Selected Topics in Biomedical Image Analysis

Size: px
Start display at page:

Download "Selected Topics in Biomedical Image Analysis"

Transcription

1 Selected Topics in Biomedical Image Analysis Zeyun Yu Department of Computer Sciences University of Wisconsin-Milwaukee Department of Computer Science University of Wisconsin-Milwaukee Slides 1 Selected Topics Image contrast enhancement A fast and adaptive method Image segmentation Multi-seeded fast marching method Image skeleton extraction Boundary-free approach J. F. OBrien and N. F. Ezquerra, Proc. SPIE Conf. Visualization in Biomed. Computing, 1994 Department of Computer Science University of Wisconsin-Milwaukee Slides 2 1

2 Contrast Enhancement (1): Examples CT image Mammography image MRI image Cell image Virus image Department of Computer Science University of Wisconsin-Milwaukee Slides 3 Contrast Enhancement (2): Prior Work Global contrast manipulation Linear Nonlinear Histogram equalization (Pizer 87; Caselles 98; Stark 00) Global Local I( x, y) R = log I( x, y)* G ( x, y) σ Retinex model (Jobson 97) Single scale Multi-scale Department of Computer Science University of Wisconsin-Milwaukee Slides 4 2

3 Contrast Enhancement (3): Our Method Motivations Local contrast manipulation Adaptive transfer function Multi-scale contrast enhancement Steps Compute local statistics (min/max/avg) Design transfer function Update the intensity pixel-by-pixel Original image Local minimum Local maximum Contrast enhanced Department of Computer Science University of Wisconsin-Milwaukee Slides 5 Contrast Enhancement (4): Local Statistics Propagation scheme for average (Deriche 90; Young 95) Top-down For each row: (m-1, n) (m, n) 3. Conditional propagation scheme for local minimum/maximum (Yu 04) Bottom-up For each row: C: conductivity [0, 1] 3. Department of Computer Science University of Wisconsin-Milwaukee Slides 6 3

4 Contrast Enhancement (5): Comparison Advantages Fast to calculate Smooth results Results by local propagation: searching: Original image Local minimum Local maximum Contrast enhanced Department of Computer Science University of Wisconsin-Milwaukee Slides 7 Contrast Enhancement (6): Transform Rescale the window size Local contrast manipulation If I(x,y) < A(x,y), choose concave transfer function lmin Img lavg lmax If I(x,y) > A(x,y), choose convex transfer function 0 ω α = Anew I new 128 Y = f (x) 255 ω 0 lw 255 X Department of Computer Science University of Wisconsin-Milwaukee Slides 8 4

5 Contrast Enhancement (7): Extensions Anisotropic propagation 3D contrast enhancement (m-1, n) (m, n) R: resistance [0.01, 0.1] Color contrast enhancement RGB, HSV Department of Computer Science University of Wisconsin-Milwaukee Slides 9 Contrast Enhancement (8): Results Original image Histogram equalization Our method (isotropic) Original image Histogram equalization Our method (anisotropic) Department of Computer Science University of Wisconsin-Milwaukee Slides 10 5

6 Contrast Enhancement (9): Results Original image Isotropic propagation Anisotropic propagation Original image C = 0.95 C = 0.85 C = 0.75 Department of Computer Science University of Wisconsin-Milwaukee Slides 11 Contrast Enhancement (10): Results 3D example: Hair bundle cellular image (left: original right: enhanced) RGB based Color example: Chinese painting (left: original right: enhanced) Department of Computer Science University of Wisconsin-Milwaukee Slides 12 6

7 Image Segmentation (1): Examples Single object Multiple objects Tip link between hair bundle (hearing organelle of the hair cell) Rice dwarf virus trimer (segmented into three monomers) Map provided by W. Chiu Map provided by M. Auer Department of Computer Science University of Wisconsin-Milwaukee Slides 13 Image Segmentation (2): Prior Work Edge detection Discontinuity Model matching Restricted shapes Region merging Graph cut Clustering Active/deformable contour Parametric (snakes) Geometric (level set method) McInerney & Terzopoulos,1996 Department of Computer Science University of Wisconsin-Milwaukee Slides 14 7

8 Image Segmentation (3): Fast Marching Method The fast marching method (Sethian, 1996, 1999) Start from a seed and propagate by certain speed r r T ( ) F( ) = 1 where F is the speed function, which can be defined as: r r α I ( ) F( ) = e α > 0 Multi-seeded fast marching method (Bajaj jj & Yu & Auer, 2003; Sifakis & Tziritas, 2001) 1 marching simultaneously from each seed Topology-changing for the same seed Topology-preserving between seeds 2 3 Department of Computer Science University of Wisconsin-Milwaukee Slides 15 Image Segmentation (4): Fast Marching Method Multiple seeds assigned to one object Better segmentation Automatic seed generation Medical images: source points (Yu 02) Two approaches Pre-processing (seed classification) Post-processing (region merging) Molecular images: sink points (Bajaj&Yu 03; Yu 05) Department of Computer Science University of Wisconsin-Milwaukee Slides 16 8

9 Image Segmentation (6): Seed Classification Marching distance MD ( A, B) = Min{ f e A B r f ( ) ds} Multiple seeds assigned to one object along all paths from A to B (Yu & Bajaj, 2005; Bajaj & Yu & Auer, 2003) marching simultaneously from each seed Topology-changing for seeds in the same class Topology-preserving for seeds in different class A B Department of Computer Science University of Wisconsin-Milwaukee Slides 17 Image Segmentation (7): Seed Classification P22 Phi29 Correlation Score: 5-fold: fold: 0.79 Collaborators: Wah Chiu (BCM), Tim Baker (UCSD) Department of Computer Science University of Wisconsin-Milwaukee Slides 18 9

