Probability Model for 2 RV s

Size: px
Start display at page:

Download "Probability Model for 2 RV s"

Transcription

1

2

3 Probability Model for 2 RV s The joint probability mass function of X and Y is P X,Y (x, y) = P [X = x, Y= y] Joint PMF is a rule that for any x and y, gives the probability that X = x and Y= y. 3

4 Example: Joint PMF Test n = 2 circuits Assume outcomes are independent. Probability of accept or P [a] = 0.9. X = number of acceptable circuits. Y = number of tests before the first rejection. 4

5 Example: Joint PMF P X Y (x, y) y = 0 y = 1 y = 2 x = x = x =

6 Experiment produces X and Y. All you care about is X. Marginal PMF PMF of X is P X (x) =. P X,Y (x, y) y S Y Calculate by summing across rows, write PMF in margin 6

7 Example: PMFs from Joint PMF Experiment produces X and Y. We care about either X or Y. PMFs of X and Y: 7

8 Derived rv W = g(x, Y ) Functions of 2 RVs PMF of W: P W (w) =. (x,y):g (x,y)=w P X,Y (x, y) 8

9 Derived PMF Example Example W = XY: 9

10 Expectations of Functions again Thm: The expected value of W = g(x,y ) is E[W ] =.. g(x, y)p X,Y (x, y) x S X y S Y If g(x, Y ) = g 1 (X, Y ) + g 2 (X, Y ) + + g k (X, Y ), then E[g(X, Y )] = E[g 1 (X, Y )] + + E[g n (X, Y )] 10

11 Expectations of Sums E[X + Y ] = E[X] + E[Y ] With W = ( X + Y µ X + Y ) 2, E[W ] = Var [X + Y ] = Var [X] + Var [Y ] + 2E[(X µ X )(Y µ Y )] 11

12 Covariance Covariance: W = ( X µ X )(Y µ Y ), Cov [X, Y ] = E[W ] = E[(X µ X ) (Y µ Y )] Covariance is also Cov [X, Y ] = E[XY ] µ X µ Y Cov [X, Y ] > 0 says, X > E[X] implies Y> E[Y ] is likely (X goes up, Y goes up) Var [X + Y ] = Var [X] + Var [Y ] + 2 Cov [X, Y ] 12

13 Correlation The correlation of X and Y is E[XY ] Correlation = Covariance if E[X] = E[Y ] = 0 E[XY ] > 0 suggests that X > 0 increases chance Y > 0 Orthogonal: E[XY ] = 0 Uncorrelated: Cov [X, Y ] = 0 13

14 Correlation Coefficient The correlation coefficient of two random variables X and Y is ρ X,Y Cov [X, Y] =, Var [X] Var [Y ] Thm: the Correlation coefficient is normalized: 1 ρ X,Y 1 Thm: If Y= ax + b, then 1 a < 0 ρ X,Y = 0 a = 0 1 a > 0 14

15 Independent random variables X and Y are independent if and only if {X = x} and {Y= y} are independent events for all x and y Equivalently, X and Y are independent if P X,Y (x, y) = P X (x) P Y (y) 15

16 Properties of Independent RVs For independent random variables X and Y, r X,Y = E[XY ] = E[X]E[Y ] E[X Y = y] = E[X] for all y S Y E[Y X = x] = E[Y ] for all x S X Var [X + Y ] = Var [X] + Var [Y ] Cov [X, Y ] = ρ X,Y = 0 16

17 Multiple Discrete RVs The joint PMF of the discrete random variables X 1,..., X n is P X 1,...,X n (x 1,..., x n ) = P[X 1 = x 1,..., X n = x n ] 17

18 Multiple Continuous Random Variables (RVs) Experiment produces at least two continuous RVs The joint CDF of X and Y is F X, Y (x, y) = P [X x, Y y] 18

19 Joint CDF Area Y {X<x, Y<y} (x,y) X 19

20 Joint CDF Properties 0 F X, Y (x, y) 1 F X (x) = P [X x] = P [X x, Y < ] = F X, Y (x, ) F Y (y) = F X, Y (, y) F X, Y (, y) = F X, Y (x, ) = 0 F X, Y (, ) = 1 If x 1 x and y 1 y, then F X, Y (x 1, y 1 ) F X, Y (x, y) 20

21 Joint PDF The joint PDF of X and Y is f X, Y (x, y) satisfying x y F X, Y (x, y) = f X, Y (u, v) dv du Above definition implies f X, Y (x, y) = 2 F X,Y (x, y) x y 21

22 Joint PDF (continued) f X, Y (x, y) measures probability per unitarea Probability that X, Y is in the set {x < X x + dx, y < Y y + dy} is P[x < X x + dx, y < Y y + dy] = f X, Y (x, y) dx dy 22

23 f X, Y (x, y) 0 for all (x, y) f X, Y (x, y) dx dy = 1 Joint PDF Properties Probability of an event A that corresponds to a region in the X,Y plane is P [A] = A f X, Y (x, y) dxdy 23

24 Joint PDF: Example Given: RVs X and Y have joint PDF f X, Y (x, y) = c 0 0 x 3, 0 y 5 otherwise Find: c =? If A = {Y> X}, then P [A] =? 24

