ECG782: Multidimensional Digital Signal Processing Object Recognition http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Knowledge Representation Statistical Pattern Recognition Neural Networks Boosting

More information

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering Introduction to Pattern Recognition Part II Selim Aksoy Bilkent University Department of Computer Engineering saksoy@cs.bilkent.edu.tr RETINA Pattern Recognition Tutorial, Summer 2005 Overview Statistical

More information

Bayes Risk. Classifiers for Recognition Reading: Chapter 22 (skip 22.3) Discriminative vs Generative Models. Loss functions in classifiers

Bayes Risk. Classifiers for Recognition Reading: Chapter 22 (skip 22.3) Discriminative vs Generative Models. Loss functions in classifiers Classifiers for Recognition Reading: Chapter 22 (skip 22.3) Examine each window of an image Classify object class within each window based on a training set images Example: A Classification Problem Categorize

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University June 15, 2015 David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 43 K-Means Clustering Example: Old Faithful Geyser

More information

Machine Learning. Chao Lan

Machine Learning. Chao Lan Machine Learning Chao Lan Machine Learning Prediction Models Regression Model - linear regression (least square, ridge regression, Lasso) Classification Model - naive Bayes, logistic regression, Gaussian

More information

Machine Learning. Supervised Learning. Manfred Huber

Machine Learning. Supervised Learning. Manfred Huber Machine Learning Supervised Learning Manfred Huber 2015 1 Supervised Learning Supervised learning is learning where the training data contains the target output of the learning system. Training data D

More information

Classifiers for Recognition Reading: Chapter 22 (skip 22.3)

Classifiers for Recognition Reading: Chapter 22 (skip 22.3) Classifiers for Recognition Reading: Chapter 22 (skip 22.3) Examine each window of an image Classify object class within each window based on a training set images Slide credits for this chapter: Frank

More information

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning Associate Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 19 th, 2007 2005-2007 Carlos Guestrin 1 Why not just use Linear Regression? 2005-2007 Carlos Guestrin

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University October 15 th, 2007 2005-2007 Carlos Guestrin 1 1-Nearest Neighbor Four things make a memory based learner:

More information

Computer Vision Group Prof. Daniel Cremers. 4a. Inference in Graphical Models

Computer Vision Group Prof. Daniel Cremers. 4a. Inference in Graphical Models Group Prof. Daniel Cremers 4a. Inference in Graphical Models Inference on a Chain (Rep.) The first values of µ α and µ β are: The partition function can be computed at any node: Overall, we have O(NK 2

More information

Model Assessment and Selection. Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer

Model Assessment and Selection. Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer Model Assessment and Selection Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Model Training data Testing data Model Testing error rate Training error

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

Computer Vision 2 Lecture 8

Computer Vision 2 Lecture 8 Computer Vision 2 Lecture 8 Multi-Object Tracking (30.05.2016) leibe@vision.rwth-aachen.de, stueckler@vision.rwth-aachen.de RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

More information

CS 195-5: Machine Learning Problem Set 5

CS 195-5: Machine Learning Problem Set 5 CS 195-5: Machine Learning Problem Set 5 Douglas Lanman dlanman@brown.edu 26 November 26 1 Clustering and Vector Quantization Problem 1 Part 1: In this problem we will apply Vector Quantization (VQ) to

More information

Nearest Neighbor with KD Trees

Nearest Neighbor with KD Trees Case Study 2: Document Retrieval Finding Similar Documents Using Nearest Neighbors Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox January 22 nd, 2013 1 Nearest

More information

Multivariate Data Analysis and Machine Learning in High Energy Physics (V)

Multivariate Data Analysis and Machine Learning in High Energy Physics (V) Multivariate Data Analysis and Machine Learning in High Energy Physics (V) Helge Voss (MPI K, Heidelberg) Graduierten-Kolleg, Freiburg, 11.5-15.5, 2009 Outline last lecture Rule Fitting Support Vector

More information

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Emily Fox University of Washington February 3, 2017 Simplest approach: Nearest neighbor regression 1 Fit locally to each

More information

Machine Learning Lecture 12

Machine Learning Lecture 12 Course Outline Machine Learning Lecture 2 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Randomized Trees, Forests, and Ferns.6.25 Discriminative Approaches (5 weeks) Linear

More information

Robust Shape Retrieval Using Maximum Likelihood Theory

Robust Shape Retrieval Using Maximum Likelihood Theory Robust Shape Retrieval Using Maximum Likelihood Theory Naif Alajlan 1, Paul Fieguth 2, and Mohamed Kamel 1 1 PAMI Lab, E & CE Dept., UW, Waterloo, ON, N2L 3G1, Canada. naif, mkamel@pami.uwaterloo.ca 2

More information

Adaptive Metric Nearest Neighbor Classification

Adaptive Metric Nearest Neighbor Classification Adaptive Metric Nearest Neighbor Classification Carlotta Domeniconi Jing Peng Dimitrios Gunopulos Computer Science Department Computer Science Department Computer Science Department University of California

