ESE 415: Optimization Making best decisions in a high-dimensional universe

Size: px
Start display at page:

Download "ESE 415: Optimization Making best decisions in a high-dimensional universe"

Transcription

1 ESE 415: Optimization Making best decisions in a high-dimensional universe Prof. Ulugbek Kamilov Computational Imaging Group (CIG) WashU (ESE 415) Spring cigroup.wustl.edu kamilov@wustl.edu

2 Today we will talk about Motivating example from CIG Optimization as a pillar of machine learning Brief overview of optimization What will we learn during this semester? Class structure Assignments, grades, assistant instructors, etc.

3 Today we will talk about Motivating example from CIG Optimization as a pillar of machine learning Brief overview of optimization What will we learn during this semester? Class structure Assignments, grades, assistant instructors, etc.

4 What are some examples of imaging systems? MRI Phone Optical microscope Depth sensor Electron microscope CT

5 Imaging systems are going through a paradigm shift with computation at its core Past: Solely rely on hardware for image formation input imaging system instrument output Present: Use digital processing for improved performance input instrument computation output Future: Advanced inference for retrieving hidden information input instrument cloud computation output

6 b<latexit sha1_base64="raey/bt4xedenab8y9ragc0ksl0=">aaab/hicbzdlsgmxfibp1futt6pln8eiucoziujcrcgnywr2au1qkjrty5pmkgsemtrncktrd+lwd3hpm5hpz2fbfwh8/occzslpysgn9f1vr7c2vrg5vdwu7ezu7r+ud4+ajko0zq0aiui3ctzmcmuallvb2rfmwblbwmr8m9vbt0wbhqkho4lzkpfq8qgn2dqr2suyjdneuejx/znqkgq5vcbxvvf+6fyjmkimlbxyme7gxzzmsbaccjytdrpdykzhemg6dhwwzitp7noponnohw0i7z6yaob+nuixngyiieuu2i7mci0z/6t1eju4dlou4sqyreelbolanklz11gfa0atmdjavhn3k6ijrdg1lqcflurmmqtlcaxc86iaol6/rnru8nskcaknca4bxeen7qaodadwcc/wcm/es/fufxif89acl88cw4k8r1+c9pxl</latexit> <latexit sha1_base64="raey/bt4xedenab8y9ragc0ksl0=">aaab/hicbzdlsgmxfibp1futt6pln8eiucoziujcrcgnywr2au1qkjrty5pmkgsemtrncktrd+lwd3hpm5hpz2fbfwh8/occzslpysgn9f1vr7c2vrg5vdwu7ezu7r+ud4+ajko0zq0aiui3ctzmcmuallvb2rfmwblbwmr8m9vbt0wbhqkho4lzkpfq8qgn2dqr2suyjdneuejx/znqkgq5vcbxvvf+6fyjmkimlbxyme7gxzzmsbaccjytdrpdykzhemg6dhwwzitp7noponnohw0i7z6yaob+nuixngyiieuu2i7mci0z/6t1eju4dlou4sqyreelbolanklz11gfa0atmdjavhn3k6ijrdg1lqcflurmmqtlcaxc86iaol6/rnru8nskcaknca4bxeen7qaodadwcc/wcm/es/fufxif89acl88cw4k8r1+c9pxl</latexit> <latexit sha1_base64="raey/bt4xedenab8y9ragc0ksl0=">aaab/hicbzdlsgmxfibp1futt6pln8eiucoziujcrcgnywr2au1qkjrty5pmkgsemtrncktrd+lwd3hpm5hpz2fbfwh8/occzslpysgn9f1vr7c2vrg5vdwu7ezu7r+ud4+ajko0zq0aiui3ctzmcmuallvb2rfmwblbwmr8m9vbt0wbhqkho4lzkpfq8qgn2dqr2suyjdneuejx/znqkgq5vcbxvvf+6fyjmkimlbxyme7gxzzmsbaccjytdrpdykzhemg6dhwwzitp7noponnohw0i7z6yaob+nuixngyiieuu2i7mci0z/6t1eju4dlou4sqyreelbolanklz11gfa0atmdjavhn3k6ijrdg1lqcflurmmqtlcaxc86iaol6/rnru8nskcaknca4bxeen7qaodadwcc/wcm/es/fufxif89acl88cw4k8r1+c9pxl</latexit> <latexit sha1_base64="raey/bt4xedenab8y9ragc0ksl0=">aaab/hicbzdlsgmxfibp1futt6pln8eiucoziujcrcgnywr2au1qkjrty5pmkgsemtrncktrd+lwd3hpm5hpz2fbfwh8/occzslpysgn9f1vr7c2vrg5vdwu7ezu7r+ud4+ajko0zq0aiui3ctzmcmuallvb2rfmwblbwmr8m9vbt0wbhqkho4lzkpfq8qgn2dqr2suyjdneuejx/znqkgq5vcbxvvf+6fyjmkimlbxyme7gxzzmsbaccjytdrpdykzhemg6dhwwzitp7noponnohw0i7z6yaob+nuixngyiieuu2i7mci0z/6t1eju4dlou4sqyreelbolanklz11gfa0atmdjavhn3k6ijrdg1lqcflurmmqtlcaxc86iaol6/rnru8nskcaknca4bxeen7qaodadwcc/wcm/es/fufxif89acl88cw4k8r1+c9pxl</latexit> <latexit