25 Comments Obtaining joint CDF, F X, Y (x,y) from joint PDF, f X, Y (x,y) could be TRICKY!!!; see Example

26 Marginal PDF Experiment produces two continuous RVs X and Y with joint PDF f X, Y (x, y), Marginal PDFs are obtained from joint PDF as follows f X (x) = f X, Y (x, y) dy f Y (y) = f X, Y (x, y) dx 26

27 Marginal PDF: Example Given: RVs X and Y have joint PDF f X, Y (x, y) = 2x 0 x 1, y x 2 0 otherwise Find: f X (x) =? f Y (y) =? 27

28 Functions of Two Random Variables Example: Receiver outputs X and Y from two antennas W 1 = max(x, Y ) W 2 = X + Y W 3 = ax + by PDF of W i =? Find the CDF of W i first 28

29 Example Given: RVs X and Y have joint PDF f X, Y (x, y) = W = max(x, Y ) Find: f W (w) =? 1/ x 3, 0 y 5 otherwise 29

30 Expected Values W = g(x, Y). Method 1: Find the PDF f W (w), calculate E[W ] = wf W (w) dw Method 2: E[W ] = E[g(X, Y)] = g(x, y )f X, Y (x, y) dx dy 30

31 Expectation of Sums The expected value of g(x, Y ) = g 1 (X, Y ) + + g n (X, Y ) is E[g(X, Y )] = E[g 1 (X, Y )] + + E[g n (X, Y )] Sums: E[X + Y] = E[X] + E[Y ] Var [X + Y ] = Var [X] + Var [Y ] + 2 Cov [X, Y ] Covariance: Cov [X, Y ] = E[(X µ X ) (Y µ Y )] = E[XY ] µ X µ Y 31

32 Correlation Coefficient The correlation coefficient of X and Y is ρ X,Y Cov [X, Y] =, V a r [X] Var [Y ] Theorem: 1 ρ X,Y 1 Proof is the same as for discrete random variables 32

33 Independent Continuous RVs Continuous RVs X and Y are independent iff f X, Y (x, y) = f X (x) f Y (y) for all x andy Properties of Independent RVs: E[g(X)h(Y )] = E[g(X)]E[h(Y )] Cov [X, Y ] = 0 Var [X + Y ] = Var [X] + Var [Y ] 33

34 Are X and Y independent? Independence: Example 1 f X, Y (x, y) = 4xy 0 x 1, 0 y 1 0 otherwise The marginal PDFs of X and Y are f X (x) = f Y (y) = 2x 0 x 1 0 otherwise 2y 0 x 1 0 otherwise f X, Y (x, y) = f X (x) f Y (y) = X and Y are independent! 34

35 Are U and V independent, when Independence: Example 2 f U,V (u, v) = 24uv 0 u 0, v 0, u + v 1 otherwise Region of nonzero density is triangular and f U (u) = f V (v) = 12u(1 u) v(1 v) u 1 otherwise 0 v 1 otherwise f U,V (u, v) ƒ= f U (u) f V (v) = U and V are not independent! 35

36 Jointly Gaussian Random Variables X and Y have a bivariate Gaussian PDF if. x µ1. 2 2ρ(x µ 1 )(y µ 2 ). y µ2. 2 f X, Y (x, y) = exp σ 1 σ 1 σ 2 + σ 2 2(1 ρ 2 ) 2πσ 1 σ 2, 1 ρ 2 σ 1 > 0, σ 2 > 0, 1 ρ 1 36

37 ρ = 0 f X, Y (x, y) x y µ 1 = µ 2 = 0 σ 1 = σ 2 = 1 37

38 ρ = 0.9 f X, Y (x, y) x y µ 1 = µ 2 = 0 σ 1 = σ 2 = 1 38

39 ρ = 0.9 f X, Y (x, y) x y µ 1 = µ 2 = 0 σ 1 = σ 2 = 1 39

40 Rewriting the Bivariate Gaussian PDF Manipulating the bivariate Gaussian PDF, we obtain where 2 2 f X, Y (x, y) = 1 e (x µ 1 ) /2σ 1 1 σ1 2π σ 2 2π µ 2(x) = µ 2 + ρ σ 2 σ1 σ 2(x) = σ 2, 1 ρ 2 (x µ 1) 2 2 e (y µ 2 ( x )) /2σ 2 40

41 Theorem 5.18: Theorem from the Bivariate Gaussian PDF X N [µ, σ ] Y N [µ, σ ] 41

42 More than Two Continuous RVs The joint CDF of X 1,..., X n is F X 1,...,X n (x 1,..., x n ) = P[X 1 x 1,..., X n x n ] The joint PDF of X 1,..., X n is f X 1,...,X n (x 1,..., x n ) satisfying F X 1,...,X n (x 1,..., x n ) x 1 x n = f X 1,...,X n (u 1,..., u n ) du 1 du n 42

43 Joint PDF Properties f X 1,...,X n (x 1,..., x n ) = n F X 1,...,Xn (x 1,...,x n ) x 1 x n f X 1,...,X n (x 1,..., x n ) 0 f X 1,...,X (x n 1,..., xn 1 dx= n 1 ) dx P[A] = f X 1,...,X n (x 1,..., x n ) dx 1 dx 2... dx n A 43