10 Image Segmentation (8): Seed Classification CTA segmentation Department of Computer Science University of Wisconsin-Milwaukee Slides 19 Image Segmentation: Region Merging Original image 105 seeds/regions 14 regions after merging Node: each region Edge: two adjacent regions Edge weight: (1) intensity difference (2) gradient magnitude on the common boundary between two regions Use a greedy method to find the minimum cut. This works in a similar way to the region merging approach Department of Computer Science University of Wisconsin-Milwaukee Slides 20 10

11 Image Segmentation: Constrained Region Merging A user-guided, semi-automatic method The user picks some seed points and assigns the types, which will be given the highest priority during the segmentation The regions containing the selected seeds are assigned the corresponding types. Regions containing different types are NOT allowed to merge, no matter how similar they are. All other regions are free to merge, but whenever they are merged to a region with a type, they will be assigned with the same type too. The weighted graph Graph cut allowed Graph cut not allowed Department of Computer Science University of Wisconsin-Milwaukee Slides 21 A Quick Demo of Seed Selection BIMoS Biomedical Image-based Modeling and Simulation (Molecule) (Image) (Mesh) (Simulation) Department of Computer Science University of Wisconsin-Milwaukee Slides 22 11

12 Image Segmentation: Results Time step #1 Time step #3 Department of Computer Science University of Wisconsin-Milwaukee Slides 23 Geometric Modeling Pixels 2D pixel: treated as a square (four edges) 3D voxel: treated as a cube (six faces) a quadrilateral surface mesh Department of Computer Science University of Wisconsin-Milwaukee Slides 24 12

13 Quadrilateral Surface Mesh Generation Time step #1 Time step #3 Department of Computer Science University of Wisconsin-Milwaukee Slides 25 Quadrilateral Surface Mesh Smoothing Least square based quadric surface fitting: 2 2 huv (, ) = au + buv+ cv + eu+ fv+ g Department of Computer Science University of Wisconsin-Milwaukee Slides 26 13

14 Mesh Smoothing Results Department of Computer Science University of Wisconsin-Milwaukee Slides 27 The Heart Motion Time step #1 Time step #3 Time step #5 Time step #10 Department of Computer Science University of Wisconsin-Milwaukee Slides 28 14

15 Skeleton Extraction (1): Boundary-Based Boundary-based Methods Topology-preserving thinning (Lam 92) Distance transform (Arcelli 92; Malandain 98) Voronoi diagram (Ogniewicz 95; Amenta 01) Voxel Coding (Zhou & Toga 99) Physically-based simulations (Leymarie 92; Grogorishin 96) Boundary of object Skeletons Department of Computer Science University of Wisconsin-Milwaukee Slides 29 Skeleton Extraction (2): Boundary-Free Intensity-based Methods Contouring the edge-strength functions (Tari 97) Scale-space theory (Lindeberg 98, Pizer 98) Level set method: surface motion (Chung 00) Pseudo-distance map (Jang 01) Morse complexes (Milnor 63) Filaments Skeletons Department of Computer Science University of Wisconsin-Milwaukee Slides 30 15

16 Skeleton Extraction (3): Our Method Four steps: Initialize gradient vector field Diffuse gradient vector field Compute skeleton strength map Skeleton eeo Tracing r r For bright features: I (*) is the given image r is the neighbor with lowest intensity For dark features: I (*) is the given image r is the neighbor with highest intensity Department of Computer Science University of Wisconsin-Milwaukee Slides 31 Skeleton Extraction (4): Our Method Four steps: Initialize gradient vector field Diffuse gradient vector field Compute skeleton strength map Skeleton eeo Tracing r Isotropic Diffusion (Xu 98) u = μ u ( u f x )( f x + f y ) t v = μ v ( v f )( + ) y f x f y t Anisotropic Diffusion (Yu 04) u = μ ( g ( α ) u) t v = μ ( g ( α ) v) t Department of Computer Science University of Wisconsin-Milwaukee Slides 32 16

17 Skeleton Extraction (5): Our Method Four steps: Initialize gradient vector field Diffuse gradient vector field Compute skeleton strength map Skeleton eeo Tracing r For bright features: Conventional gradients Isotropic diffusion For dark features: Anisotropic diffusion Department of Computer Science University of Wisconsin-Milwaukee Slides 33 Skeleton Extraction (6): Our Method Four steps: Initialize gradient vector field Diffuse gradient vector field Compute skeleton strength map Skeleton eeo Tracing Two tracing approaches: Canny s method Pixel-based Discontinuity Isotropic diffusion: Canny s method Local structure tensor Path-tracing Continuity guaranteed 2 I x Gσ I xi y G I xi z G σ σ I I G x 2 I G y σ σ I I G y y z σ I I G x 2 I G σ σ I I G z y z z σ Anisotropic diffusion: Canny s method Department of Computer Science University of Wisconsin-Milwaukee Slides 34 17

18 Skeleton Extraction (7): Results Original image Skeleton strength map Skeletons Skeletons on map Original image Edge strength map Skeleton strength map Skeletons on map Department of Computer Science University of Wisconsin-Milwaukee Slides 35 Skeleton Extraction (8): Results Department of Computer Science University of Wisconsin-Milwaukee Slides 36 18

19 Skeleton Extraction (9): Bio-Application 1BBH 1DXT Department of Computer Science University of Wisconsin-Milwaukee Slides 37 Questions? BIMoS (Will be available later this year) Department of Computer Science University of Wisconsin-Milwaukee Slides 38 19