sha1_base64="hn4q3tknhqwxwo7zopyyftde/9s=">aaab93icbza9swnbeibn4lemx1flm8ugwiu7ebrqcnhyjma+idnc3myuwbk3d+zucufil7dv2k5s/tmw/hm3yrum8ywfh3dmmnk3satxxnw/nclg5tb2tng3tld/chhupj5p6thvdjssfrhqbfsj4bkbhhubnuqhjqkb7wd8mku3n1fphssnkyxor3qoecgzndzq3pflfbfqzkxwwcuharnq/fjpbxcznejpmkbadz03mf6eksozwgmpl2pmkbvtixytshqh9ifzq6fkwjodesbkpmni3p07magr1lku2m6impferc3m/2rd1is3/otljduo2wjrmapiyjl7nrlwhcyizajlittbcrtrrzmx2sxtcakpzcrbtwadwldvz3ljulk7y9mpwhmcwyv4cam1eiq6niebwgu8wputoe/oh/o5ac04+cwplmn5+gusnjnr</latexit> <latexit sha1_base64="hn4q3tknhqwxwo7zopyyftde/9s=">aaab93icbza9swnbeibn4lemx1flm8ugwiu7ebrqcnhyjma+idnc3myuwbk3d+zucufil7dv2k5s/tmw/hm3yrum8ywfh3dmmnk3satxxnw/nclg5tb2tng3tld/chhupj5p6thvdjssfrhqbfsj4bkbhhubnuqhjqkb7wd8mku3n1fphssnkyxor3qoecgzndzq3pflfbfqzkxwwcuharnq/fjpbxcznejpmkbadz03mf6eksozwgmpl2pmkbvtixytshqh9ifzq6fkwjodesbkpmni3p07magr1lku2m6impferc3m/2rd1is3/otljduo2wjrmapiyjl7nrlwhcyizajlittbcrtrrzmx2sxtcakpzcrbtwadwldvz3ljulk7y9mpwhmcwyv4cam1eiq6niebwgu8wputoe/oh/o5ac04+cwplmn5+gusnjnr</latexit> <latexit sha1_base64="hn4q3tknhqwxwo7zopyyftde/9s=">aaab93icbza9swnbeibn4lemx1flm8ugwiu7ebrqcnhyjma+idnc3myuwbk3d+zucufil7dv2k5s/tmw/hm3yrum8ywfh3dmmnk3satxxnw/nclg5tb2tng3tld/chhupj5p6thvdjssfrhqbfsj4bkbhhubnuqhjqkb7wd8mku3n1fphssnkyxor3qoecgzndzq3pflfbfqzkxwwcuharnq/fjpbxcznejpmkbadz03mf6eksozwgmpl2pmkbvtixytshqh9ifzq6fkwjodesbkpmni3p07magr1lku2m6impferc3m/2rd1is3/otljduo2wjrmapiyjl7nrlwhcyizajlittbcrtrrzmx2sxtcakpzcrbtwadwldvz3ljulk7y9mpwhmcwyv4cam1eiq6niebwgu8wputoe/oh/o5ac04+cwplmn5+gusnjnr</latexit> A<latexit sha1_base64="gdiufbk56qej3ezv6hxrar2bywo=">aaab/hicbzdlsgmxfibp1futt6pln8eiucozitsfi4oblxxsbdqhznjmg5tkhiqjlke+g1tduxo3votl38rmowvb+kpg4z/nce7+iozmg9f9dgpr6xubw8xt0s7u3v5b+fcopaneedokey9uj8cacizp0zddasdwfiua03ywvs3q7seqnivkg5ne1bd4kfnicdbwavuckd5m++wkw3vnqqvg5vcbxi1++ac3iegiqdsey627nhsbp8xkmmlptnrlni0xgemh7vquwfdtp7nrp+jmogmurso+addm/turyqh1ras2u2az0su1zpyv1k1meowntmajozlmf4ujryzc2dfrgclkdj9yweqxeysii6wwmtaghs2bydlxlhnyhdzf1bn8f1mpx+fpfoeetuecpkhbhe6gau0g8agv8apvzrpz7nw4n/pwgppphmocnk9ftukvqg==</latexit> <latexit sha1_base64="gdiufbk56qej3ezv6hxrar2bywo=">aaab/hicbzdlsgmxfibp1futt6pln8eiucozitsfi4oblxxsbdqhznjmg5tkhiqjlke+g1tduxo3votl38rmowvb+kpg4z/nce7+iozmg9f9dgpr6xubw8xt0s7u3v5b+fcopaneedokey9uj8cacizp0zddasdwfiua03ywvs3q7seqnivkg5ne1bd4kfnicdbwavuckd5m++wkw3vnqqvg5vcbxi1++ac3iegiqdsey627nhsbp8xkmmlptnrlni0xgemh7vquwfdtp7nrp+jmogmurso+addm/turyqh1ras2u2az0su1zpyv1k1meowntmajozlmf4ujryzc2dfrgclkdj9yweqxeysii6wwmtaghs2bydlxlhnyhdzf1bn8f1mpx+fpfoeetuecpkhbhe6gau0g8agv8apvzrpz7nw4n/pwgppphmocnk9ftukvqg==</latexit> <latexit sha1_base64="gdiufbk56qej3ezv6hxrar2bywo=">aaab/hicbzdlsgmxfibp1futt6pln8eiucozitsfi4oblxxsbdqhznjmg5tkhiqjlke+g1tduxo3votl38rmowvb+kpg4z/nce7+iozmg9f9dgpr6xubw8xt0s7u3v5b+fcopaneedokey9uj8cacizp0zddasdwfiua03ywvs3q7seqnivkg5ne1bd4kfnicdbwavuckd5m++wkw3vnqqvg5vcbxi1++ac3iegiqdsey627nhsbp8xkmmlptnrlni0xgemh7vquwfdtp7nrp+jmogmurso+addm/turyqh1ras2u2az0su1zpyv1k1meowntmajozlmf4ujryzc2dfrgclkdj9yweqxeysii6wwmtaghs2bydlxlhnyhdzf1bn8f1mpx+fpfoeetuecpkhbhe6gau0g8agv8apvzrpz7nw4n/pwgppphmocnk9ftukvqg==</latexit> <latexit