44 Marginal PDFs For a joint PDF of four RVs, f W, X, Y, Z (w, x, y, z), some marginal PDFs are f X, Y, Z (x, y, z) = f Y, Z (y, z) = f Z (z) = f W, X, Y, Z (w, x, y, z) dw f W, X, Y, Z (w, x, y, z) dw dx f W, X, Y, Z (w, x, y, z) dw dx dy 44

45 N Independent Random Variables X 1,..., X n are independent if f X 1,...,X n (x 1,..., x n ) = f X 1 (x 1 ) f X n (x n ) for all x 1,..., x n. X 1,..., X n are independent and identically distributed or iid if f X 1,...,X n (x 1,..., x n ) = f X (x 1 ) f X (x n ) for all x 1,..., x n. 45

46 Expectations For Y= g(x 1,..., X n ), E[Y ] = E[g(X 1... X n )] = g(x 1... x n ) f X 1...X n (x 1... x n ) dx 1 dx n 46

47 Problem Let X 1,..., X n be iid rv s, mean 0, var 1, covariance Cov [X i, X j ] = ρ. Find the expected value and variance of the sum Y = X X n. 47

48 Problem Let X 1,..., X n be iid random variables, each with PDF f X (x). Find the CDF and PDF of Y= min {X 1,..., X n }. 48

Will Monroe July 21, with materials by Mehran Sahami and Chris Piech. Joint Distributions

Will Monroe July 21, with materials by Mehran Sahami and Chris Piech. Joint Distributions Will Monroe July 1, 017 with materials by Mehran Sahami and Chris Piech Joint Distributions Review: Normal random variable An normal (= Gaussian) random variable is a good approximation to many other distributions.

More information

Joint probability distributions

Joint probability distributions Joint probability distributions Let X and Y be two discrete rv s defined on the sample space S. The joint probability mass function p(x, y) is p(x, y) = P(X = x, Y = y). Note p(x, y) and x y p(x, y) =

More information

Lecture 8: Jointly distributed random variables

Lecture 8: Jointly distributed random variables Lecture : Jointly distributed random variables Random Vectors and Joint Probability Distributions Definition: Random Vector. An n-dimensional random vector, denoted as Z = (Z, Z,, Z n ), is a function

More information

Today s outline: pp

Today s outline: pp Chapter 3 sections We will SKIP a number of sections Random variables and discrete distributions Continuous distributions The cumulative distribution function Bivariate distributions Marginal distributions

More information

This is a good time to refresh your memory on double-integration. We will be using this skill in the upcoming lectures.

This is a good time to refresh your memory on double-integration. We will be using this skill in the upcoming lectures. Chapter 5: JOINT PROBABILITY DISTRIBUTIONS Part 1: Sections 5-1.1 to 5-1.4 For both discrete and continuous random variables we will discuss the following... Joint Distributions (for two or more r.v. s)

More information

ECE353: Probability and Random Processes. Lecture 11- Two Random Variables (II)

ECE353: Probability and Random Processes. Lecture 11- Two Random Variables (II) ECE353: Probability and Random Processes Lecture 11- Two Random Variables (II) Xiao Fu School of Electrical Engineering and Computer Science Oregon State University E-mail: xiao.fu@oregonstate.edu Joint

More information

Exam 2 is Tue Nov 21. Bring a pencil and a calculator. Discuss similarity to exam1. HW3 is due Tue Dec 5.

Exam 2 is Tue Nov 21. Bring a pencil and a calculator. Discuss similarity to exam1. HW3 is due Tue Dec 5. Stat 100a: Introduction to Probability. Outline for the day 1. Bivariate and marginal density. 2. CLT. 3. CIs. 4. Sample size calculations. 5. Review for exam 2. Exam 2 is Tue Nov 21. Bring a pencil and

More information

Topic 5 - Joint distributions and the CLT

Topic 5 - Joint distributions and the CLT Topic 5 - Joint distributions and the CLT Joint distributions Calculation of probabilities, mean and variance Expectations of functions based on joint distributions Central Limit Theorem Sampling distributions

More information

This is a good time to refresh your memory on double-integration. We will be using this skill in the upcoming lectures.

This is a good time to refresh your memory on double-integration. We will be using this skill in the upcoming lectures. Chapter 5: JOINT PROBABILITY DISTRIBUTIONS Part 1: Sections 5-1.1 to 5-1.4 For both discrete and continuous random variables we will discuss the following... Joint Distributions for two or more r.v. s)

More information

CS 112: Computer System Modeling Fundamentals. Prof. Jenn Wortman Vaughan April 21, 2011 Lecture 8

CS 112: Computer System Modeling Fundamentals. Prof. Jenn Wortman Vaughan April 21, 2011 Lecture 8 CS 112: Computer System Modeling Fundamentals Prof. Jenn Wortman Vaughan April 21, 2011 Lecture 8 Quiz #2 Reminders & Announcements Homework 2 is due in class on Tuesday be sure to check the posted homework

More information

Recursive Estimation

Recursive Estimation Recursive Estimation Raffaello D Andrea Spring 28 Problem Set : Probability Review Last updated: March 6, 28 Notes: Notation: Unless otherwise noted, x, y, and z denote random variables, p x denotes the

More information

Multivariate probability distributions

Multivariate probability distributions Multivariate probability distributions September, 07 STAT 0 Class Slide Outline of Topics Background Discrete bivariate distribution 3 Continuous bivariate distribution STAT 0 Class Slide Multivariate

More information

Chapter 5: Joint Probability Distributions and Random

Chapter 5: Joint Probability Distributions and Random Chapter 5: Joint Probability Distributions and Random Samples Curtis Miller 2018-06-13 Introduction We may naturally inquire about collections of random variables that are related to each other in some

More information

A Class of Symmetric Bivariate Uniform Distributions

A Class of Symmetric Bivariate Uniform Distributions A Class of Symmetric Bivariate Uniform Distributions Thomas S. Ferguson, 7/8/94 A class of symmetric bivariate uniform distributions is proposed for use in statistical modeling. The distributions may be

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2017 Abhay Parekh and Jean Walrand September 21, 2017.