A Segmentation-Free Approach for Skeletonization of Gray-Scale Images via Anisotropic Vector Diffusion

A Segmentation-Free Approach for Skeletonization of Gray-Scale Images via Anisotropic Vector Diffusion A Segmentation-Free Approach for Skeletonization of Gray-Scale Images via Anisotropic Vector Diffusion Zeyun Yu and Chandrajit Bajaj Department of Computer Science, University of Texas at Austin, Austin,

More information

Lecture 3: Geometric and Signal 3D Processing (and some Visualization)

Lecture 3: Geometric and Signal 3D Processing (and some Visualization) Lecture 3: Geometric and Signal 3D Processing (and some Visualization) Chandrajit Bajaj Algorithms & Tools Structure elucidation: filtering, contrast enhancement, segmentation, skeletonization, subunit

More information

Subvoxel Segmentation and Representation of Brain Cortex Using Fuzzy Clustering and Gradient Vector Diffusion

Subvoxel Segmentation and Representation of Brain Cortex Using Fuzzy Clustering and Gradient Vector Diffusion Subvoxel Segmentation and Representation of Brain Cortex Using Fuzzy Clustering and Gradient Vector Diffusion Ming-Ching Chang Xiaodong Tao GE Global Research Center {changm, taox} @ research.ge.com SPIE

More information

Skeleton Extraction via Anisotropic Heat Flow

Skeleton Extraction via Anisotropic Heat Flow DIREKOGLU ET AL.: SKELETON EXTRACTION VIA ANISOTROPIC HEAT FLOW 1 Skeleton Extraction via Anisotropic Heat Flow Cem Direkoglu cem.direkoglu@scss.tcd.ie Rozenn Dahyot rozenn.dahyot@scss.tcd.ie Michael Manzke

More information

Image Segmentation and Registration

Image Segmentation and Registration Image Segmentation and Registration Dr. Christine Tanner (tanner@vision.ee.ethz.ch) Computer Vision Laboratory, ETH Zürich Dr. Verena Kaynig, Machine Learning Laboratory, ETH Zürich Outline Segmentation

More information

Iso-surface cell search. Iso-surface Cells. Efficient Searching. Efficient search methods. Efficient iso-surface cell search. Problem statement:

Iso-surface cell search. Iso-surface Cells. Efficient Searching. Efficient search methods. Efficient iso-surface cell search. Problem statement: Iso-Contouring Advanced Issues Iso-surface cell search 1. Efficiently determining which cells to examine. 2. Using iso-contouring as a slicing mechanism 3. Iso-contouring in higher dimensions 4. Texturing

More information

Region-based Segmentation

Region-based Segmentation Region-based Segmentation Image Segmentation Group similar components (such as, pixels in an image, image frames in a video) to obtain a compact representation. Applications: Finding tumors, veins, etc.

More information

Image Segmentation. Schedule. Jesus J Caban 11/2/10. Monday: Today: Image Segmentation Topic : Matting ( P. Bindu ) Assignment #3 distributed

Image Segmentation. Schedule. Jesus J Caban 11/2/10. Monday: Today: Image Segmentation Topic : Matting ( P. Bindu ) Assignment #3 distributed Image Segmentation Jesus J Caban Today: Schedule Image Segmentation Topic : Matting ( P. Bindu ) Assignment #3 distributed Monday: Revised proposal due Topic: Image Warping ( K. Martinez ) Topic: Image

More information

CS4670: Computer Vision Noah Snavely

CS4670: Computer Vision Noah Snavely CS4670: Computer Vision Noah Snavely Lecture 2: Edge detection From Sandlot Science Announcements Project 1 released, due Friday, September 7 1 Edge detection Convert a 2D image into a set of curves Extracts

More information

Image Segmentation. Ross Whitaker SCI Institute, School of Computing University of Utah

Image Segmentation. Ross Whitaker SCI Institute, School of Computing University of Utah Image Segmentation Ross Whitaker SCI Institute, School of Computing University of Utah What is Segmentation? Partitioning images/volumes into meaningful pieces Partitioning problem Labels Isolating a specific

More information

Extract Object Boundaries in Noisy Images using Level Set. Literature Survey

Extract Object Boundaries in Noisy Images using Level Set. Literature Survey Extract Object Boundaries in Noisy Images using Level Set by: Quming Zhou Literature Survey Submitted to Professor Brian Evans EE381K Multidimensional Digital Signal Processing March 15, 003 Abstract Finding

More information

Object Removal Using Exemplar-Based Inpainting

Object Removal Using Exemplar-Based Inpainting CS766 Prof. Dyer Object Removal Using Exemplar-Based Inpainting Ye Hong University of Wisconsin-Madison Fall, 2004 Abstract Two commonly used approaches to fill the gaps after objects are removed from

More information

Normalized cuts and image segmentation

Normalized cuts and image segmentation Normalized cuts and image segmentation Department of EE University of Washington Yeping Su Xiaodan Song Normalized Cuts and Image Segmentation, IEEE Trans. PAMI, August 2000 5/20/2003 1 Outline 1. Image

More information

Image Segmentation. Ross Whitaker SCI Institute, School of Computing University of Utah

Image Segmentation. Ross Whitaker SCI Institute, School of Computing University of Utah Image Segmentation Ross Whitaker SCI Institute, School of Computing University of Utah What is Segmentation? Partitioning images/volumes into meaningful pieces Partitioning problem Labels Isolating a specific

More information

Edge Detection. Announcements. Edge detection. Origin of Edges. Mailing list: you should have received messages