sha1_base64="gdiufbk56qej3ezv6hxrar2bywo=">aaab/hicbzdlsgmxfibp1futt6pln8eiucozitsfi4oblxxsbdqhznjmg5tkhiqjlke+g1tduxo3votl38rmowvb+kpg4z/nce7+iozmg9f9dgpr6xubw8xt0s7u3v5b+fcopaneedokey9uj8cacizp0zddasdwfiua03ywvs3q7seqnivkg5ne1bd4kfnicdbwavuckd5m++wkw3vnqqvg5vcbxi1++ac3iegiqdsey627nhsbp8xkmmlptnrlni0xgemh7vquwfdtp7nrp+jmogmurso+addm/turyqh1ras2u2az0su1zpyv1k1meowntmajozlmf4ujryzc2dfrgclkdj9yweqxeysii6wwmtaghs2bydlxlhnyhdzf1bn8f1mpx+fpfoeetuecpkhbhe6gau0g8agv8apvzrpz7nw4n/pwgppphmocnk9ftukvqg==</latexit> x<latexit sha1_base64="o/fgcfx5ut2bqymljp4egcdol+w=">aaab/hicbzdlsgmxfibp1futt6pln8eiucozitsfi4iblxxsbdqhznjmg5tkhiqjlqe+g1tduxo3votl38rmowvb+kpg4z/nce7+iozmg9f9dgpr6xubw8xt0s7u3v5b+fcopaneedokey9uj8cacizp0zddasdwfiua03ywvsnq7ueqnivkvzne1bd4kfnicdbwavuckt5n++wkw3vnqqvg5vcbxi1++ac3iegiqdsey627nhsbp8xkmmlptnrlni0xgemh7vquwfdtp7nrp+jmogmurso+addm/turyqh1ras2u2az0su1zpyv1k1meowntmajozlmf4ujryzc2dfrgclkdj9yweqxeysii6wwmtaghs2bydlxlhnyhdzf1bn8d1mpx+fpfoeetuecpkhbhw6hau0g8aav8apvzrpz7nw4n/pwgppphmocnk9fpa6v4q==</latexit> <latexit sha1_base64="o/fgcfx5ut2bqymljp4egcdol+w=">aaab/hicbzdlsgmxfibp1futt6pln8eiucozitsfi4iblxxsbdqhznjmg5tkhiqjlqe+g1tduxo3votl38rmowvb+kpg4z/nce7+iozmg9f9dgpr6xubw8xt0s7u3v5b+fcopaneedokey9uj8cacizp0zddasdwfiua03ywvsnq7ueqnivkvzne1bd4kfnicdbwavuckt5n++wkw3vnqqvg5vcbxi1++ac3iegiqdsey627nhsbp8xkmmlptnrlni0xgemh7vquwfdtp7nrp+jmogmurso+addm/turyqh1ras2u2az0su1zpyv1k1meowntmajozlmf4ujryzc2dfrgclkdj9yweqxeysii6wwmtaghs2bydlxlhnyhdzf1bn8d1mpx+fpfoeetuecpkhbhw6hau0g8aav8apvzrpz7nw4n/pwgppphmocnk9fpa6v4q==</latexit> <latexit sha1_base64="o/fgcfx5ut2bqymljp4egcdol+w=">aaab/hicbzdlsgmxfibp1futt6pln8eiucozitsfi4iblxxsbdqhznjmg5tkhiqjlqe+g1tduxo3votl38rmowvb+kpg4z/nce7+iozmg9f9dgpr6xubw8xt0s7u3v5b+fcopaneedokey9uj8cacizp0zddasdwfiua03ywvsnq7ueqnivkvzne1bd4kfnicdbwavuckt5n++wkw3vnqqvg5vcbxi1++ac3iegiqdsey627nhsbp8xkmmlptnrlni0xgemh7vquwfdtp7nrp+jmogmurso+addm/turyqh1ras2u2az0su1zpyv1k1meowntmajozlmf4ujryzc2dfrgclkdj9yweqxeysii6wwmtaghs2bydlxlhnyhdzf1bn8d1mpx+fpfoeetuecpkhbhw6hau0g8aav8apvzrpz7nw4n/pwgppphmocnk9fpa6v4q==</latexit> <latexit sha1_base64="o/fgcfx5ut2bqymljp4egcdol+w=">aaab/hicbzdlsgmxfibp1futt6pln8eiucozitsfi4iblxxsbdqhznjmg5tkhiqjlqe+g1tduxo3votl38rmowvb+kpg4z/nce7+iozmg9f9dgpr6xubw8xt0s7u3v5b+fcopaneedokey9uj8cacizp0zddasdwfiua03ywvsnq7ueqnivkvzne1bd4kfnicdbwavuckt5n++wkw3vnqqvg5vcbxi1++ac3iegiqdsey627nhsbp8xkmmlptnrlni0xgemh7vquwfdtp7nrp+jmogmurso+addm/turyqh1ras2u2az0su1zpyv1k1meowntmajozlmf4ujryzc2dfrgclkdj9yweqxeysii6wwmtaghs2bydlxlhnyhdzf1bn8d1mpx+fpfoeetuecpkhbhw6hau0g8aav8apvzrpz7nw4n/pwgppphmocnk9fpa6v4q==</latexit> Medical image quality directly depends on the amount of collected data MRI in an ideal world where patients do not move =<latexit sha1_base64="hn4q3tknhqwxwo7zopyyftde/9s=">aaab93icbza9swnbeibn4lemx1flm8ugwiu7ebrqcnhyjma+idnc3myuwbk3d+zucufil7dv2k5s/tmw/hm3yrum8ywfh3dmmnk3satxxnw/nclg5tb2tng3tld/chhupj5p6thvdjssfrhqbfsj4bkbhhubnuqhjqkb7wd8mku3n1fphssnkyxor3qoecgzndzq3pflfbfqzkxwwcuharnq/fjpbxcznejpmkbadz03mf6eksozwgmpl2pmkbvtixytshqh9ifzq6fkwjodesbkpmni3p07magr1lku2m6impferc3m/2rd1is3/otljduo2wjrmapiyjl7nrlwhcyizajlittbcrtrrzmx2sxtcakpzcrbtwadwldvz3ljulk7y9mpwhmcwyv4cam1eiq6niebwgu8wputoe/oh/o5ac04+cwplmn5+gusnjnr</latexit> full sampling = as many measurements as unknown image pixels