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2017 Abhay Parekh and Jean Walrand September 21, 2017. EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2017 Abhay Parekh and Jean Walrand September 21, 2017 Midterm Exam Last Name First Name SID Rules. You have 80 minutes

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

(c) 0 (d) (a) 27 (b) (e) x 2 3x2

(c) 0 (d) (a) 27 (b) (e) x 2 3x2 1. Sarah the architect is designing a modern building. The base of the building is the region in the xy-plane bounded by x =, y =, and y = 3 x. The building itself has a height bounded between z = and

More information

1. No calculators or other electronic devices are allowed during this exam.

1. No calculators or other electronic devices are allowed during this exam. Version A Math 2E Spring 24 Midterm Exam Instructions. No calculators or other electronic devices are allowed during this exam. 2. You may use one page of notes, but no books or other assistance during

More information

Behavior of the sample mean. varx i = σ 2

Behavior of the sample mean. varx i = σ 2 Behavior of the sample mean We observe n independent and identically distributed (iid) draws from a random variable X. Denote the observed values by X 1, X 2,..., X n. Assume the X i come from a population

More information

Laplace Transform of a Lognormal Random Variable

Laplace Transform of a Lognormal Random Variable Approximations of the Laplace Transform of a Lognormal Random Variable Joint work with Søren Asmussen & Jens Ledet Jensen The University of Queensland School of Mathematics and Physics August 1, 2011 Conference

More information

Page 129 Exercise 5: Suppose that the joint p.d.f. of two random variables X and Y is as follows: { c(x. 0 otherwise. ( 1 = c. = c

Page 129 Exercise 5: Suppose that the joint p.d.f. of two random variables X and Y is as follows: { c(x. 0 otherwise. ( 1 = c. = c Stat Solutions for Homework Set Page 9 Exercise : Suppose that the joint p.d.f. of two random variables X and Y is as follows: { cx fx, y + y for y x, < x < otherwise. Determine a the value of the constant

More information

Markov chain Monte Carlo methods

Markov chain Monte Carlo methods Markov chain Monte Carlo methods (supplementary material) see also the applet http://www.lbreyer.com/classic.html February 9 6 Independent Hastings Metropolis Sampler Outline Independent Hastings Metropolis

More information

To find the maximum and minimum values of f(x, y, z) subject to the constraints

To find the maximum and minimum values of f(x, y, z) subject to the constraints Midterm 3 review Math 265 Fall 2007 14.8. Lagrange Multipliers. Case 1: One constraint. To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k: Step 1: Find all values

More information

Triple Integrals. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Triple Integrals

Triple Integrals. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Triple Integrals Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 211 Riemann Sum Approach Suppose we wish to integrate w f (x, y, z), a continuous function, on the box-shaped region

More information

STATISTICAL LABORATORY, April 30th, 2010 BIVARIATE PROBABILITY DISTRIBUTIONS

STATISTICAL LABORATORY, April 30th, 2010 BIVARIATE PROBABILITY DISTRIBUTIONS STATISTICAL LABORATORY, April 3th, 21 BIVARIATE PROBABILITY DISTRIBUTIONS Mario Romanazzi 1 MULTINOMIAL DISTRIBUTION Ex1 Three players play 1 independent rounds of a game, and each player has probability

More information

Chapter 15 Notes, Stewart 7e

Chapter 15 Notes, Stewart 7e Contents 15.2 Iterated Integrals..................................... 2 15.3 Double Integrals over General Regions......................... 5 15.4 Double Integrals in Polar Coordinates..........................

More information

Integration. Volume Estimation

Integration. Volume Estimation Monte Carlo Integration Lab Objective: Many important integrals cannot be evaluated symbolically because the integrand has no antiderivative. Traditional numerical integration techniques like Newton-Cotes

More information

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim Chapter 14 Multiple Integrals..1 Double Integrals, Iterated Integrals, Cross-sections.2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals.3

More information

Chapter 15 Vector Calculus

Chapter 15 Vector Calculus Chapter 15 Vector Calculus 151 Vector Fields 152 Line Integrals 153 Fundamental Theorem and Independence of Path 153 Conservative Fields and Potential Functions 154 Green s Theorem 155 urface Integrals

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction A Monte Carlo method is a compuational method that uses random numbers to compute (estimate) some quantity of interest. Very often the quantity we want to compute is the mean of

More information

Sampling and Monte-Carlo Integration

Sampling and Monte-Carlo Integration Sampling and Monte-Carlo Integration Sampling and Monte-Carlo Integration Last Time Pixels are samples Sampling theorem Convolution & multiplication Aliasing: spectrum replication Ideal filter And its

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Integration using Transformations in Polar, Cylindrical, and Spherical Coordinates

Integration using Transformations in Polar, Cylindrical, and Spherical Coordinates ections 15.4 Integration using Transformations in Polar, Cylindrical, and pherical Coordinates Cylindrical Coordinates pherical Coordinates MATH 127 (ection 15.5) Applications of Multiple Integrals The

More information

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points.