Edge Detection. Announcements. Edge detection. Origin of Edges. Mailing list: you should have received messages Announcements Mailing list: csep576@cs.washington.edu you should have received messages Project 1 out today (due in two weeks) Carpools Edge Detection From Sandlot Science Today s reading Forsyth, chapters

More information

Norbert Schuff VA Medical Center and UCSF

Norbert Schuff VA Medical Center and UCSF Norbert Schuff Medical Center and UCSF Norbert.schuff@ucsf.edu Medical Imaging Informatics N.Schuff Course # 170.03 Slide 1/67 Objective Learn the principle segmentation techniques Understand the role

More information

Linear Operations Using Masks

Linear Operations Using Masks Linear Operations Using Masks Masks are patterns used to define the weights used in averaging the neighbors of a pixel to compute some result at that pixel Expressing linear operations on neighborhoods

More information

Topic 4 Image Segmentation

Topic 4 Image Segmentation Topic 4 Image Segmentation What is Segmentation? Why? Segmentation important contributing factor to the success of an automated image analysis process What is Image Analysis: Processing images to derive

More information

Outlines. Medical Image Processing Using Transforms. 4. Transform in image space

Outlines. Medical Image Processing Using Transforms. 4. Transform in image space Medical Image Processing Using Transforms Hongmei Zhu, Ph.D Department of Mathematics & Statistics York University hmzhu@yorku.ca Outlines Image Quality Gray value transforms Histogram processing Transforms

More information

IMAGE PROCESSING >FILTERS AND EDGE DETECTION FOR COLOR IMAGES UTRECHT UNIVERSITY RONALD POPPE

IMAGE PROCESSING >FILTERS AND EDGE DETECTION FOR COLOR IMAGES UTRECHT UNIVERSITY RONALD POPPE IMAGE PROCESSING >FILTERS AND EDGE DETECTION FOR COLOR IMAGES UTRECHT UNIVERSITY RONALD POPPE OUTLINE Filters for color images Edge detection for color images Canny edge detection FILTERS FOR COLOR IMAGES

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 WRI C225 Lecture 04 130131 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Histogram Equalization Image Filtering Linear

More information

Modern Medical Image Analysis 8DC00 Exam

Modern Medical Image Analysis 8DC00 Exam Parts of answers are inside square brackets [... ]. These parts are optional. Answers can be written in Dutch or in English, as you prefer. You can use drawings and diagrams to support your textual answers.

More information

Geometric Representations. Stelian Coros

Geometric Representations. Stelian Coros Geometric Representations Stelian Coros Geometric Representations Languages for describing shape Boundary representations Polygonal meshes Subdivision surfaces Implicit surfaces Volumetric models Parametric

More information

Optimization. Intelligent Scissors (see also Snakes)

Optimization. Intelligent Scissors (see also Snakes) Optimization We can define a cost for possible solutions Number of solutions is large (eg., exponential) Efficient search is needed Global methods: cleverly find best solution without considering all.

More information

X-RAY crystallography [1], [2] and nuclear magnetic. Computational Approaches for Automatic Structural Analysis of Large Bio-molecular Complexes

X-RAY crystallography [1], [2] and nuclear magnetic. Computational Approaches for Automatic Structural Analysis of Large Bio-molecular Complexes IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 1 Computational Approaches for Automatic Structural Analysis of Large Bio-molecular Complexes Zeyun Yu, Student Member, IEEE, Chandrajit

More information

Segmentation. Separate image into coherent regions

Segmentation. Separate image into coherent regions Segmentation II Segmentation Separate image into coherent regions Berkeley segmentation database: http://www.eecs.berkeley.edu/research/projects/cs/vision/grouping/segbench/ Slide by L. Lazebnik Interactive

More information

Edge detection. Convert a 2D image into a set of curves. Extracts salient features of the scene More compact than pixels

Edge detection. Convert a 2D image into a set of curves. Extracts salient features of the scene More compact than pixels Edge Detection Edge detection Convert a 2D image into a set of curves Extracts salient features of the scene More compact than pixels Origin of Edges surface normal discontinuity depth discontinuity surface

More information

Image Processing

Image Processing Image Processing 159.731 Canny Edge Detection Report Syed Irfanullah, Azeezullah 00297844 Danh Anh Huynh 02136047 1 Canny Edge Detection INTRODUCTION Edges Edges characterize boundaries and are therefore

More information

Efficient 3D Binary Image Skeletonization

Efficient 3D Binary Image Skeletonization Efficient 3D Binary Image Skeletonization Son Tran and Liwen Shih Computer Engineering, University of Houston - Clear Lake (UHCL) shih@uhcl.edu Abstract Image Skeletonization promises to be a powerful

More information

Announcements. Image Segmentation. From images to objects. Extracting objects. Status reports next Thursday ~5min presentations in class

Announcements. Image Segmentation. From images to objects. Extracting objects. Status reports next Thursday ~5min presentations in class Image Segmentation Announcements Status reports next Thursday ~5min presentations in class Project voting From Sandlot Science Today s Readings Forsyth & Ponce, Chapter 1 (plus lots of optional references

More information

Geometrical Modeling of the Heart

Geometrical Modeling of the Heart Geometrical Modeling of the Heart Olivier Rousseau University of Ottawa The Project Goal: Creation of a precise geometrical model of the heart Applications: Numerical calculations Dynamic of the blood

More information

Lecture: Segmentation I FMAN30: Medical Image Analysis. Anders Heyden

Lecture: Segmentation I FMAN30: Medical Image Analysis. Anders Heyden Lecture: Segmentation I FMAN30: Medical Image Analysis Anders Heyden 2017-11-13 Content What is segmentation? Motivation Segmentation methods Contour-based Voxel/pixel-based Discussion What is segmentation?