7 Medical image quality directly depends on the amount of collected data MRI in an ideal world where patients do not move high-quality image

8 b<latexit sha1_base64="raey/bt4xedenab8y9ragc0ksl0=">aaab/hicbzdlsgmxfibp1futt6pln8eiucoziujcrcgnywr2au1qkjrty5pmkgsemtrncktrd+lwd3hpm5hpz2fbfwh8/occzslpysgn9f1vr7c2vrg5vdwu7ezu7r+ud4+ajko0zq0aiui3ctzmcmuallvb2rfmwblbwmr8m9vbt0wbhqkho4lzkpfq8qgn2dqr2suyjdneuejx/znqkgq5vcbxvvf+6fyjmkimlbxyme7gxzzmsbaccjytdrpdykzhemg6dhwwzitp7noponnohw0i7z6yaob+nuixngyiieuu2i7mci0z/6t1eju4dlou4sqyreelbolanklz11gfa0atmdjavhn3k6ijrdg1lqcflurmmqtlcaxc86iaol6/rnru8nskcaknca4bxeen7qaodadwcc/wcm/es/fufxif89acl88cw4k8r1+c9pxl</latexit> <latexit sha1_base64="raey/bt4xedenab8y9ragc0ksl0=">aaab/hicbzdlsgmxfibp1futt6pln8eiucoziujcrcgnywr2au1qkjrty5pmkgsemtrncktrd+lwd3hpm5hpz2fbfwh8/occzslpysgn9f1vr7c2vrg5vdwu7ezu7r+ud4+ajko0zq0aiui3ctzmcmuallvb2rfmwblbwmr8m9vbt0wbhqkho4lzkpfq8qgn2dqr2suyjdneuejx/znqkgq5vcbxvvf+6fyjmkimlbxyme7gxzzmsbaccjytdrpdykzhemg6dhwwzitp7noponnohw0i7z6yaob+nuixngyiieuu2i7mci0z/6t1eju4dlou4sqyreelbolanklz11gfa0atmdjavhn3k6ijrdg1lqcflurmmqtlcaxc86iaol6/rnru8nskcaknca4bxeen7qaodadwcc/wcm/es/fufxif89acl88cw4k8r1+c9pxl</latexit> <latexit sha1_base64="raey/bt4xedenab8y9ragc0ksl0=">aaab/hicbzdlsgmxfibp1futt6pln8eiucoziujcrcgnywr2au1qkjrty5pmkgsemtrncktrd+lwd3hpm5hpz2fbfwh8/occzslpysgn9f1vr7c2vrg5vdwu7ezu7r+ud4+ajko0zq0aiui3ctzmcmuallvb2rfmwblbwmr8m9vbt0wbhqkho4lzkpfq8qgn2dqr2suyjdneuejx/znqkgq5vcbxvvf+6fyjmkimlbxyme7gxzzmsbaccjytdrpdykzhemg6dhwwzitp7noponnohw0i7z6yaob+nuixngyiieuu2i7mci0z/6t1eju4dlou4sqyreelbolanklz11gfa0atmdjavhn3k6ijrdg1lqcflurmmqtlcaxc86iaol6/rnru8nskcaknca4bxeen7qaodadwcc/wcm/es/fufxif89acl88cw4k8r1+c9pxl</latexit> <latexit sha1_base64="raey/bt4xedenab8y9ragc0ksl0=">aaab/hicbzdlsgmxfibp1futt6pln8eiucoziujcrcgnywr2au1qkjrty5pmkgsemtrncktrd+lwd3hpm5hpz2fbfwh8/occzslpysgn9f1vr7c2vrg5vdwu7ezu7r+ud4+ajko0zq0aiui3ctzmcmuallvb2rfmwblbwmr8m9vbt0wbhqkho4lzkpfq8qgn2dqr2suyjdneuejx/znqkgq5vcbxvvf+6fyjmkimlbxyme7gxzzmsbaccjytdrpdykzhemg6dhwwzitp7noponnohw0i7z6yaob+nuixngyiieuu2i7mci0z/6t1eju4dlou4sqyreelbolanklz11gfa0atmdjavhn3k6ijrdg1lqcflurmmqtlcaxc86iaol6/rnru8nskcaknca4bxeen7qaodadwcc/wcm/es/fufxif89acl88cw4k8r1+c9pxl</latexit> <latexit sha1_base64="hn4q3tknhqwxwo7zopyyftde/9s=">aaab93icbza9swnbeibn4lemx1flm8ugwiu7ebrqcnhyjma+idnc3myuwbk3d+zucufil7dv2k5s/tmw/hm3yrum8ywfh3dmmnk3satxxnw/nclg5tb2tng3tld/chhupj5p6thvdjssfrhqbfsj4bkbhhubnuqhjqkb7wd8mku3n1fphssnkyxor3qoecgzndzq3pflfbfqzkxwwcuharnq/fjpbxcznejpmkbadz03mf6eksozwgmpl2pmkbvtixytshqh9ifzq6fkwjodesbkpmni3p07magr1lku2m6impferc3m/2rd1is3/otljduo2wjrmapiyjl7nrlwhcyizajlittbcrtrrzmx2sxtcakpzcrbtwadwldvz3ljulk7y9mpwhmcwyv4cam1eiq6niebwgu8wputoe/oh/o5ac04+cwplmn5+gusnjnr</latexit> <latexit sha1_base64="hn4q3tknhqwxwo7zopyyftde/9s=">aaab93icbza9swnbeibn4lemx1flm8ugwiu7ebrqcnhyjma+idnc3myuwbk3d+zucufil7dv2k5s/tmw/hm3yrum8ywfh3dmmnk3satxxnw/nclg5tb2tng3tld/chhupj5p6thvdjssfrhqbfsj4bkbhhubnuqhjqkb7wd8mku3n1fphssnkyxor3qoecgzndzq3pflfbfqzkxwwcuharnq/fjpbxcznejpmkbadz03mf6eksozwgmpl2pmkbvtixytshqh9ifzq6fkwjodesbkpmni3p07magr1lku2m6impferc3m/2rd1is3/otljduo2wjrmapiyjl7nrlwhcyizajlittbcrtrrzmx2sxtcakpzcrbtwadwldvz3ljulk7y9mpwhmcwyv4cam1eiq6niebwgu8wputoe/oh/o5ac04+cwplmn5+gusnjnr</latexit> <latexit sha1_base64="hn4q3tknhqwxwo7zopyyftde/9s=">aaab93icbza9swnbeibn4lemx1flm8ugwiu7ebrqcnhyjma+idnc3myuwbk3d+zucufil7dv2k5s/tmw/hm3yrum8ywfh3dmmnk3satxxnw/nclg5tb2tng3tld/chhupj5p6thvdjssfrhqbfsj4bkbhhubnuqhjqkb7wd8mku3n1fphssnkyxor3qoecgzndzq3pflfbfqzkxwwcuharnq/fjpbxcznejpmkbadz03mf6eksozwgmpl2pmkbvtixytshqh9ifzq6fkwjodesbkpmni3p07magr1lku2m6impferc3m/2rd1is3/otljduo2wjrmapiyjl7nrlwhcyizajlittbcrtrrzmx2sxtcakpzcrbtwadwldvz3ljulk7y9mpwhmcwyv4cam1eiq6niebwgu8wputoe/oh/o5ac04+cwplmn5+gusnjnr</latexit> A<latexit sha1_base64="gdiufbk56qej3ezv6hxrar2bywo=">aaab/hicbzdlsgmxfibp1futt6pln8eiucozitsfi4oblxxsbdqhznjmg5tkhiqjlke+g1tduxo3votl38rmowvb+kpg4z/nce7+iozmg9f9dgpr6xubw8xt0s7u3v5b+fcopaneedokey9uj8cacizp0zddasdwfiua03ywvs3q7seqnivkg5ne1bd4kfnicdbwavuckd5m++wkw3vnqqvg5vcbxi1++ac3iegiqdsey627nhsbp8xkmmlptnrlni0xgemh7vquwfdtp7nrp+jmogmurso+addm/turyqh1ras2u2az0su1zpyv1k1meowntmajozlmf4ujryzc2dfrgclkdj9yweqxeysii6wwmtaghs2bydlxlhnyhdzf1bn8f1mpx+fpfoeetuecpkhbhe6gau0g8agv8apvzrpz7nw4n/pwgppphmocnk9ftukvqg==</latexit> <latexit