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. 1. Evaluate the area A of the triangle with the vertices

More information

8(x 2) + 21(y 1) + 6(z 3) = 0 8x + 21y + 6z = 55.

8(x 2) + 21(y 1) + 6(z 3) = 0 8x + 21y + 6z = 55. MATH 24 -Review for Final Exam. Let f(x, y, z) x 2 yz + y 3 z x 2 + z, and a (2,, 3). Note: f (2xyz 2x, x 2 z + 3y 2 z, x 2 y + y 3 + ) f(a) (8, 2, 6) (a) Find all stationary points (if any) of f. et f.

More information

Math 241, Final Exam. 12/11/12.

Math 241, Final Exam. 12/11/12. Math, Final Exam. //. No notes, calculator, or text. There are points total. Partial credit may be given. ircle or otherwise clearly identify your final answer. Name:. (5 points): Equation of a line. Find

More information

Discrete Mathematics Course Review 3

Discrete Mathematics Course Review 3 21-228 Discrete Mathematics Course Review 3 This document contains a list of the important definitions and theorems that have been covered thus far in the course. It is not a complete listing of what has

More information

R Package CircSpatial for the Imaging - Kriging - Simulation. of Circular-Spatial Data

R Package CircSpatial for the Imaging - Kriging - Simulation. of Circular-Spatial Data R Package CircSpatial for the Imaging - Kriging - Simulation 2 4-20 -10 0 y 2 4-20 -10 0 10 of Circular-Spatial Data Bill Morphet PhD Advisor Juergen Symanzik April, 2008 1 Circular Random Variable (CRV)

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

MA EXAM 2 Form 01 April 4, You must use a #2 pencil on the mark sense sheet (answer sheet).

MA EXAM 2 Form 01 April 4, You must use a #2 pencil on the mark sense sheet (answer sheet). MA 6100 EXAM Form 01 April, 017 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME 1. You must use a # pencil on the mark sense sheet (answer sheet).. On the scantron, write 01 in the TEST/QUIZ NUMBER boxes

More information

MAC2313 Test 3 A E g(x, y, z) dy dx dz

MAC2313 Test 3 A E g(x, y, z) dy dx dz MAC2313 Test 3 A (5 pts) 1. If the function g(x, y, z) is integrated over the cylindrical solid bounded by x 2 + y 2 = 3, z = 1, and z = 7, the correct integral in Cartesian coordinates is given by: A.

More information

Motivation. The main goal of Computer Graphics is to generate 2D images. 2D images are continuous 2D functions (or signals)

Motivation. The main goal of Computer Graphics is to generate 2D images. 2D images are continuous 2D functions (or signals) Motivation The main goal of Computer Graphics is to generate 2D images 2D images are continuous 2D functions (or signals) monochrome f(x,y) or color r(x,y), g(x,y), b(x,y) These functions are represented

More information

14.30 Introduction to Statistical Methods in Economics Spring 2009

14.30 Introduction to Statistical Methods in Economics Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Introduction to Statistical Methods in Economics Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Section 6.2: Generating Discrete Random Variates

Section 6.2: Generating Discrete Random Variates Section 6.2: Generating Discrete Random Variates Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5 Discrete-Event Simulation: A First Course Section 6.2: Generating Discrete

More information

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points]

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points] CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, 2015. 11:59pm, PDF to Canvas [100 points] Instructions. Please write up your responses to the following problems clearly and concisely.

More information

Math Exam III Review

Math Exam III Review Math 213 - Exam III Review Peter A. Perry University of Kentucky April 10, 2019 Homework Exam III is tonight at 5 PM Exam III will cover 15.1 15.3, 15.6 15.9, 16.1 16.2, and identifying conservative vector

More information

Info 2950, Lecture 6

Info 2950, Lecture 6 Info 2950, Lecture 6 14 Feb 2017 More Programming and Statistics Boot Camps? Prob Set 2: due Fri night 24 Feb Brief Summary Expectation value: E[X] = P s2s p(s)x(s) Variance: V [X] = P s2s p(s)(x(s) E[X])2

More information

Filtering (I) Dr. Chang Shu. COMP 4900C Winter 2008

Filtering (I) Dr. Chang Shu. COMP 4900C Winter 2008 Filtering (I) Dr. Chang Shu COMP 4900C Winter 008 Agenda Getting to know images. Image noise. Image filters. Digital Images An image - rectangular array of integers Each integer - the brightness or darkness

More information

Missing Data Analysis for the Employee Dataset

Missing Data Analysis for the Employee Dataset Missing Data Analysis for the Employee Dataset 67% of the observations have missing values! Modeling Setup For our analysis goals we would like to do: Y X N (X, 2 I) and then interpret the coefficients