More information

(10) Image Segmentation

(10) Image Segmentation (0) Image Segmentation - Image analysis Low-level image processing: inputs and outputs are all images Mid-/High-level image processing: inputs are images; outputs are information or attributes of the images

More information

Color-Texture Segmentation of Medical Images Based on Local Contrast Information

Color-Texture Segmentation of Medical Images Based on Local Contrast Information Color-Texture Segmentation of Medical Images Based on Local Contrast Information Yu-Chou Chang Department of ECEn, Brigham Young University, Provo, Utah, 84602 USA ycchang@et.byu.edu Dah-Jye Lee Department

More information

Blood Particle Trajectories in Phase-Contrast-MRI as Minimal Paths Computed with Anisotropic Fast Marching

Blood Particle Trajectories in Phase-Contrast-MRI as Minimal Paths Computed with Anisotropic Fast Marching Blood Particle Trajectories in Phase-Contrast-MRI as Minimal Paths Computed with Anisotropic Fast Marching Michael Schwenke 1, Anja Hennemuth 1, Bernd Fischer 2, Ola Friman 1 1 Fraunhofer MEVIS, Institute

More information

Image Segmentation II Advanced Approaches

Image Segmentation II Advanced Approaches Image Segmentation II Advanced Approaches Jorge Jara W. 1,2 1 Department of Computer Science DCC, U. of Chile 2 SCIAN-Lab, BNI Outline 1. Segmentation I Digital image processing Segmentation basics 2.

More information

Isosurface Rendering. CSC 7443: Scientific Information Visualization

Isosurface Rendering. CSC 7443: Scientific Information Visualization Isosurface Rendering What is Isosurfacing? An isosurface is the 3D surface representing the locations of a constant scalar value within a volume A surface with the same scalar field value Isosurfaces form

More information

Multimedia Computing: Algorithms, Systems, and Applications: Edge Detection

Multimedia Computing: Algorithms, Systems, and Applications: Edge Detection Multimedia Computing: Algorithms, Systems, and Applications: Edge Detection By Dr. Yu Cao Department of Computer Science The University of Massachusetts Lowell Lowell, MA 01854, USA Part of the slides

More information

Automated Segmentation Using a Fast Implementation of the Chan-Vese Models

Automated Segmentation Using a Fast Implementation of the Chan-Vese Models Automated Segmentation Using a Fast Implementation of the Chan-Vese Models Huan Xu, and Xiao-Feng Wang,,3 Intelligent Computation Lab, Hefei Institute of Intelligent Machines, Chinese Academy of Science,

More information

NIH Public Access Author Manuscript Proc Soc Photo Opt Instrum Eng. Author manuscript; available in PMC 2014 October 07.

NIH Public Access Author Manuscript Proc Soc Photo Opt Instrum Eng. Author manuscript; available in PMC 2014 October 07. NIH Public Access Author Manuscript Published in final edited form as: Proc Soc Photo Opt Instrum Eng. 2014 March 21; 9034: 903442. doi:10.1117/12.2042915. MRI Brain Tumor Segmentation and Necrosis Detection

More information

Object Segmentation. Jacob D. Furst DePaul CTI

Object Segmentation. Jacob D. Furst DePaul CTI Object Segmentation Jacob D. Furst DePaul CTI Image Segmentation Segmentation divides an image into regions or objects (segments) The degree of segmentation is highly application dependent Segmentation

More information

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 2.11] Jernej Barbic University of Southern California Scientific Visualization

More information

Visualization. CSCI 420 Computer Graphics Lecture 26

Visualization. CSCI 420 Computer Graphics Lecture 26 CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 11] Jernej Barbic University of Southern California 1 Scientific Visualization

More information

Lecture 6: Edge Detection

Lecture 6: Edge Detection #1 Lecture 6: Edge Detection Saad J Bedros sbedros@umn.edu Review From Last Lecture Options for Image Representation Introduced the concept of different representation or transformation Fourier Transform

More information

Albert M. Vossepoel. Center for Image Processing

Albert M. Vossepoel.   Center for Image Processing Albert M. Vossepoel www.ph.tn.tudelft.nl/~albert scene image formation sensor pre-processing image enhancement image restoration texture filtering segmentation user analysis classification CBP course:

More information

Non-rigid Image Registration

Non-rigid Image Registration Overview Non-rigid Image Registration Introduction to image registration - he goal of image registration - Motivation for medical image registration - Classification of image registration - Nonrigid registration

More information

Shape-Based Kidney Detection and Segmentation in Three-Dimensional Abdominal Ultrasound Images

Shape-Based Kidney Detection and Segmentation in Three-Dimensional Abdominal Ultrasound Images University of Toronto Shape-Based Kidney Detection and Segmentation in Three-Dimensional Abdominal Ultrasound Images Authors: M. Marsousi, K. N. Plataniotis, S. Stergiopoulos Presenter: M. Marsousi, M.