sha1_base64="gdiufbk56qej3ezv6hxrar2bywo=">aaab/hicbzdlsgmxfibp1futt6pln8eiucozitsfi4oblxxsbdqhznjmg5tkhiqjlke+g1tduxo3votl38rmowvb+kpg4z/nce7+iozmg9f9dgpr6xubw8xt0s7u3v5b+fcopaneedokey9uj8cacizp0zddasdwfiua03ywvs3q7seqnivkg5ne1bd4kfnicdbwavuckd5m++wkw3vnqqvg5vcbxi1++ac3iegiqdsey627nhsbp8xkmmlptnrlni0xgemh7vquwfdtp7nrp+jmogmurso+addm/turyqh1ras2u2az0su1zpyv1k1meowntmajozlmf4ujryzc2dfrgclkdj9yweqxeysii6wwmtaghs2bydlxlhnyhdzf1bn8f1mpx+fpfoeetuecpkhbhe6gau0g8agv8apvzrpz7nw4n/pwgppphmocnk9ftukvqg==</latexit> <latexit sha1_base64="gdiufbk56qej3ezv6hxrar2bywo=">aaab/hicbzdlsgmxfibp1futt6pln8eiucozitsfi4oblxxsbdqhznjmg5tkhiqjlke+g1tduxo3votl38rmowvb+kpg4z/nce7+iozmg9f9dgpr6xubw8xt0s7u3v5b+fcopaneedokey9uj8cacizp0zddasdwfiua03ywvs3q7seqnivkg5ne1bd4kfnicdbwavuckd5m++wkw3vnqqvg5vcbxi1++ac3iegiqdsey627nhsbp8xkmmlptnrlni0xgemh7vquwfdtp7nrp+jmogmurso+addm/turyqh1ras2u2az0su1zpyv1k1meowntmajozlmf4ujryzc2dfrgclkdj9yweqxeysii6wwmtaghs2bydlxlhnyhdzf1bn8f1mpx+fpfoeetuecpkhbhe6gau0g8agv8apvzrpz7nw4n/pwgppphmocnk9ftukvqg==</latexit> <latexit sha1_base64="gdiufbk56qej3ezv6hxrar2bywo=">aaab/hicbzdlsgmxfibp1futt6pln8eiucozitsfi4oblxxsbdqhznjmg5tkhiqjlke+g1tduxo3votl38rmowvb+kpg4z/nce7+iozmg9f9dgpr6xubw8xt0s7u3v5b+fcopaneedokey9uj8cacizp0zddasdwfiua03ywvs3q7seqnivkg5ne1bd4kfnicdbwavuckd5m++wkw3vnqqvg5vcbxi1++ac3iegiqdsey627nhsbp8xkmmlptnrlni0xgemh7vquwfdtp7nrp+jmogmurso+addm/turyqh1ras2u2az0su1zpyv1k1meowntmajozlmf4ujryzc2dfrgclkdj9yweqxeysii6wwmtaghs2bydlxlhnyhdzf1bn8f1mpx+fpfoeetuecpkhbhe6gau0g8agv8apvzrpz7nw4n/pwgppphmocnk9ftukvqg==</latexit> x<latexit sha1_base64="o/fgcfx5ut2bqymljp4egcdol+w=">aaab/hicbzdlsgmxfibp1futt6pln8eiucozitsfi4iblxxsbdqhznjmg5tkhiqjlqe+g1tduxo3votl38rmowvb+kpg4z/nce7+iozmg9f9dgpr6xubw8xt0s7u3v5b+fcopaneedokey9uj8cacizp0zddasdwfiua03ywvsnq7ueqnivkvzne1bd4kfnicdbwavuckt5n++wkw3vnqqvg5vcbxi1++ac3iegiqdsey627nhsbp8xkmmlptnrlni0xgemh7vquwfdtp7nrp+jmogmurso+addm/turyqh1ras2u2az0su1zpyv1k1meowntmajozlmf4ujryzc2dfrgclkdj9yweqxeysii6wwmtaghs2bydlxlhnyhdzf1bn8d1mpx+fpfoeetuecpkhbhw6hau0g8aav8apvzrpz7nw4n/pwgppphmocnk9fpa6v4q==</latexit> <latexit sha1_base64="o/fgcfx5ut2bqymljp4egcdol+w=">aaab/hicbzdlsgmxfibp1futt6pln8eiucozitsfi4iblxxsbdqhznjmg5tkhiqjlqe+g1tduxo3votl38rmowvb+kpg4z/nce7+iozmg9f9dgpr6xubw8xt0s7u3v5b+fcopaneedokey9uj8cacizp0zddasdwfiua03ywvsnq7ueqnivkvzne1bd4kfnicdbwavuckt5n++wkw3vnqqvg5vcbxi1++ac3iegiqdsey627nhsbp8xkmmlptnrlni0xgemh7vquwfdtp7nrp+jmogmurso+addm/turyqh1ras2u2az0su1zpyv1k1meowntmajozlmf4ujryzc2dfrgclkdj9yweqxeysii6wwmtaghs2bydlxlhnyhdzf1bn8d1mpx+fpfoeetuecpkhbhw6hau0g8aav8apvzrpz7nw4n/pwgppphmocnk9fpa6v4q==</latexit> <latexit sha1_base64="o/fgcfx5ut2bqymljp4egcdol+w=">aaab/hicbzdlsgmxfibp1futt6pln8eiucozitsfi4iblxxsbdqhznjmg5tkhiqjlqe+g1tduxo3votl38rmowvb+kpg4z/nce7+iozmg9f9dgpr6xubw8xt0s7u3v5b+fcopaneedokey9uj8cacizp0zddasdwfiua03ywvsnq7ueqnivkvzne1bd4kfnicdbwavuckt5n++wkw3vnqqvg5vcbxi1++ac3iegiqdsey627nhsbp8xkmmlptnrlni0xgemh7vquwfdtp7nrp+jmogmurso+addm/turyqh1ras2u2az0su1zpyv1k1meowntmajozlmf4ujryzc2dfrgclkdj9yweqxeysii6wwmtaghs2bydlxlhnyhdzf1bn8d1mpx+fpfoeetuecpkhbhw6hau0g8aav8apvzrpz7nw4n/pwgppphmocnk9fpa6v4q==</latexit> <latexit sha1_base64="o/fgcfx5ut2bqymljp4egcdol+w=">aaab/hicbzdlsgmxfibp1futt6pln8eiucozitsfi4iblxxsbdqhznjmg5tkhiqjlqe+g1tduxo3votl38rmowvb+kpg4z/nce7+iozmg9f9dgpr6xubw8xt0s7u3v5b+fcopaneedokey9uj8cacizp0zddasdwfiua03ywvsnq7ueqnivkvzne1bd4kfnicdbwavuckt5n++wkw3vnqqvg5vcbxi1++ac3iegiqdsey627nhsbp8xkmmlptnrlni0xgemh7vquwfdtp7nrp+jmogmurso+addm/turyqh1ras2u2az0su1zpyv1k1meowntmajozlmf4ujryzc2dfrgclkdj9yweqxeysii6wwmtaghs2bydlxlhnyhdzf1bn8d1mpx+fpfoeetuecpkhbhw6hau0g8aav8apvzrpz7nw4n/pwgppphmocnk9fpa6v4q==</latexit> Medical image quality directly depends on the amount of collected data =<latexit sha1_base64="hn4q3tknhqwxwo7zopyyftde/9s=">aaab93icbza9swnbeibn4lemx1flm8ugwiu7ebrqcnhyjma+idnc3myuwbk3d+zucufil7dv2k5s/tmw/hm3yrum8ywfh3dmmnk3satxxnw/nclg5tb2tng3tld/chhupj5p6thvdjssfrhqbfsj4bkbhhubnuqhjqkb7wd8mku3n1fphssnkyxor3qoecgzndzq3pflfbfqzkxwwcuharnq/fjpbxcznejpmkbadz03mf6eksozwgmpl2pmkbvtixytshqh9ifzq6fkwjodesbkpmni3p07magr1lku2m6impferc3m/2rd1is3/otljduo2wjrmapiyjl7nrlwhcyizajlittbcrtrrzmx2sxtcakpzcrbtwadwldvz3ljulk7y9mpwhmcwyv4cam1eiq6niebwgu8wputoe/oh/o5ac04+cwplmn5+gusnjnr</latexit> undersampling = less measurements than unknown image pixels MRI in a real world where patients breath and move

