MAT 271 Recitation. MAT 271 Recitation. Sections 10.1,10.2. Lindsey K. Gamard, ASU SoMSS. 22 November 2013

Size: px
Start display at page:

Download "MAT 271 Recitation. MAT 271 Recitation. Sections 10.1,10.2. Lindsey K. Gamard, ASU SoMSS. 22 November 2013"

Transcription

1 MAT 271 Recitation Sections 10.1,10.2 Lindsey K. Gamard, ASU SoMSS 22 November 2013

2 Agenda Today s agenda: 1. Introduction to concepts from 10.1 and Example problems 3. Groupwork

3 Section 10.1 Introduction to Parametric Equations - Motivation One application of parametric equations is to provide a way to model movement in two-dimensional space as a function of time. Suppose you were to record a video of your movement on your phone s navigation app. Plotting a parametric equation could reproduce this video! There are three variables involved in the type of parametric equations just described: x (a horizontal coordinate), y (a vertical coordinate), and t (time). Parametric equations have more applications that just the one mentioned above. Warning: do NOT assume that x, y, and t always represent locations and times!

4 Section 10.1 Introduction to Parametric Equations - Formal Definition Definition. A parametric equation is an ordered pair of real-valued functions (x(t), y(t)) such that x and y each depend on a third variable t, called the parameter.

5 Section 10.1 Example 3, page 637 Problem. A turtle walks with constant speed in the counterclockwise direction on a circular track of radius 4ft centered at the origin. Starting from the point (4, 0), the turtle completes one lap in 30 minutes. Find a parametric description of the path of the turtle at any time t 0.

6 Section 10.1 Example 3, page 637 Problem. A turtle walks with constant speed in the counterclockwise direction on a circular track of radius 4ft centered at the origin. Starting from the point (4, 0), the turtle completes one lap in 30 minutes. Find a parametric description of the path of the turtle at any time t 0. Answer. A circle of radius 4 can be represented by the functions x(t) = 4 cos(bt) and y(t) = 4 sin(bt), where x represents the horizontal coordinate in feet, y represents the vertical coordinate in feet, and t represents time in minutes. The unknown constant b depends on how quickly the turtle moves. He completes one lap in 30 minutes, or in other words, he travels 2π radians in 30 minutes, so b = 2π 30 = π 15.

7 Section 10.1 Example 3, page 637 Exercise. Compute (x(t)) 2 + (y(t)) 2 for x(t) = 4 cos(bt) and y(t) = 4 sin(bt) as in the previous example problem (recall that b = π ). What do you notice about your answer? 15

8 Section 10.1 Example 3, page 637 Exercise. Compute (x(t)) 2 + (y(t)) 2 for x(t) = 4 cos(bt) and y(t) = 4 sin(bt) as in the previous example problem (recall that b = π ). What do you notice about your answer? 15 It is worth noting that this is a special case in a particular problem. You should not expect results like this with every parametric equation you encounter. You should also notice that y is not a function of x in this problem: y and x are individually functions of t, but a single value of x is related to more than one value of y.

9 Section 10.2 Visualizing polar coordinates

10 Section 10.2 Visualizing polar coordinates

11 Section 10.2 Visualizing polar coordinates

12 Section 10.2 Converting between Cartesian and polar coordinates The basics. Here are the equations for converting between Cartesian and polar coordinates: x = r cos θ y = r sin θ, where r is the distance (possibly negative) from the origin, and θ is the angle as measured counterclockwise from the positive x-axis.

13 Section 10.2 Example 2, page 647 Problem. Convert the following: (a) The point ( 2, 3π ) 4 in polar coordinates to the point (x, y) in Cartesian coordinates. (b) The point (1, 1) in Cartesian coordinates to the point (r, θ) in polar coordinates.

14 Section 10.2 Example 2, page 647 Problem. Convert the following: (a) The point ( 2, 3π ) 4 in polar coordinates to the point (x, y) in Cartesian coordinates. (b) The point (1, 1) in Cartesian coordinates to the point (r, θ) in polar coordinates. Answer. (a) ( 2, 2) (b) There are many possible answers, but we restrict ourselves to 0 θ < 2π to get two of them: ( 2, 3π ) ( ) 4 and 2, 7π 4.