More information

Outline. Reconstruction of 3D Meshes from Point Clouds. Motivation. Problem Statement. Applications. Challenges

Outline. Reconstruction of 3D Meshes from Point Clouds. Motivation. Problem Statement. Applications. Challenges Reconstruction of 3D Meshes from Point Clouds Ming Zhang Patrick Min cs598b, Geometric Modeling for Computer Graphics Feb. 17, 2000 Outline - problem statement - motivation - applications - challenges

More information

Morphological Active Contours for Image Segmentation

Morphological Active Contours for Image Segmentation Morphological Active Contours for Image Segmentation Juan Manuel Rendón Mancha 1, Vannary Meas-Yedid 2, Santiago Venegas Martínez 1, Jean-Christophe Olivo-Marin 2 and Georges Stamon 1 1 SIP Lab CRIP5 UFR

More information

CS-465 Computer Vision

CS-465 Computer Vision CS-465 Computer Vision Nazar Khan PUCIT 9. Optic Flow Optic Flow Nazar Khan Computer Vision 2 / 25 Optic Flow Nazar Khan Computer Vision 3 / 25 Optic Flow Where does pixel (x, y) in frame z move to in

More information

Image Processing, Analysis and Machine Vision

Image Processing, Analysis and Machine Vision Image Processing, Analysis and Machine Vision Milan Sonka PhD University of Iowa Iowa City, USA Vaclav Hlavac PhD Czech Technical University Prague, Czech Republic and Roger Boyle DPhil, MBCS, CEng University

More information

Brain Structure Segmentation from MRI by Geometric Surface Flow

Brain Structure Segmentation from MRI by Geometric Surface Flow Brain Structure Segmentation from MRI by Geometric Surface Flow Greg Heckenberg Yongjian Xi Ye Duan Jing Hua University of Missouri at Columbia Wayne State University Abstract In this paper, we present

More information

Deformable Contour Method: A Constrained Optimization Approach

Deformable Contour Method: A Constrained Optimization Approach Deformable Contour Method: A Constrained Optimization Approach Xun Wang, Lei He, Chia Y. Han, William G. Wee Electrical & Computer Engineering and Computer Science Department University of Cincinnati,

More information

Adaptive active contours (snakes) for the segmentation of complex structures in biological images

Adaptive active contours (snakes) for the segmentation of complex structures in biological images Adaptive active contours (snakes) for the segmentation of complex structures in biological images Philippe Andrey a and Thomas Boudier b a Analyse et Modélisation en Imagerie Biologique, Laboratoire Neurobiologie

More information

TEMPLATE-BASED AUTOMATIC SEGMENTATION OF MASSETER USING PRIOR KNOWLEDGE

TEMPLATE-BASED AUTOMATIC SEGMENTATION OF MASSETER USING PRIOR KNOWLEDGE TEMPLATE-BASED AUTOMATIC SEGMENTATION OF MASSETER USING PRIOR KNOWLEDGE H.P. Ng 1,, S.H. Ong 3, P.S. Goh 4, K.W.C. Foong 1, 5, W.L. Nowinski 1 NUS Graduate School for Integrative Sciences and Engineering,

More information

Volume Illumination, Contouring

Volume Illumination, Contouring Volume Illumination, Contouring Computer Animation and Visualisation Lecture 0 tkomura@inf.ed.ac.uk Institute for Perception, Action & Behaviour School of Informatics Contouring Scaler Data Overview -

More information

Network Snakes for the Segmentation of Adjacent Cells in Confocal Images

Network Snakes for the Segmentation of Adjacent Cells in Confocal Images Network Snakes for the Segmentation of Adjacent Cells in Confocal Images Matthias Butenuth 1 and Fritz Jetzek 2 1 Institut für Photogrammetrie und GeoInformation, Leibniz Universität Hannover, 30167 Hannover

More information

Scalar Algorithms: Contouring

Scalar Algorithms: Contouring Scalar Algorithms: Contouring Computer Animation and Visualisation Lecture tkomura@inf.ed.ac.uk Institute for Perception, Action & Behaviour School of Informatics Contouring Scaler Data Last Lecture...

More information

Computer Vision for HCI. Topics of This Lecture

Computer Vision for HCI. Topics of This Lecture Computer Vision for HCI Interest Points Topics of This Lecture Local Invariant Features Motivation Requirements, Invariances Keypoint Localization Features from Accelerated Segment Test (FAST) Harris Shi-Tomasi

More information

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University 15-462 Computer Graphics I Lecture 21 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Image gradients and edges April 10 th, 2018

Image gradients and edges April 10 th, 2018 Image gradients and edges April th, 28 Yong Jae Lee UC Davis PS due this Friday Announcements Questions? 2 Last time Image formation Linear filters and convolution useful for Image smoothing, removing

More information

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923 Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923 Teesta suspension bridge-darjeeling, India Mark Twain at Pool Table", no date, UCR Museum of Photography Woman getting eye exam during

More information

Anno accademico 2006/2007. Davide Migliore

Anno accademico 2006/2007. Davide Migliore Robotica Anno accademico 6/7 Davide Migliore migliore@elet.polimi.it Today What is a feature? Some useful information The world of features: Detectors Edges detection Corners/Points detection Descriptors?!?!?

More information

Other Linear Filters CS 211A

Other Linear Filters CS 211A Other Linear Filters CS 211A Slides from Cornelia Fermüller and Marc Pollefeys Edge detection Convert a 2D image into a set of curves Extracts salient features of the scene More compact than pixels Origin

More information

Morphological and Statistical Techniques for the Analysis of 3D Images. Enric Meinhardt-Llopis

Morphological and Statistical Techniques for the Analysis of 3D Images. Enric Meinhardt-Llopis Morphological and Statistical Techniques for the Analysis of 3D Images Enric Meinhardt-Llopis 3 3 2011 2 / 57 Outline Motivation: 2D/3D differences The 3D tree of shapes Applications of the tree of shapes

More information

Tracking system. Danica Kragic. Object Recognition & Model Based Tracking

Tracking system. Danica Kragic. Object Recognition & Model Based Tracking Tracking system Object Recognition & Model Based Tracking Motivation Manipulating objects in domestic environments Localization / Navigation Object Recognition Servoing Tracking Grasping Pose estimation