9 Medical image quality directly depends on the amount of collected data MRI in an ideal world where patients do not move high-quality image MRI in a real world where patients breath and move noisy image

10 Medical image quality directly depends on the amount of collected data MRI in an ideal world where patients do not move MRI in a real world where patients breath and move Question: How to compensate for the missing data?

11 sha1_base64="st2bqj20yeutesdi5o+jrmrg1m4=">aaab/xicbvc7tsnaedyhvwgv8+holbkk0er2gigjakalenlisrwdz+fkldvbulsjghxxkzquietlf9dxn1wsf5aw0kqjmv3t7vgjzwps+9sorkyurw8un0tb2zu7e+b+qvvfqss0rwiey66pfeusoi1gwgk3krqln9oop7qa+p17khwlozsyj9qtebcxkbemwuqbry7qb1bhdioqfzcemvtojn2zbnfsgaxl4uskjhi0++axg8qkftqcwrfspcdowmuwbey4nztcvneekxee0j6merzuedns+ol1qpxacmopkwjrpv6eylbqaix83skwdnwinxx/83ophbdexqikbrqr+aiw5rbe1jqkk2cseubjttcrtn9qksgwmiaorkrdcbzfxibtes2xa85tvdy4zomoomn0gqriqeeoga5re7uqqy/ogb2in+pjedhejy95a8hizw7rhxifp7gyllg=</latexit> sha1_base64="st2bqj20yeutesdi5o+jrmrg1m4=">aaab/xicbvc7tsnaedyhvwgv8+holbkk0er2gigjakalenlisrwdz+fkldvbulsjghxxkzquietlf9dxn1wsf5aw0kqjmv3t7vgjzwps+9sorkyurw8un0tb2zu7e+b+qvvfqss0rwiey66pfeusoi1gwgk3krqln9oop7qa+p17khwlozsyj9qtebcxkbemwuqbry7qb1bhdioqfzcemvtojn2zbnfsgaxl4uskjhi0++axg8qkftqcwrfspcdowmuwbey4nztcvneekxee0j6merzuedns+ol1qpxacmopkwjrpv6eylbqaix83skwdnwinxx/83ophbdexqikbrqr+aiw5rbe1jqkk2cseubjttcrtn9qksgwmiaorkrdcbzfxibtes2xa85tvdy4zomoomn0gqriqeeoga5re7uqqy/ogb2in+pjedhejy95a8hizw7rhxifp7gyllg=</latexit><latexit sha1_base64="st2bqj20yeutesdi5o+jrmrg1m4=">aaab/xicbvc7tsnaedyhvwgv8+holbkk0er2gigjakalenlisrwdz+fkldvbulsjghxxkzquietlf9dxn1wsf5aw0kqjmv3t7vgjzwps+9sorkyurw8un0tb2zu7e+b+qvvfqss0rwiey66pfeusoi1gwgk3krqln9oop7qa+p17khwlozsyj9qtebcxkbemwuqbry7qb1bhdioqfzcemvtojn2zbnfsgaxl4uskjhi0++axg8qkftqcwrfspcdowmuwbey4nztcvneekxee0j6merzuedns+ol1qpxacmopkwjrpv6eylbqaix83skwdnwinxx/83ophbdexqikbrqr+aiw5rbe1jqkk2cseubjttcrtn9qksgwmiaorkrdcbzfxibtes2xa85tvdy4zomoomn0gqriqeeoga5re7uqqy/ogb2in+pjedhejy95a8hizw7rhxifp7gyllg=</latexit><latexit sha1_base64="st2bqj20yeutesdi5o+jrmrg1m4=">aaab/xicbvc7tsnaedyhvwgv8+holbkk0er2gigjakalenlisrwdz+fkldvbulsjghxxkzquietlf9dxn1wsf5aw0kqjmv3t7vgjzwps+9sorkyurw8un0tb2zu7e+b+qvvfqss0rwiey66pfeusoi1gwgk3krqln9oop7qa+p17khwlozsyj9qtebcxkbemwuqbry7qb1bhdioqfzcemvtojn2zbnfsgaxl4uskjhi0++axg8qkftqcwrfspcdowmuwbey4nztcvneekxee0j6merzuedns+ol1qpxacmopkwjrpv6eylbqaix83skwdnwinxx/83ophbdexqikbrqr+aiw5rbe1jqkk2cseubjttcrtn9qksgwmiaorkrdcbzfxibtes2xa85tvdy4zomoomn0gqriqeeoga5re7uqqy/ogb2in+pjedhejy95a8hizw7rhxifp7gyllg=</latexit><latexit Assume that we have a dataset consisting of noisy images with their clean counterparts <latexit Multiple Scattering Truth noisy x 64 2 x 2 max pooling {yi }i=1,...,n <latexit sha1_base64="vmjngclxwcrmghlngkjfmao1zcu=">aaacfnicbvdlsgmxfm3uv62vuzecbivgopqzexshuhdjsoj9qgcymmmmdu0yq5irhmf2fotf4fbx7sstw5f+ieljyvspba7n3mo9owhcqnko822vvlbx1jfkm5wt7z3dpxv/ok3ivglswjglztdeijaqsettzug3kqtxkjfoolod+51hihwnxypoeujznba0ohhpiwx2szd7ic+ziqbeeequ3kc3br1+rfuniikwq07dmqaue3dgqmcgzmd/mcxooream6ruz3us7ediaoozkspeqkic8agnsm9qgthrfj75rwfpjdkhusznexpo1l+jhhglmh6asy70uc16y/e/r5fq6mrpquhstqselopsbnumx6xappuea5yzgrck5laih0gire11c1tcpu7exwxgmbtp667h9xfvxvwsnti4aifgdljgejtahwicfsdgcbyav/bmpvvv1of1or0twbpmizid9ful1m2fbq==</latexit> x 2 up-conv. + BN + ReLU domain to the image domain. We define the backprojection of the measurements generated by Question: How to train the deep neural net? the kth transmitter as zk = Pk yk k=1 sha1_base64="wrvmvahdiv+rxnkqf2utmh6lm8k=">aaab/xicbvdjtgjbeo3bdxebl5uxiwccfzldry9elx7ryjiwhpq0ndchz0l3jrenxf/x4kfjvpof3vwbg5idgi+p5ow9qltv82lbfdr2t5fbwv1b38hvfra2d3b3zp2dpoosyadbihhjtkcvcb5cazkkamcsaoajahmjq6nfugepebte4tigbkahifc5o6ilnnnkijyg8tnbkjdc1o+wddbpmuw7ys9glrmni0wsod4zv9x+xjiaqmscktvx7bi7kzximybjwu0uxjsn6aa6moy0anvnz9dprfot9c0/krpctgbq74mubkqna093bhshatgbiv95nqt9i27kwzhbcnl8kz8icynrgoxv5xiyiremlemub7xykerkuadw0ce4iy8vk2a14tgv56zarf1mcetjmtkhzekqc1ij16rogosrr/jmxsmb8ws8go/gx7w1z2qzh+qpjm8fucmuuq==</latexit> sha1_base64="wrvmvahdiv+rxnkqf2utmh6lm8k=">aaab/xicbvdjtgjbeo3bdxebl5uxiwccfzldry9elx7ryjiwhpq0ndchz0l3jrenxf/x4kfjvpof3vwbg5idgi+p5ow9qltv82lbfdr2t5fbwv1b38hvfra2d3b3zp2dpoosyadbihhjtkcvcb5cazkkamcsaoajahmjq6nfugepebte4tigbkahifc5o6ilnnnkijyg8tnbkjdc1o+wddbpmuw7ys9glrmni0wsod4zv9x+xjiaqmscktvx7bi7kzximybjwu0uxjsn6aa6moy0anvnz9dprfot9c0/krpctgbq74mubkqna093bhshatgbiv95nqt9i27kwzhbcnl8kz8icynrgoxv5xiyiremlemub7xykerkuadw0ce4iy8vk2a14tgv56zarf1mcetjmtkhzekqc1ij16rogosrr/jmxsmb8ws8go/gx7w1z2qzh+qpjm8fucmuuq==</latexit><latexit