Section 10.1 Polar Coordinates

Section 10.1 Polar Coordinates Section 10.1 Polar Coordinates Up until now, we have always graphed using the rectangular coordinate system (also called the Cartesian coordinate system). In this section we will learn about another system,

More information

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 33 Notes These notes correspond to Section 9.3 in the text. Polar Coordinates Throughout this course, we have denoted a point in the plane by an ordered

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values.

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values. Module 10 lesson 6 Parametric Equations. When modeling the path of an object, it is useful to use equations called Parametric equations. Instead of using one equation with two variables, we will use two

More information

7-5 Parametric Equations

7-5 Parametric Equations 3. Sketch the curve given by each pair of parametric equations over the given interval. Make a table of values for 6 t 6. t x y 6 19 28 5 16.5 17 4 14 8 3 11.5 1 2 9 4 1 6.5 7 0 4 8 1 1.5 7 2 1 4 3 3.5

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Lecture 34: Curves defined by Parametric equations

Lecture 34: Curves defined by Parametric equations Curves defined by Parametric equations When the path of a particle moving in the plane is not the graph of a function, we cannot describe it using a formula that express y directly in terms of x, or x

More information

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations 1 Definition of polar coordinates Let us first recall the definition of Cartesian coordinates: to each point in the plane we can

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46 Polar Coordinates Polar Coordinates: Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ)

More information

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves Block #1: Vector-Valued Functions Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves 1 The Calculus of Moving Objects Problem.

More information

is a plane curve and the equations are parametric equations for the curve, with parameter t.

is a plane curve and the equations are parametric equations for the curve, with parameter t. MATH 2412 Sections 6.3, 6.4, and 6.5 Parametric Equations and Polar Coordinates. Plane Curves and Parametric Equations Suppose t is contained in some interval I of the real numbers, and = f( t), = gt (

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES A coordinate system represents a point in the plane by an ordered pair of numbers called coordinates. PARAMETRIC EQUATIONS

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 8 Complex Numbers, Polar Equations, and Parametric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 8.5 Polar Equations and Graphs Polar Coordinate System Graphs of Polar Equations Conversion

More information

Find the amplitude, period, and phase shift, and vertical translation of the following: 5. ( ) 6. ( )

Find the amplitude, period, and phase shift, and vertical translation of the following: 5. ( ) 6. ( ) 1. Fill in the blanks in the following table using exact values. Reference Angle sin cos tan 11 6 225 2. Find the exact values of x that satisfy the given condition. a) cos x 1, 0 x 6 b) cos x 0, x 2 3.

More information

Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015

Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015 Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015 Date Objective/ Topic Assignment Did it Monday Polar Discovery Activity pp. 4-5 April 27 th Tuesday April 28 th Converting between

More information

Trigonometric Functions of Any Angle

Trigonometric Functions of Any Angle Trigonometric Functions of Any Angle MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: evaluate trigonometric functions of any angle,

More information

6.7. POLAR COORDINATES

6.7. POLAR COORDINATES 6.7. POLAR COORDINATES What You Should Learn Plot points on the polar coordinate system. Convert points from rectangular to polar form and vice versa. Convert equations from rectangular to polar form and

More information

Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations / 17

Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations / 17 Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, Parametric equations Johns Hopkins University Fall 2014 Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations 2014 1 / 17

More information

10.2 Calculus with Parametric Curves

10.2 Calculus with Parametric Curves CHAPTER 1. PARAMETRIC AND POLAR 91 1.2 Calculus with Parametric Curves Example 1. Return to the parametric equations in Example 2 from the previous section: x t + sin() y t + cos() (a) Find the Cartesian

More information

Precalculus. Wrapping Functions ID: 8257

Precalculus. Wrapping Functions ID: 8257 Wrapping Functions ID: 8257 By Mark Howell Time required 90 minutes Activity Overview This activity introduces students to various functions of a circular angle. They are shown a unit circle and a point

More information

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π M408D (54690/95/00), Midterm #2 Solutions Multiple choice questions (20 points) See last two pages. Question #1 (25 points) Dene the vector-valued function r(t) = he t ; 2; 3e t i: a) At what point P (x