More information

Scientific Visualization. CSC 7443: Scientific Information Visualization

Scientific Visualization. CSC 7443: Scientific Information Visualization Scientific Visualization Scientific Datasets Gaining insight into scientific data by representing the data by computer graphics Scientific data sources Computation Real material simulation/modeling (e.g.,

More information

Human Heart Coronary Arteries Segmentation

Human Heart Coronary Arteries Segmentation Human Heart Coronary Arteries Segmentation Qian Huang Wright State University, Computer Science Department Abstract The volume information extracted from computed tomography angiogram (CTA) datasets makes

More information

GVF-Based Transfer Functions for Volume Rendering

GVF-Based Transfer Functions for Volume Rendering GVF-Based Transfer Functions for Volume Rendering Shaorong Wang 1,2 and Hua Li 1 1 National Research Center for Intelligent Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences,

More information

Targil 10 : Why Mosaic? Why is this a challenge? Exposure differences Scene illumination Miss-registration Moving objects

Targil 10 : Why Mosaic? Why is this a challenge? Exposure differences Scene illumination Miss-registration Moving objects Why Mosaic? Are you getting the whole picture? Compact Camera FOV = 5 x 35 Targil : Panoramas - Stitching and Blending Some slides from Alexei Efros 2 Slide from Brown & Lowe Why Mosaic? Are you getting

More information

C E N T E R A T H O U S T O N S C H O O L of H E A L T H I N F O R M A T I O N S C I E N C E S. Image Operations II

C E N T E R A T H O U S T O N S C H O O L of H E A L T H I N F O R M A T I O N S C I E N C E S. Image Operations II T H E U N I V E R S I T Y of T E X A S H E A L T H S C I E N C E C E N T E R A T H O U S T O N S C H O O L of H E A L T H I N F O R M A T I O N S C I E N C E S Image Operations II For students of HI 5323

More information

Lecture 18 Representation and description I. 2. Boundary descriptors

Lecture 18 Representation and description I. 2. Boundary descriptors Lecture 18 Representation and description I 1. Boundary representation 2. Boundary descriptors What is representation What is representation After segmentation, we obtain binary image with interested regions

More information

MEDICAL IMAGE NOISE REDUCTION AND REGION CONTRAST ENHANCEMENT USING PARTIAL DIFFERENTIAL EQUATIONS

MEDICAL IMAGE NOISE REDUCTION AND REGION CONTRAST ENHANCEMENT USING PARTIAL DIFFERENTIAL EQUATIONS MEDICAL IMAGE NOISE REDUCTION AND REGION CONTRAST ENHANCEMENT USING PARTIAL DIFFERENTIAL EQUATIONS Miguel Alemán-Flores, Luis Álvarez-León Departamento de Informática y Sistemas, Universidad de Las Palmas

More information

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging 1 CS 9 Final Project Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging Feiyu Chen Department of Electrical Engineering ABSTRACT Subject motion is a significant

More information

Contrast adjustment via Bayesian sequential partitioning

Contrast adjustment via Bayesian sequential partitioning Contrast adjustment via Bayesian sequential partitioning Zhiyu Wang, Shuo Xie, Bai Jiang Abstract Photographs taken in dim light have low color contrast. However, traditional methods for adjusting contrast

More information

Color Lesion Boundary Detection Using Live Wire

Color Lesion Boundary Detection Using Live Wire Color Lesion Boundary Detection Using Live Wire Artur Chodorowski a, Ulf Mattsson b, Morgan Langille c and Ghassan Hamarneh c a Chalmers University of Technology, Göteborg, Sweden b Central Hospital, Karlstad,

More information

Skeletonization by Gradient Regularization and diffusion

Skeletonization by Gradient Regularization and diffusion Seletonization by Gradient Regularization and diffusion F. Le Bourgeois H. Emptoz LIRIS INSA de Lyon, Villeurbanne France {Franc.lebourgeois,Hubert.emptoz}@liris.cnrs.fr Abstract This paper describes a

More information

Introduction to Medical Imaging (5XSA0)

Introduction to Medical Imaging (5XSA0) 1 Introduction to Medical Imaging (5XSA0) Visual feature extraction Color and texture analysis Sveta Zinger ( s.zinger@tue.nl ) Introduction (1) Features What are features? Feature a piece of information

More information

ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION

ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION Abstract: MIP Project Report Spring 2013 Gaurav Mittal 201232644 This is a detailed report about the course project, which was to implement

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Third Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive PEARSON Prentice Hall Pearson Education International Contents Preface xv Acknowledgments

More information

Toward Automated Cancer Diagnosis: An Interactive System for Cell Feature Extraction

Toward Automated Cancer Diagnosis: An Interactive System for Cell Feature Extraction Toward Automated Cancer Diagnosis: An Interactive System for Cell Feature Extraction Nick Street Computer Sciences Department University of Wisconsin-Madison street@cs.wisc.edu Abstract Oncologists at

More information

Review on Image Segmentation Techniques and its Types

Review on Image Segmentation Techniques and its Types 1 Review on Image Segmentation Techniques and its Types Ritu Sharma 1, Rajesh Sharma 2 Research Scholar 1 Assistant Professor 2 CT Group of Institutions, Jalandhar. 1 rits_243@yahoo.in, 2 rajeshsharma1234@gmail.com

More information

Edge Detection. CSE 576 Ali Farhadi. Many slides from Steve Seitz and Larry Zitnick