sha1_base64="wrvmvahdiv+rxnkqf2utmh6lm8k=">aaab/xicbvdjtgjbeo3bdxebl5uxiwccfzldry9elx7ryjiwhpq0ndchz0l3jrenxf/x4kfjvpof3vwbg5idgi+p5ow9qltv82lbfdr2t5fbwv1b38hvfra2d3b3zp2dpoosyadbihhjtkcvcb5cazkkamcsaoajahmjq6nfugepebte4tigbkahifc5o6ilnnnkijyg8tnbkjdc1o+wddbpmuw7ys9glrmni0wsod4zv9x+xjiaqmscktvx7bi7kzximybjwu0uxjsn6aa6moy0anvnz9dprfot9c0/krpctgbq74mubkqna093bhshatgbiv95nqt9i27kwzhbcnl8kz8icynrgoxv5xiyiremlemub7xykerkuadw0ce4iy8vk2a14tgv56zarf1mcetjmtkhzekqc1ij16rogosrr/jmxsmb8ws8go/gx7w1z2qzh+qpjm8fucmuuq==</latexit><latexit sha1_base64="wrvmvahdiv+rxnkqf2utmh6lm8k=">aaab/xicbvdjtgjbeo3bdxebl5uxiwccfzldry9elx7ryjiwhpq0ndchz0l3jrenxf/x4kfjvpof3vwbg5idgi+p5ow9qltv82lbfdr2t5fbwv1b38hvfra2d3b3zp2dpoosyadbihhjtkcvcb5cazkkamcsaoajahmjq6nfugepebte4tigbkahifc5o6ilnnnkijyg8tnbkjdc1o+wddbpmuw7ys9glrmni0wsod4zv9x+xjiaqmscktvx7bi7kzximybjwu0uxjsn6aa6moy0anvnz9dprfot9c0/krpctgbq74mubkqna093bhshatgbiv95nqt9i27kwzhbcnl8kz8icynrgoxv5xiyiremlemub7xykerkuadw0ce4iy8vk2a14tgv56zarf1mcetjmtkhzekqc1ij16rogosrr/jmxsmb8ws8go/gx7w1z2qzh+qpjm8fucmuuq==</latexit><latexit Pk <latexit A modern machine learning solution: Train a deep neural net on a dataset Vol. 26, No May 2018 OPTICS EXPRESS M s Backpropagation Re( ) Im( ) U-Net Decoder yk ScaDec Recon Fig. 2. The overview of the proposed approach that first backpropagates the data into a Im( ) Re( ) complex valued image and then maps this image into the final image with a ConvNet. deep neural net x 3 conv. + BN + ReLU where vector yk 2 C M are the measurements consistent with the kth transmitter and collected by M receivers, and matrix Pk 2 C N M is the backprojection operator. Inside the operator Pk, matrix SH 2 C N M is the Hermitian transpose of the discretized Green s function S, and u in,k is the element-wise conjugate of the incident light field emitted by the kth transmitter. The output zk 2 C N is a complex vector with N elements, which matches the number of pixels in the original image. When the data is collected with multiple transmissions, we define the backprojection of K transmitters as K K w= zk = Pk yk, (9) with Pk, diag(u in,k )SH, skip connection + concatenation clean x 1 conv. Fig. 3. Visual illustration of the proposed learning architecture based on U-Net [45]. The input consists of two channels for the real and imaginary parts of the backpropagated vector w 2 C N. The output is a single image of the scattering potential x 2 R N. xi = f (yi ) <latexit sha1_base64="k2ptv2veyd5j9b4k+etx5wksdje=">aaachhicbvdlssnafj3uv62vqks3g1wom5kioaufghuxfwwttcvmppn26ewszm7eevidfotf4fbx7sst4ni/cdjmyvspdjx7zr3co8elbndg299wywl5zxwtuf7a2nza3inv7rv0gcvkmjquowp7rdpba9yedok1i8wi9as790bxmx//wjtmyxah44j1jbke3oeugjhc8lhxk8lj6nj8hx03yaoudbmqnk1mxdhyj265ytfscfaicxjsqtkabvmn2w9plfkavbcto44dqs8hcjgvlc11y80iqkdkwdqgbkqy3usmv0nxsvh62a+veqhgifp3iifs67h0tkckmntzxib+53vi8c96cq+igfhap4v8wgaicryn7npfkiixiyqqbm7fdeguowacnnniydrk4swnsehapzxh8nuzsv0yt6eidtahqiihnam6uken1equpaex9irergfr3fqwpqetbsuf2uczsl5+atcmooo=</latexit> {xi }i=1,...,n <latexit sha1_base64="2m1umcgrgepirxzstsum17tcmok=">aaacfnicbvdlsgmxfm34rpu16lkqybfcldijgi4ucm5cvrap6axdjk3b0cqzjbmxdlpzi/wgt7p2j27duvrpzlszsk0haodz7uhendbmvgnh+bawlldw19zlg+xnre2dxxtvv6wirglsxbglzcdeijaqsfntzugnlgtxkjf2olrj/fydkypg4l6py+jznbc0tzhsrgrsiy/1qp4+zgh1sicl8bq6vej1iq2qugsbxxfqzgrwkbgfqyacjcd+mvmccci0zkipruve2k+r1bqzkpw9rjey4reakk6hangi/htyjwyegkuh+5e0t2g4uf8mussvgvpqthkkh2rey8x/vg6i+5d+skwcaclwdfe/yvbhmc8f9qgkwloxiqhlam6feigkwtpun7ml5hkn7nwdi6r1vnmnvzuv1k+kdkrgebydu+ccc1aht6abmgcdj/acxsgb9wy9wx/w53r0ysoyb2ag1tcv1mofba==</latexit> (8) k=1 where vector w 2 C N is the linear combination of zk and K denotes the number of transmitters. Note that the backprojection (9) does not rely on the actual forward model H( ) in (5) which is both nonlinear and object dependent. Remarkably, as we shall see, our simple backprojection followed by a specific ConvNet architecture will be sufficient to recover a high-quality image