More information

Math 209, Fall 2009 Homework 3

Math 209, Fall 2009 Homework 3 Math 209, Fall 2009 Homework 3 () Find equations of the tangent plane and the normal line to the given surface at the specified point: x 2 + 2y 2 3z 2 = 3, P (2,, ). Solution Using implicit differentiation

More information

CHAPTER 5 SYSTEMS OF EQUATIONS. x y

CHAPTER 5 SYSTEMS OF EQUATIONS. x y page 1 of Section 5.1 CHAPTER 5 SYSTEMS OF EQUATIONS SECTION 5.1 GAUSSIAN ELIMINATION matrix form of a system of equations The system 2x + 3y + 4z 1 5x + y + 7z 2 can be written as Ax where b 2 3 4 A [

More information

MATH : EXAM 3 INFO/LOGISTICS/ADVICE

MATH : EXAM 3 INFO/LOGISTICS/ADVICE MATH 3342-004: EXAM 3 INFO/LOGISTICS/ADVICE INFO: WHEN: Friday (04/22) at 10:00am DURATION: 50 mins PROBLEM COUNT: Appropriate for a 50-min exam BONUS COUNT: At least one TOPICS CANDIDATE FOR THE EXAM:

More information

Section 17.7: Surface Integrals. 1 Objectives. 2 Assignments. 3 Maple Commands. 4 Lecture. 4.1 Riemann definition

Section 17.7: Surface Integrals. 1 Objectives. 2 Assignments. 3 Maple Commands. 4 Lecture. 4.1 Riemann definition ection 17.7: urface Integrals 1 Objectives 1. Compute surface integrals of function of three variables. Assignments 1. Read ection 17.7. Problems: 5,7,11,1 3. Challenge: 17,3 4. Read ection 17.4 3 Maple

More information

Dr. Allen Back. Nov. 21, 2014

Dr. Allen Back. Nov. 21, 2014 Dr. Allen Back of Nov. 21, 2014 The most important thing you should know (e.g. for exams and homework) is how to setup (and perhaps compute if not too hard) surface integrals, triple integrals, etc. But

More information

STAT 725 Notes Monte Carlo Integration

STAT 725 Notes Monte Carlo Integration STAT 725 Notes Monte Carlo Integration Two major classes of numerical problems arise in statistical inference: optimization and integration. We have already spent some time discussing different optimization

More information

Lecture 4. Digital Image Enhancement. 1. Principle of image enhancement 2. Spatial domain transformation. Histogram processing

Lecture 4. Digital Image Enhancement. 1. Principle of image enhancement 2. Spatial domain transformation. Histogram processing Lecture 4 Digital Image Enhancement 1. Principle of image enhancement 2. Spatial domain transformation Basic intensity it tranfomation ti Histogram processing Principle Objective of Enhancement Image enhancement

More information

MATH 19520/51 Class 6

MATH 19520/51 Class 6 MATH 19520/51 Class 6 Minh-Tam Trinh University of Chicago 2017-10-06 1 Review partial derivatives. 2 Review equations of planes. 3 Review tangent lines in single-variable calculus. 4 Tangent planes to

More information

27. Tangent Planes & Approximations

27. Tangent Planes & Approximations 27. Tangent Planes & Approximations If z = f(x, y) is a differentiable surface in R 3 and (x 0, y 0, z 0 ) is a point on this surface, then it is possible to construct a plane passing through this point,

More information

Feature Selection. Department Biosysteme Karsten Borgwardt Data Mining Course Basel Fall Semester / 262

Feature Selection. Department Biosysteme Karsten Borgwardt Data Mining Course Basel Fall Semester / 262 Feature Selection Department Biosysteme Karsten Borgwardt Data Mining Course Basel Fall Semester 2016 239 / 262 What is Feature Selection? Department Biosysteme Karsten Borgwardt Data Mining Course Basel

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University June 15, 2015 David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 43 K-Means Clustering Example: Old Faithful Geyser

More information

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering Introduction to Pattern Recognition Part II Selim Aksoy Bilkent University Department of Computer Engineering saksoy@cs.bilkent.edu.tr RETINA Pattern Recognition Tutorial, Summer 2005 Overview Statistical

More information

Testing Continuous Distributions. Artur Czumaj. DIMAP (Centre for Discrete Maths and it Applications) & Department of Computer Science

Testing Continuous Distributions. Artur Czumaj. DIMAP (Centre for Discrete Maths and it Applications) & Department of Computer Science Testing Continuous Distributions Artur Czumaj DIMAP (Centre for Discrete Maths and it Applications) & Department of Computer Science University of Warwick Joint work with A. Adamaszek & C. Sohler Testing

More information

Pairs of a random variable

Pairs of a random variable Handout 8 Pairs of a random variable "Always be a little improbable." Oscar Wilde in the previous tutorials we analyzed experiments in which an outcome is one number. we'll start to analyze experiments

More information

Texture Similarity Measure. Pavel Vácha. Institute of Information Theory and Automation, AS CR Faculty of Mathematics and Physics, Charles University

Texture Similarity Measure. Pavel Vácha. Institute of Information Theory and Automation, AS CR Faculty of Mathematics and Physics, Charles University Texture Similarity Measure Pavel Vácha Institute of Information Theory and Automation, AS CR Faculty of Mathematics and Physics, Charles University What is texture similarity? Outline 1. Introduction Julesz