More information

Latent Variable Models and Expectation Maximization

Latent Variable Models and Expectation Maximization Latent Variable Models and Expectation Maximization Oliver Schulte - CMPT 726 Bishop PRML Ch. 9 2 4 6 8 1 12 14 16 18 2 4 6 8 1 12 14 16 18 5 1 15 2 25 5 1 15 2 25 2 4 6 8 1 12 14 2 4 6 8 1 12 14 5 1 15

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov ECE521: Week 11, Lecture 20 27 March 2017: HMM learning/inference With thanks to Russ Salakhutdinov Examples of other perspectives Murphy 17.4 End of Russell & Norvig 15.2 (Artificial Intelligence: A Modern

More information

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate Density estimation In density estimation problems, we are given a random sample from an unknown density Our objective is to estimate? Applications Classification If we estimate the density for each class,

More information

9.913 Pattern Recognition for Vision. Class I - Overview. Instructors: B. Heisele, Y. Ivanov, T. Poggio

9.913 Pattern Recognition for Vision. Class I - Overview. Instructors: B. Heisele, Y. Ivanov, T. Poggio 9.913 Class I - Overview Instructors: B. Heisele, Y. Ivanov, T. Poggio TOC Administrivia Problems of Computer Vision and Pattern Recognition Overview of classes Quick review of Matlab Administrivia Instructors:

More information

CS4495/6495 Introduction to Computer Vision. 8C-L1 Classification: Discriminative models

CS4495/6495 Introduction to Computer Vision. 8C-L1 Classification: Discriminative models CS4495/6495 Introduction to Computer Vision 8C-L1 Classification: Discriminative models Remember: Supervised classification Given a collection of labeled examples, come up with a function that will predict

More information

9881 Project Deliverable #1

9881 Project Deliverable #1 Memorial University of Newfoundland Pattern Recognition Lecture 3 May 9, 2006 http://www.engr.mun.ca/~charlesr Office Hours: Tuesdays & Thursdays 8:30-9:30 PM EN-3026 9881 Project Deliverable #1 Report

More information

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016 Machine Learning 10-701, Fall 2016 Nonparametric methods for Classification Eric Xing Lecture 2, September 12, 2016 Reading: 1 Classification Representing data: Hypothesis (classifier) 2 Clustering 3 Supervised

More information

Dr. Ulas Bagci

Dr. Ulas Bagci CAP5415-Computer Vision Lecture 11-Image Segmentation (BASICS): Thresholding, Region Growing, Clustering Dr. Ulas Bagci bagci@ucf.edu 1 Image Segmentation Aim: to partition an image into a collection of

More information

Clustering web search results

Clustering web search results Clustering K-means Machine Learning CSE546 Emily Fox University of Washington November 4, 2013 1 Clustering images Set of Images [Goldberger et al.] 2 1 Clustering web search results 3 Some Data 4 2 K-means

More information

Machine Learning. Classification

Machine Learning. Classification 10-701 Machine Learning Classification Inputs Inputs Inputs Where we are Density Estimator Probability Classifier Predict category Today Regressor Predict real no. Later Classification Assume we want to

More information

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz Gradient Descent Wed Sept 20th, 2017 James McInenrey Adapted from slides by Francisco J. R. Ruiz Housekeeping A few clarifications of and adjustments to the course schedule: No more breaks at the midpoint

More information

Machine Learning Lecture 16

Machine Learning Lecture 16 ourse Outline Machine Learning Lecture 16 undamentals (2 weeks) ayes ecision Theory Probability ensity stimation Undirected raphical Models & Inference 28.06.2016 iscriminative pproaches (5 weeks) Linear

More information

Performance Measures

Performance Measures 1 Performance Measures Classification F-Measure: (careful: similar but not the same F-measure as the F-measure we saw for clustering!) Tradeoff between classifying correctly all datapoints of the same

More information

Unsupervised Learning

Unsupervised Learning Networks for Pattern Recognition, 2014 Networks for Single Linkage K-Means Soft DBSCAN PCA Networks for Kohonen Maps Linear Vector Quantization Networks for Problems/Approaches in Machine Learning Supervised

More information

Computer Vision II Lecture 4

Computer Vision II Lecture 4 Computer Vision II Lecture 4 Color based Tracking 29.04.2014 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Single-Object Tracking Background modeling

More information

Computer Vision II Lecture 14

Computer Vision II Lecture 14 Computer Vision II Lecture 14 Articulated Tracking I 08.07.2014 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Outline of This Lecture Single-Object Tracking Bayesian

More information

Nonparametric Methods Recap

Nonparametric Methods Recap Nonparametric Methods Recap Aarti Singh Machine Learning 10-701/15-781 Oct 4, 2010 Nonparametric Methods Kernel Density estimate (also Histogram) Weighted frequency Classification - K-NN Classifier Majority

More information

Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones

Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones What is machine learning? Data interpretation describing relationship between predictors and responses