More information

6.1 Polar Coordinates

6.1 Polar Coordinates 6.1 Polar Coordinates Introduction This chapter introduces and explores the polar coordinate system, which is based on a radius and theta. Students will learn how to plot points and basic graphs in this

More information

ENGI Parametric & Polar Curves Page 2-01

ENGI Parametric & Polar Curves Page 2-01 ENGI 3425 2. Parametric & Polar Curves Page 2-01 2. Parametric and Polar Curves Contents: 2.1 Parametric Vector Functions 2.2 Parametric Curve Sketching 2.3 Polar Coordinates r f 2.4 Polar Curve Sketching

More information

10.1 Curves Defined by Parametric Equations

10.1 Curves Defined by Parametric Equations 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? There are 2 ways to describe it: x 2 + y 2 = 1 and x = cos θ y = sin θ When

More information

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines Math 18.02 (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines February 12 Reading Material: From Simmons: 17.1 and 17.2. Last time: Square Systems. Word problem. How many solutions?

More information

Appendix D Trigonometry

Appendix D Trigonometry Math 151 c Lynch 1 of 8 Appendix D Trigonometry Definition. Angles can be measure in either degree or radians with one complete revolution 360 or 2 rad. Then Example 1. rad = 180 (a) Convert 3 4 into degrees.

More information

Functions and Transformations

Functions and Transformations Using Parametric Representations to Make Connections Richard Parr T 3 Regional, Stephenville, Texas November 7, 009 Rice University School Mathematics Project rparr@rice.edu If you look up parametric equations

More information

Worksheet 3.2: Double Integrals in Polar Coordinates

Worksheet 3.2: Double Integrals in Polar Coordinates Boise State Math 75 (Ultman) Worksheet 3.: ouble Integrals in Polar Coordinates From the Toolbox (what you need from previous classes): Trig/Calc II: Convert equations in x and y into r and θ, using the

More information

Mid-Chapter Quiz: Lessons 9-1 through 9-3

Mid-Chapter Quiz: Lessons 9-1 through 9-3 Graph each point on a polar grid. 1. A( 2, 45 ) 3. Because = 45, locate the terminal side of a 45 angle with the polar axis as its initial side. Because r = 2, plot a point 2 units from the pole in the

More information

Chapter 10 Homework: Parametric Equations and Polar Coordinates

Chapter 10 Homework: Parametric Equations and Polar Coordinates Chapter 1 Homework: Parametric Equations and Polar Coordinates Name Homework 1.2 1. Consider the parametric equations x = t and y = 3 t. a. Construct a table of values for t =, 1, 2, 3, and 4 b. Plot the

More information

9.5 Polar Coordinates. Copyright Cengage Learning. All rights reserved.

9.5 Polar Coordinates. Copyright Cengage Learning. All rights reserved. 9.5 Polar Coordinates Copyright Cengage Learning. All rights reserved. Introduction Representation of graphs of equations as collections of points (x, y), where x and y represent the directed distances

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Use Parametric notation. Interpret the effect that T has on the graph as motion.

Use Parametric notation. Interpret the effect that T has on the graph as motion. Learning Objectives Parametric Functions Lesson 3: Go Speed Racer! Level: Algebra 2 Time required: 90 minutes One of the main ideas of the previous lesson is that the control variable t does not appear

More information

Topics in Analytic Geometry Part II

Topics in Analytic Geometry Part II Name Chapter 9 Topics in Analytic Geometry Part II Section 9.4 Parametric Equations Objective: In this lesson you learned how to evaluate sets of parametric equations for given values of the parameter

More information

Updated: August 24, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University

Updated: August 24, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University Updated: August 24, 216 Calculus III Section 1.2 Math 232 Calculus III Brian Veitch Fall 215 Northern Illinois University 1.2 Calculus with Parametric Curves Definition 1: First Derivative of a Parametric

More information

Review of Trigonometry

Review of Trigonometry Worksheet 8 Properties of Trigonometric Functions Section Review of Trigonometry This section reviews some of the material covered in Worksheets 8, and The reader should be familiar with the trig ratios,