More information

Homework 8. Due: Tuesday, March 31st, 2009

Homework 8. Due: Tuesday, March 31st, 2009 MATH 55 Applied Honors Calculus III Winter 9 Homework 8 Due: Tuesday, March 3st, 9 Section 6.5, pg. 54: 7, 3. Section 6.6, pg. 58:, 3. Section 6.7, pg. 66: 3, 5, 47. Section 6.8, pg. 73: 33, 38. Section

More information

Optimization and Simulation

Optimization and Simulation Optimization and Simulation Statistical analysis and bootstrapping Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale

More information

Tutorial 5. Jun Xu, Teaching Asistant March 2, COMP4134 Biometrics Authentication

Tutorial 5. Jun Xu, Teaching Asistant March 2, COMP4134 Biometrics Authentication Tutorial 5 Jun Xu, Teaching Asistant nankaimathxujun@gmail.com COMP4134 Biometrics Authentication March 2, 2017 Table of Contents Problems Problem 1: Answer The Questions Problem 2: Indeterminate Region

More information

12.5 Triple Integrals

12.5 Triple Integrals 1.5 Triple Integrals Arkansas Tech University MATH 94: Calculus III r. Marcel B Finan In Sections 1.1-1., we showed how a function of two variables can be integrated over a region in -space and how integration

More information

) in the k-th subbox. The mass of the k-th subbox is M k δ(x k, y k, z k ) V k. Thus,

) in the k-th subbox. The mass of the k-th subbox is M k δ(x k, y k, z k ) V k. Thus, 1 Triple Integrals Mass problem. Find the mass M of a solid whose density (the mass per unit volume) is a continuous nonnegative function δ(x, y, z). 1. Divide the box enclosing into subboxes, and exclude

More information

Monte Carlo Integration and Random Numbers

Monte Carlo Integration and Random Numbers Monte Carlo Integration and Random Numbers Higher dimensional integration u Simpson rule with M evaluations in u one dimension the error is order M -4! u d dimensions the error is order M -4/d u In general

More information

Calculus IV. Exam 2 November 13, 2003

Calculus IV. Exam 2 November 13, 2003 Name: Section: Calculus IV Math 1 Fall Professor Ben Richert Exam November 1, Please do all your work in this booklet and show all the steps. Calculators and note-cards are not allowed. Problem Possible

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

Functions of Two variables.

Functions of Two variables. Functions of Two variables. Ferdinánd Filip filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 27 February 217 Ferdinánd Filip 27 February 217 Functions of Two variables. 1 / 36 Table of contents

More information

Intro to Probability Instructor: Alexandre Bouchard

Intro to Probability Instructor: Alexandre Bouchard www.stat.ubc.ca/~bouchard/courses/stat302-sp2017-18/ Intro to Probability Instructor: Aleandre Bouchard Announcements New webwork will be release by end of day today, due one week later. Plan for today

More information

Triple Integrals in Rectangular Coordinates

Triple Integrals in Rectangular Coordinates Triple Integrals in Rectangular Coordinates P. Sam Johnson April 10, 2017 P. Sam Johnson (NIT Karnataka) Triple Integrals in Rectangular Coordinates April 10, 2017 1 / 28 Overview We use triple integrals

More information

The main goal of Computer Graphics is to generate 2D images 2D images are continuous 2D functions (or signals)

The main goal of Computer Graphics is to generate 2D images 2D images are continuous 2D functions (or signals) Motivation The main goal of Computer Graphics is to generate 2D images 2D images are continuous 2D functions (or signals) monochrome f(x,y) or color r(x,y), g(x,y), b(x,y) These functions are represented

More information

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t.

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t. MATH 127 ALULU III Name: 1. Let r(t) = e t i + e t sin t j + e t cos t k (a) Find r (t) Final Exam Review (b) Reparameterize r(t) with respect to arc length measured for the point (1,, 1) in the direction

More information

MATH 116 REVIEW PROBLEMS for the FINAL EXAM

MATH 116 REVIEW PROBLEMS for the FINAL EXAM MATH 116 REVIEW PROBLEMS for the FINAL EXAM The following questions are taken from old final exams of various calculus courses taught in Bilkent University 1. onsider the line integral (2xy 2 z + y)dx

More information

9881 Project Deliverable #1

9881 Project Deliverable #1 Memorial University of Newfoundland Pattern Recognition Lecture 3 May 9, 2006 http://www.engr.mun.ca/~charlesr Office Hours: Tuesdays & Thursdays 8:30-9:30 PM EN-3026 9881 Project Deliverable #1 Report

More information

Missing Data Analysis for the Employee Dataset

Missing Data Analysis for the Employee Dataset Missing Data Analysis for the Employee Dataset 67% of the observations have missing values! Modeling Setup Random Variables: Y i =(Y i1,...,y ip ) 0 =(Y i,obs, Y i,miss ) 0 R i =(R i1,...,r ip ) 0 ( 1

More information

Lecture 09: Continuous RV. Lisa Yan July 16, 2018

Lecture 09: Continuous RV. Lisa Yan July 16, 2018 Lecture 09: Continuous RV Lisa Yan July 16, 2018 Announcements As of Sunday July 17 2pm, PS3 has been updated (typo in problem 10) Midterm: Practice midterm up in next 24hrs PS4 out on Wednesday SCPD email

More information

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper. MA 174: Multivariable alculus Final EXAM (practice) NAME lass Meeting Time: NO ALULATOR, BOOK, OR PAPER ARE ALLOWED. Use the back of the test pages for scrap paper. Points awarded 1. (5 pts). (5 pts).