Edge Detection. CSE 576 Ali Farhadi. Many slides from Steve Seitz and Larry Zitnick Edge Detection CSE 576 Ali Farhadi Many slides from Steve Seitz and Larry Zitnick Edge Attneave's Cat (1954) Origin of edges surface normal discontinuity depth discontinuity surface color discontinuity

More information

Detection of Edges Using Mathematical Morphological Operators

Detection of Edges Using Mathematical Morphological Operators OPEN TRANSACTIONS ON INFORMATION PROCESSING Volume 1, Number 1, MAY 2014 OPEN TRANSACTIONS ON INFORMATION PROCESSING Detection of Edges Using Mathematical Morphological Operators Suman Rani*, Deepti Bansal,

More information

doi: /

doi: / Yiting Xie ; Anthony P. Reeves; Single 3D cell segmentation from optical CT microscope images. Proc. SPIE 934, Medical Imaging 214: Image Processing, 9343B (March 21, 214); doi:1.1117/12.243852. (214)

More information

Introduction to Medical Imaging (5XSA0) Module 5

Introduction to Medical Imaging (5XSA0) Module 5 Introduction to Medical Imaging (5XSA0) Module 5 Segmentation Jungong Han, Dirk Farin, Sveta Zinger ( s.zinger@tue.nl ) 1 Outline Introduction Color Segmentation region-growing region-merging watershed

More information

Identify Curvilinear Structure Based on Oriented Phase Congruency in Live Cell Images

Identify Curvilinear Structure Based on Oriented Phase Congruency in Live Cell Images International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 4 (2013), pp. 335-340 International Research Publications House http://www. irphouse.com /ijict.htm Identify

More information

Advanced Video Content Analysis and Video Compression (5LSH0), Module 4

Advanced Video Content Analysis and Video Compression (5LSH0), Module 4 Advanced Video Content Analysis and Video Compression (5LSH0), Module 4 Visual feature extraction Part I: Color and texture analysis Sveta Zinger Video Coding and Architectures Research group, TU/e ( s.zinger@tue.nl

More information

Babu Madhav Institute of Information Technology Years Integrated M.Sc.(IT)(Semester - 7)

Babu Madhav Institute of Information Technology Years Integrated M.Sc.(IT)(Semester - 7) 5 Years Integrated M.Sc.(IT)(Semester - 7) 060010707 Digital Image Processing UNIT 1 Introduction to Image Processing Q: 1 Answer in short. 1. What is digital image? 1. Define pixel or picture element?

More information

Dynamic 3D Shape From Multi-viewpoint Images Using Deformable Mesh Model

Dynamic 3D Shape From Multi-viewpoint Images Using Deformable Mesh Model Dynamic 3D Shape From Multi-viewpoint Images Using Deformable Mesh Model Shohei Nobuhara Takashi Matsuyama Graduate School of Informatics, Kyoto University Sakyo, Kyoto, 606-8501, Japan {nob, tm}@vision.kuee.kyoto-u.ac.jp

More information

Diffusion model fitting and tractography: A primer

Diffusion model fitting and tractography: A primer Diffusion model fitting and tractography: A primer Anastasia Yendiki HMS/MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging 03/18/10 Why n how Diffusion model fitting and tractography 0/18 Why

More information

Lecture: Edge Detection

Lecture: Edge Detection CMPUT 299 Winter 2007 Lecture: Edge Detection Irene Cheng Overview. What is a pixel in an image? 2. How does Photoshop, + human assistance, detect an edge in a picture/photograph? 3. Behind Photoshop -

More information

AN EFFICIENT APPROACH FOR IMPROVING CANNY EDGE DETECTION ALGORITHM

AN EFFICIENT APPROACH FOR IMPROVING CANNY EDGE DETECTION ALGORITHM AN EFFICIENT APPROACH FOR IMPROVING CANNY EDGE DETECTION ALGORITHM Shokhan M. H. Department of Computer Science, Al-Anbar University, Iraq ABSTRACT Edge detection is one of the most important stages in

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

Color Image Segmentation Editor Based on the Integration of Edge-Linking, Region Labeling and Deformable Model

Color Image Segmentation Editor Based on the Integration of Edge-Linking, Region Labeling and Deformable Model This paper appears in: IEEE International Conference on Systems, Man and Cybernetics, 1999 Color Image Segmentation Editor Based on the Integration of Edge-Linking, Region Labeling and Deformable Model

More information

On a nested refinement of anisotropic tetrahedral grids under Hessian metrics

On a nested refinement of anisotropic tetrahedral grids under Hessian metrics On a nested refinement of anisotropic tetrahedral grids under Hessian metrics Shangyou Zhang Abstract Anisotropic grids, having drastically different grid sizes in different directions, are efficient and

More information

Journal of Industrial Engineering Research

Journal of Industrial Engineering Research IWNEST PUBLISHER Journal of Industrial Engineering Research (ISSN: 2077-4559) Journal home page: http://www.iwnest.com/aace/ Mammogram Image Segmentation Using voronoi Diagram Properties Dr. J. Subash

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 15, 2003 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Data Visualization (DSC 530/CIS )

Data Visualization (DSC 530/CIS ) Data Visualization (DSC 530/CIS 60-01) Scalar Visualization Dr. David Koop Online JavaScript Resources http://learnjsdata.com/ Good coverage of data wrangling using JavaScript Fields in Visualization Scalar

More information

CSE 152 Lecture 7. Intro Computer Vision

CSE 152 Lecture 7. Intro Computer Vision Introduction to Computer Vision CSE 152 Lecture 7 Binary Tracking for Robot Control Binary System Summary 1. Acquire images and binarize (tresholding, color labels, etc.). 2. Possibly clean up image using

More information