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

PreCalculus Chapter 9 Practice Test Name:

PreCalculus Chapter 9 Practice Test Name: This ellipse has foci 0,, and therefore has a vertical major axis. The standard form for an ellipse with a vertical major axis is: 1 Note: graphs of conic sections for problems 1 to 1 were made with the

More information

PARAMETERIZATIONS OF PLANE CURVES

PARAMETERIZATIONS OF PLANE CURVES PARAMETERIZATIONS OF PLANE CURVES Suppose we want to plot the path of a particle moving in a plane. This path looks like a curve, but we cannot plot it like we would plot any other type of curve in the

More information

Trigonometry, Pt 1: Angles and Their Measure. Mr. Velazquez Honors Precalculus

Trigonometry, Pt 1: Angles and Their Measure. Mr. Velazquez Honors Precalculus Trigonometry, Pt 1: Angles and Their Measure Mr. Velazquez Honors Precalculus Defining Angles An angle is formed by two rays or segments that intersect at a common endpoint. One side of the angle is called

More information

MATH 1020 WORKSHEET 10.1 Parametric Equations

MATH 1020 WORKSHEET 10.1 Parametric Equations MATH WORKSHEET. Parametric Equations If f and g are continuous functions on an interval I, then the equations x ft) and y gt) are called parametric equations. The parametric equations along with the graph

More information

Trigonometric Graphs. Graphs of Sine and Cosine

Trigonometric Graphs. Graphs of Sine and Cosine Trigonometric Graphs Page 1 4 Trigonometric Graphs Graphs of Sine and Cosine In Figure 13, we showed the graphs of = sin and = cos, for angles from 0 rad to rad. In reality these graphs extend indefinitely

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

AP CALCULUS BC 2014 SCORING GUIDELINES

AP CALCULUS BC 2014 SCORING GUIDELINES SCORING GUIDELINES Question The graphs of the polar curves r = and r = sin ( θ ) are shown in the figure above for θ. (a) Let R be the shaded region that is inside the graph of r = and inside the graph

More information

Imagine a car is traveling along the highway and you look down at the placements situation from high above: highway curve (static)

Imagine a car is traveling along the highway and you look down at the placements situation from high above: highway curve (static) Chapter 22 Parametric Equations Imagine a car is traveling along the highway and you look down at the placements situation from high above: highway curve (static) car moving point (dynamic) Figure 22.1:

More information

Tangents of Parametric Curves

Tangents of Parametric Curves Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 32 Notes These notes correspond to Section 92 in the text Tangents of Parametric Curves When a curve is described by an equation of the form y = f(x),

More information

Example 1: Give the coordinates of the points on the graph.

Example 1: Give the coordinates of the points on the graph. Ordered Pairs Often, to get an idea of the behavior of an equation, we will make a picture that represents the solutions to the equation. A graph gives us that picture. The rectangular coordinate plane,

More information

A Quick Review of Trigonometry

A Quick Review of Trigonometry A Quick Review of Trigonometry As a starting point, we consider a ray with vertex located at the origin whose head is pointing in the direction of the positive real numbers. By rotating the given ray (initial

More information

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Textbook: Section 16.6 Big Ideas A surface in R 3 is a 2-dimensional object in 3-space. Surfaces can be described using two variables.

More information

Topic 5.1: Line Elements and Scalar Line Integrals. Textbook: Section 16.2

Topic 5.1: Line Elements and Scalar Line Integrals. Textbook: Section 16.2 Topic 5.1: Line Elements and Scalar Line Integrals Textbook: Section 16.2 Warm-Up: Derivatives of Vector Functions Suppose r(t) = x(t) î + y(t) ĵ + z(t) ˆk parameterizes a curve C. The vector: is: r (t)

More information

10.2 Calculus with Parametric Curves

10.2 Calculus with Parametric Curves CHAPTER 1. PARAMETRIC AND POLAR 1 1.2 Calculus with Parametric Curves Example 1. Return to the parametric equations in Example 2 from the previous section: x t +sin() y t + cos() (a) Find the cartesian

More information

Note: If a periodic function is shifted p units right or left the resulting graph will be the same.