More information

Expectation Maximization (EM) and Gaussian Mixture Models

Expectation Maximization (EM) and Gaussian Mixture Models Expectation Maximization (EM) and Gaussian Mixture Models Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 2 3 4 5 6 7 8 Unsupervised Learning Motivation

More information

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves Machine Learning A 708.064 11W 1sst KU Exercises Problems marked with * are optional. 1 Conditional Independence I [2 P] a) [1 P] Give an example for a probability distribution P (A, B, C) that disproves

More information

Support Vector Machines

Support Vector Machines Support Vector Machines About the Name... A Support Vector A training sample used to define classification boundaries in SVMs located near class boundaries Support Vector Machines Binary classifiers whose

More information

Bayes Net Learning. EECS 474 Fall 2016

Bayes Net Learning. EECS 474 Fall 2016 Bayes Net Learning EECS 474 Fall 2016 Homework Remaining Homework #3 assigned Homework #4 will be about semi-supervised learning and expectation-maximization Homeworks #3-#4: the how of Graphical Models

More information

Mixture Models and the EM Algorithm

Mixture Models and the EM Algorithm Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Finite Mixture Models Say we have a data set D = {x 1,..., x N } where x i is

More information

IBL and clustering. Relationship of IBL with CBR

IBL and clustering. Relationship of IBL with CBR IBL and clustering Distance based methods IBL and knn Clustering Distance based and hierarchical Probability-based Expectation Maximization (EM) Relationship of IBL with CBR + uses previously processed

More information

Undirected Graphical Models. Raul Queiroz Feitosa

Undirected Graphical Models. Raul Queiroz Feitosa Undirected Graphical Models Raul Queiroz Feitosa Pros and Cons Advantages of UGMs over DGMs UGMs are more natural for some domains (e.g. context-dependent entities) Discriminative UGMs (CRF) are better

More information

Gaussian Processes for Robotics. McGill COMP 765 Oct 24 th, 2017

Gaussian Processes for Robotics. McGill COMP 765 Oct 24 th, 2017 Gaussian Processes for Robotics McGill COMP 765 Oct 24 th, 2017 A robot must learn Modeling the environment is sometimes an end goal: Space exploration Disaster recovery Environmental monitoring Other

More information

Bioimage Informatics

Bioimage Informatics Bioimage Informatics Lecture 14, Spring 2012 Bioimage Data Analysis (IV) Image Segmentation (part 3) Lecture 14 March 07, 2012 1 Outline Review: intensity thresholding based image segmentation Morphological

More information

K-Nearest Neighbors. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824

K-Nearest Neighbors. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824 K-Nearest Neighbors Jia-Bin Huang ECE-5424G / CS-5824 Virginia Tech Spring 2019 Administrative Check out review materials Probability Linear algebra Python and NumPy Start your HW 0 On your Local machine:

More information

Pattern Recognition ( , RIT) Exercise 1 Solution

Pattern Recognition ( , RIT) Exercise 1 Solution Pattern Recognition (4005-759, 20092 RIT) Exercise 1 Solution Instructor: Prof. Richard Zanibbi The following exercises are to help you review for the upcoming midterm examination on Thursday of Week 5

More information

Homework #4 Programming Assignment Due: 11:59 pm, November 4, 2018

Homework #4 Programming Assignment Due: 11:59 pm, November 4, 2018 CSCI 567, Fall 18 Haipeng Luo Homework #4 Programming Assignment Due: 11:59 pm, ovember 4, 2018 General instructions Your repository will have now a directory P4/. Please do not change the name of this

More information

Comparison Study of Different Pattern Classifiers

Comparison Study of Different Pattern Classifiers Comparison Study of Different Pattern s Comparison Study of Different Pattern s Ameet Joshi, Shweta Bapna, Sravanya Chunduri Abstract This paper presents a comparison study of the different parametric

More information

UVA CS 4501: Machine Learning. Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia

UVA CS 4501: Machine Learning. Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia UVA CS 4501: Machine Learning Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff Dr. Yanjun Qi University of Virginia Department of Computer Science 1 Where are we? è Five major secfons

More information

An Introduction to Pattern Recognition

An Introduction to Pattern Recognition An Introduction to Pattern Recognition Speaker : Wei lun Chao Advisor : Prof. Jian-jiun Ding DISP Lab Graduate Institute of Communication Engineering 1 Abstract Not a new research field Wide range included

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Unsupervised Learning: Kmeans, GMM, EM Readings: Barber 20.1-20.3 Stefan Lee Virginia Tech Tasks Supervised Learning x Classification y Discrete x Regression

More information

Bias-Variance Analysis of Ensemble Learning

Bias-Variance Analysis of Ensemble Learning Bias-Variance Analysis of Ensemble Learning Thomas G. Dietterich Department of Computer Science Oregon State University Corvallis, Oregon 97331 http://www.cs.orst.edu/~tgd Outline Bias-Variance Decomposition

More information