More information

Lecture 11: Clustering and the Spectral Partitioning Algorithm A note on randomized algorithm, Unbiased estimates

Lecture 11: Clustering and the Spectral Partitioning Algorithm A note on randomized algorithm, Unbiased estimates CSE 51: Design and Analysis of Algorithms I Spring 016 Lecture 11: Clustering and the Spectral Partitioning Algorithm Lecturer: Shayan Oveis Gharan May nd Scribe: Yueqi Sheng Disclaimer: These notes have

More information

Final Exam - Review. Cumulative Final Review covers sections and Chapter 12

Final Exam - Review. Cumulative Final Review covers sections and Chapter 12 Final Exam - eview Cumulative Final eview covers sections 11.4-11.8 and Chapter 12 The following is a list of important concepts from each section that will be tested on the Final Exam, but were not covered

More information

Lab 5 Monte Carlo integration

Lab 5 Monte Carlo integration Lab 5 Monte Carlo integration Edvin Listo Zec 9065-976 edvinli@student.chalmers.se October 0, 014 Co-worker: Jessica Fredby Introduction In this computer assignment we will discuss a technique for solving

More information

Chapter 3: Intensity Transformations and Spatial Filtering

Chapter 3: Intensity Transformations and Spatial Filtering Chapter 3: Intensity Transformations and Spatial Filtering 3.1 Background 3.2 Some basic intensity transformation functions 3.3 Histogram processing 3.4 Fundamentals of spatial filtering 3.5 Smoothing

More information

Filtering Images. Contents

Filtering Images. Contents Image Processing and Data Visualization with MATLAB Filtering Images Hansrudi Noser June 8-9, 010 UZH, Multimedia and Robotics Summer School Noise Smoothing Filters Sigmoid Filters Gradient Filters Contents

More information

Extracting Coactivated Features from Multiple Data Sets

Extracting Coactivated Features from Multiple Data Sets Extracting Coactivated Features from Multiple Data Sets Michael U. Gutmann University of Helsinki michael.gutmann@helsinki.fi Aapo Hyvärinen University of Helsinki aapo.hyvarinen@helsinki.fi Michael U.

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv.

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv. MAC2313 Final A (5 pts) 1. Let f(x, y, z) be a function continuous in R 3 and let S be a surface parameterized by r(u, v) with the domain of the parameterization given by R; how many of the following are

More information

Numerical Integration

Numerical Integration Lecture 12: Numerical Integration (with a focus on Monte Carlo integration) Computer Graphics CMU 15-462/15-662, Fall 2015 Review: fundamental theorem of calculus Z b f(x)dx = F (b) F (a) a f(x) = d dx

More information

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves Machine Learning A 708.064 11W 1sst KU Exercises Problems marked with * are optional. 1 Conditional Independence I [2 P] a) [1 P] Give an example for a probability distribution P (A, B, C) that disproves

More information

Lecture 17. ENGR-1100 Introduction to Engineering Analysis CENTROID OF COMPOSITE AREAS

Lecture 17. ENGR-1100 Introduction to Engineering Analysis CENTROID OF COMPOSITE AREAS ENGR-00 Introduction to Engineering Analysis Lecture 7 CENTROID OF COMPOSITE AREAS Today s Objective : Students will: a) Understand the concept of centroid. b) Be able to determine the location of the

More information

MATH 261 EXAM III PRACTICE PROBLEMS

MATH 261 EXAM III PRACTICE PROBLEMS MATH 6 EXAM III PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 3 typically has 5 (not 6!) problems on it, with no more than one problem of any given

More information

Coordinate Transformations in Advanced Calculus

Coordinate Transformations in Advanced Calculus Coordinate Transformations in Advanced Calculus by Sacha Nandlall T.A. for MATH 264, McGill University Email: sacha.nandlall@mail.mcgill.ca Website: http://www.resanova.com/teaching/calculus/ Fall 2006,

More information

WW Prob Lib1 Math course-section, semester year

WW Prob Lib1 Math course-section, semester year WW Prob Lib Math course-section, semester year WeBWorK assignment due /25/06 at :00 PM..( pt) Consider the parametric equation x = 7(cosθ + θsinθ) y = 7(sinθ θcosθ) What is the length of the curve for

More information

1 Overview. 2 Applications of submodular maximization. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Applications of submodular maximization. AM 221: Advanced Optimization Spring 2016 AM : Advanced Optimization Spring 06 Prof. Yaron Singer Lecture 0 April th Overview Last time we saw the problem of Combinatorial Auctions and framed it as a submodular maximization problem under a partition

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

Quantitative Biology II!

Quantitative Biology II! Quantitative Biology II! Lecture 3: Markov Chain Monte Carlo! March 9, 2015! 2! Plan for Today!! Introduction to Sampling!! Introduction to MCMC!! Metropolis Algorithm!! Metropolis-Hastings Algorithm!!

More information

COMP 9517 Computer Vision

COMP 9517 Computer Vision COMP 9517 Computer Vision Frequency Domain Techniques 1 Frequency Versus Spa

More information