Note: If a periodic function is shifted p units right or left the resulting graph will be the same. Week 1 Notes: 8.1 Periodic Functions If y = f(x) is a function and p is a nonzero constant such that f(x) = f(x + p) for every x in the domain of f, then f is called a periodic function. The smallest positive

More information

Chapter 5. An Introduction to Trigonometric Functions 1-1

Chapter 5. An Introduction to Trigonometric Functions 1-1 Chapter 5 An Introduction to Trigonometric Functions Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1-1 5.1 A half line or all points extended from a single

More information

Chapter 11. Parametric Equations And Polar Coordinates

Chapter 11. Parametric Equations And Polar Coordinates Instructor: Prof. Dr. Ayman H. Sakka Chapter 11 Parametric Equations And Polar Coordinates In this chapter we study new ways to define curves in the plane, give geometric definitions of parabolas, ellipses,

More information

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics Lecture 5 August 31 2016 Topics: Polar coordinate system Conversion of polar coordinates to 2-D

More information

Contents 10. Graphs of Trigonometric Functions

Contents 10. Graphs of Trigonometric Functions Contents 10. Graphs of Trigonometric Functions 2 10.2 Sine and Cosine Curves: Horizontal and Vertical Displacement...... 2 Example 10.15............................... 2 10.3 Composite Sine and Cosine

More information

MATHEMATICS FOR ENGINEERING TRIGONOMETRY

MATHEMATICS FOR ENGINEERING TRIGONOMETRY MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL SOME MORE RULES OF TRIGONOMETRY This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Polar Coordinates. OpenStax. 1 Dening Polar Coordinates

Polar Coordinates. OpenStax. 1 Dening Polar Coordinates OpenStax-CNX module: m53852 1 Polar Coordinates OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License 4.0 Abstract Locate points

More information

Chapter 4: Trigonometry

Chapter 4: Trigonometry Chapter 4: Trigonometry Section 4-1: Radian and Degree Measure INTRODUCTION An angle is determined by rotating a ray about its endpoint. The starting position of the ray is the of the angle, and the position

More information

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations Lecture 15 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Length of a Curve and Parametric Equations Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 5 Lecture 15 1 Length of a

More information

Chapter 23. Linear Motion Motion of a Bug

Chapter 23. Linear Motion Motion of a Bug Chapter 23 Linear Motion The simplest example of a parametrized curve arises when studying the motion of an object along a straight line in the plane We will start by studying this kind of motion when

More information

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 8 Complex Numbers, Polar Equations, and Parametric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 8.2 Trigonometric (Polar) Form of Complex Numbers The Complex Plane and Vector Representation

More information

Find the component form and magnitude of the vector where P = (-3,4), Q = (-5, 2), R = (-1, 3) and S = (4, 7)

Find the component form and magnitude of the vector where P = (-3,4), Q = (-5, 2), R = (-1, 3) and S = (4, 7) PRE-CALCULUS: by Finney,Demana,Watts and Kennedy Chapter 6: Applications of Trigonometry 6.1: Vectors in the Plane What you'll Learn About Two Dimensional Vectors/Vector Operations/Unit Vectors Direction

More information

9.1 POLAR COORDINATES

9.1 POLAR COORDINATES 9. Polar Coordinates Contemporary Calculus 9. POLAR COORDINATES The rectangular coordinate system is immensely useful, but it is not the only way to assign an address to a point in the plane and sometimes

More information

( x 1) 2 + ( y 3) 2 = 25

( x 1) 2 + ( y 3) 2 = 25 The locus of points 2 units from the x-axis. The question does not specify the direction of the 2 units so we must include all options. Therefore, the locus of points 2 units from the x-axis is a pair

More information

4.1 Radian and Degree Measure

4.1 Radian and Degree Measure 4.1 Radian and Degree Measure Accelerated Pre-Calculus Mr. Niedert Accelerated Pre-Calculus 4.1 Radian and Degree Measure Mr. Niedert 1 / 27 4.1 Radian and Degree Measure 1 Angles Accelerated Pre-Calculus

More information

E0005E - Industrial Image Analysis

E0005E - Industrial Image Analysis E0005E - Industrial Image Analysis The Hough Transform Matthew Thurley slides by Johan Carlson 1 This Lecture The Hough transform Detection of lines Detection of other shapes (the generalized Hough transform)

More information

Precalculus Lesson 6.1: Angles and Their Measure Mrs. Snow, Instructor

Precalculus Lesson 6.1: Angles and Their Measure Mrs. Snow, Instructor Precalculus Lesson 6.1: Angles and Their Measure Mrs. Snow, Instructor In Trigonometry we will be working with angles from 0 to 180 to 360 to 720 and even more! We will also work with degrees that are

More information

Rectangular Coordinates in Space

Rectangular Coordinates in Space Rectangular Coordinates in Space Philippe B. Laval KSU Today Philippe B. Laval (KSU) Rectangular Coordinates in Space Today 1 / 11 Introduction We quickly review one and two-dimensional spaces and then

More information

Section 5: Introduction to Trigonometry and Graphs

Section 5: Introduction to Trigonometry and Graphs Section 5: Introduction to Trigonometry and Graphs The following maps the videos in this section to the Texas Essential Knowledge and Skills for Mathematics TAC 111.42(c). 5.01 Radians and Degree Measurements

More information

Convert the angle to radians. Leave as a multiple of π. 1) 36 1) 2) 510 2) 4) )

Convert the angle to radians. Leave as a multiple of π. 1) 36 1) 2) 510 2) 4) ) MAC Review for Eam Name Convert the angle to radians. Leave as a multiple of. ) 6 ) ) 50 ) Convert the degree measure to radians, correct to four decimal places. Use.6 for. ) 0 9 ) ) 0.0 ) Convert the

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

Practice Test - Chapter 7

Practice Test - Chapter 7 Write an equation for an ellipse with each set of characteristics. 1. vertices (7, 4), ( 3, 4); foci (6, 4), ( 2, 4) The distance between the vertices is 2a. 2a = 7 ( 3) a = 5; a 2 = 25 The distance between

More information

WW Prob Lib1 Math course-section, semester year

WW Prob Lib1 Math course-section, semester year WW Prob Lib Math course-section, semester year WeBWorK assignment due /25/06 at :00 PM..( pt) Consider the parametric equation x = 7(cosθ + θsinθ) y = 7(sinθ θcosθ) What is the length of the curve for

More information

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative Polar (BC Only) Polar coordinates are another way of expressing points in a plane. Instead of being centered at an origin and moving horizontally or vertically, polar coordinates are centered at the pole

More information

Using Algebraic Geometry to Study the Motions of a Robotic Arm

Using Algebraic Geometry to Study the Motions of a Robotic Arm Using Algebraic Geometry to Study the Motions of a Robotic Arm Addison T. Grant January 28, 206 Abstract In this study we summarize selected sections of David Cox, John Little, and Donal O Shea s Ideals,

More information

Coordinate Transformations in Advanced Calculus

Coordinate Transformations in Advanced Calculus Coordinate Transformations in Advanced Calculus by Sacha Nandlall T.A. for MATH 264, McGill University Email: sacha.nandlall@mail.mcgill.ca Website: http://www.resanova.com/teaching/calculus/ Fall 2006,

More information

Part I. There are 5 problems in Part I, each worth 5 points. No partial credit will be given, so be careful. Circle the correct answer.

Part I. There are 5 problems in Part I, each worth 5 points. No partial credit will be given, so be careful. Circle the correct answer. Math 109 Final Exam-Spring 016 Page 1 Part I. There are 5 problems in Part I, each worth 5 points. No partial credit will be given, so be careful. Circle the correct answer. 1) Determine an equivalent

More information

Circular Trigonometry Notes April 24/25

Circular Trigonometry Notes April 24/25 Circular Trigonometry Notes April 24/25 First, let s review a little right triangle trigonometry: Imagine a right triangle with one side on the x-axis and one vertex at (0,0). We can write the sin(θ) and

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Convert the angle to decimal degrees and round to the nearest hundredth of a degree. 1)

More information

Common Core Standards Addressed in this Resource

Common Core Standards Addressed in this Resource Common Core Standards Addressed in this Resource N-CN.4 - Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular

More information

Lesson 27: Angles in Standard Position

Lesson 27: Angles in Standard Position Lesson 27: Angles in Standard Position PreCalculus - Santowski PreCalculus - Santowski 1 QUIZ Draw the following angles in standard position 50 130 230 320 770-50 2 radians PreCalculus - Santowski 2 Fast

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

: = Curves Defined by Parametric Equations. Ex: Consider the unit circle from Trigonometry. What is the equation of that circle?

: = Curves Defined by Parametric Equations. Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? of 8* * # 2+-12=1 There are 2 ways to describe it: x 2 + y 2 = 1 x = cos!

More information

Getting a New Perspective

Getting a New Perspective Section 6.3 Polar Coordinates Getting a New Perspective We have worked etensively in the Cartesian coordinate system, plotting points, graphing equations, and using the properties of the Cartesian plane

More information

48. Logistic Growth (BC) Classwork

48. Logistic Growth (BC) Classwork 48. Logistic Growth (BC) Classwork Using the exponential growth model, the growth of a population is proportion to its current size. The differential equation for exponential growth is dp = kp leading

More information

Lecture 5 Date:

Lecture 5 Date: Lecture 5 Date: 19.1.217 Smith Chart Fundamentals Smith Chart Smith chart what? The Smith chart is a very convenient graphical tool for analyzing and studying TLs behavior. It is mapping of impedance in

More information

10 Polar Coordinates, Parametric Equations

10 Polar Coordinates, Parametric Equations Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates

More information

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures Grad operator, triple and line integrals Notice: this material must not be used as a substitute for attending the lectures 1 .1 The grad operator Let f(x 1, x,..., x n ) be a function of the n variables

More information

12 Polar Coordinates, Parametric Equations

12 Polar Coordinates, Parametric Equations 54 Chapter Polar Coordinates, Parametric Equations Polar Coordinates, Parametric Equations Just as we describe curves in the plane using equations involving x and y, so can we describe curves using equations

More information

Functions of Several Variables

Functions of Several Variables Jim Lambers MAT 280 Spring Semester 2009-10 Lecture 2 Notes These notes correspond to Section 11.1 in Stewart and Section 2.1 in Marsden and Tromba. Functions of Several Variables Multi-variable calculus

More information

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations.

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations. Objectives Sketch the graph of a curve given by a set of parametric equations. Eliminate the parameter in a set of parametric equations. Find a set of parametric equations to represent a curve. Understand

More information

MATHEMATICS 105 Plane Trigonometry

MATHEMATICS 105 Plane Trigonometry Chapter I THE TRIGONOMETRIC FUNCTIONS MATHEMATICS 105 Plane Trigonometry INTRODUCTION The word trigonometry literally means triangle measurement. It is concerned with the measurement of the parts, sides,

More information

MA 114 Worksheet #17: Average value of a function

MA 114 Worksheet #17: Average value of a function Spring 2019 MA 114 Worksheet 17 Thursday, 7 March 2019 MA 114 Worksheet #17: Average value of a function 1. Write down the equation for the average value of an integrable function f(x) on [a, b]. 2. Find

More information

You ll use the six trigonometric functions of an angle to do this. In some cases, you will be able to use properties of the = 46

You ll use the six trigonometric functions of an angle to do this. In some cases, you will be able to use properties of the = 46 Math 1330 Section 6.2 Section 7.1: Right-Triangle Applications In this section, we ll solve right triangles. In some problems you will be asked to find one or two specific pieces of information, but often

More information

Unit 7: Trigonometry Part 1

Unit 7: Trigonometry Part 1 100 Unit 7: Trigonometry Part 1 Right Triangle Trigonometry Hypotenuse a) Sine sin( α ) = d) Cosecant csc( α ) = α Adjacent Opposite b) Cosine cos( α ) = e) Secant sec( α ) = c) Tangent f) Cotangent tan(

More information

INTRODUCTION TO LINE INTEGRALS

INTRODUCTION TO LINE INTEGRALS INTRODUTION TO LINE INTEGRALS PROF. MIHAEL VANVALKENBURGH Last week we discussed triple integrals. This week we will study a new topic of great importance in mathematics and physics: line integrals. 1.

More information