12 A modern machine learning solution: Train a deep neural net on a dataset Vol. 26, No May 2018 OPTICS EXPRESS Backpropagation M s Multiple Scattering sha1_base64="wrvmvahdiv+rxnkqf2utmh6lm8k=">aaab/xicbvdjtgjbeo3bdxebl5uxiwccfzldry9elx7ryjiwhpq0ndchz0l3jrenxf/x4kfjvpof3vwbg5idgi+p5ow9qltv82lbfdr2t5fbwv1b38hvfra2d3b3zp2dpoosyadbihhjtkcvcb5cazkkamcsaoajahmjq6nfugepebte4tigbkahifc5o6ilnnnkijyg8tnbkjdc1o+wddbpmuw7ys9glrmni0wsod4zv9x+xjiaqmscktvx7bi7kzximybjwu0uxjsn6aa6moy0anvnz9dprfot9c0/krpctgbq74mubkqna093bhshatgbiv95nqt9i27kwzhbcnl8kz8icynrgoxv5xiyiremlemub7xykerkuadw0ce4iy8vk2a14tgv56zarf1mcetjmtkhzekqc1ij16rogosrr/jmxsmb8ws8go/gx7w1z2qzh+qpjm8fucmuuq==</latexit> sha1_base64="wrvmvahdiv+rxnkqf2utmh6lm8k=">aaab/xicbvdjtgjbeo3bdxebl5uxiwccfzldry9elx7ryjiwhpq0ndchz0l3jrenxf/x4kfjvpof3vwbg5idgi+p5ow9qltv82lbfdr2t5fbwv1b38hvfra2d3b3zp2dpoosyadbihhjtkcvcb5cazkkamcsaoajahmjq6nfugepebte4tigbkahifc5o6ilnnnkijyg8tnbkjdc1o+wddbpmuw7ys9glrmni0wsod4zv9x+xjiaqmscktvx7bi7kzximybjwu0uxjsn6aa6moy0anvnz9dprfot9c0/krpctgbq74mubkqna093bhshatgbiv95nqt9i27kwzhbcnl8kz8icynrgoxv5xiyiremlemub7xykerkuadw0ce4iy8vk2a14tgv56zarf1mcetjmtkhzekqc1ij16rogosrr/jmxsmb8ws8go/gx7w1z2qzh+qpjm8fucmuuq==</latexit><latexit sha1_base64="wrvmvahdiv+rxnkqf2utmh6lm8k=">aaab/xicbvdjtgjbeo3bdxebl5uxiwccfzldry9elx7ryjiwhpq0ndchz0l3jrenxf/x4kfjvpof3vwbg5idgi+p5ow9qltv82lbfdr2t5fbwv1b38hvfra2d3b3zp2dpoosyadbihhjtkcvcb5cazkkamcsaoajahmjq6nfugepebte4tigbkahifc5o6ilnnnkijyg8tnbkjdc1o+wddbpmuw7ys9glrmni0wsod4zv9x+xjiaqmscktvx7bi7kzximybjwu0uxjsn6aa6moy0anvnz9dprfot9c0/krpctgbq74mubkqna093bhshatgbiv95nqt9i27kwzhbcnl8kz8icynrgoxv5xiyiremlemub7xykerkuadw0ce4iy8vk2a14tgv56zarf1mcetjmtkhzekqc1ij16rogosrr/jmxsmb8ws8go/gx7w1z2qzh+qpjm8fucmuuq==</latexit><latexit sha1_base64="wrvmvahdiv+rxnkqf2utmh6lm8k=">aaab/xicbvdjtgjbeo3bdxebl5uxiwccfzldry9elx7ryjiwhpq0ndchz0l3jrenxf/x4kfjvpof3vwbg5idgi+p5ow9qltv82lbfdr2t5fbwv1b38hvfra2d3b3zp2dpoosyadbihhjtkcvcb5cazkkamcsaoajahmjq6nfugepebte4tigbkahifc5o6ilnnnkijyg8tnbkjdc1o+wddbpmuw7ys9glrmni0wsod4zv9x+xjiaqmscktvx7bi7kzximybjwu0uxjsn6aa6moy0anvnz9dprfot9c0/krpctgbq74mubkqna093bhshatgbiv95nqt9i27kwzhbcnl8kz8icynrgoxv5xiyiremlemub7xykerkuadw0ce4iy8vk2a14tgv56zarf1mcetjmtkhzekqc1ij16rogosrr/jmxsmb8ws8go/gx7w1z2qzh+qpjm8fucmuuq==</latexit><latexit Re( ) <latexit Pk U-Net Decoder Assume that we have a dataset consisting of noisy images with their clean counterparts sha1_base64="st2bqj20yeutesdi5o+jrmrg1m4=">aaab/xicbvc7tsnaedyhvwgv8+holbkk0er2gigjakalenlisrwdz+fkldvbulsjghxxkzquietlf9dxn1wsf5aw0kqjmv3t7vgjzwps+9sorkyurw8un0tb2zu7e+b+qvvfqss0rwiey66pfeusoi1gwgk3krqln9oop7qa+p17khwlozsyj9qtebcxkbemwuqbry7qb1bhdioqfzcemvtojn2zbnfsgaxl4uskjhi0++axg8qkftqcwrfspcdowmuwbey4nztcvneekxee0j6merzuedns+ol1qpxacmopkwjrpv6eylbqaix83skwdnwinxx/83ophbdexqikbrqr+aiw5rbe1jqkk2cseubjttcrtn9qksgwmiaorkrdcbzfxibtes2xa85tvdy4zomoomn0gqriqeeoga5re7uqqy/ogb2in+pjedhejy95a8hizw7rhxifp7gyllg=</latexit> sha1_base64="st2bqj20yeutesdi5o+jrmrg1m4=">aaab/xicbvc7tsnaedyhvwgv8+holbkk0er2gigjakalenlisrwdz+fkldvbulsjghxxkzquietlf9dxn1wsf5aw0kqjmv3t7vgjzwps+9sorkyurw8un0tb2zu7e+b+qvvfqss0rwiey66pfeusoi1gwgk3krqln9oop7qa+p17khwlozsyj9qtebcxkbemwuqbry7qb1bhdioqfzcemvtojn2zbnfsgaxl4uskjhi0++axg8qkftqcwrfspcdowmuwbey4nztcvneekxee0j6merzuedns+ol1qpxacmopkwjrpv6eylbqaix83skwdnwinxx/83ophbdexqikbrqr+aiw5rbe1jqkk2cseubjttcrtn9qksgwmiaorkrdcbzfxibtes2xa85tvdy4zomoomn0gqriqeeoga5re7uqqy/ogb2in+pjedhejy95a8hizw7rhxifp7gyllg=</latexit><latexit sha1_base64="st2bqj20yeutesdi5o+jrmrg1m4=">aaab/xicbvc7tsnaedyhvwgv8+holbkk0er2gigjakalenlisrwdz+fkldvbulsjghxxkzquietlf9dxn1wsf5aw0kqjmv3t7vgjzwps+9sorkyurw8un0tb2zu7e+b+qvvfqss0rwiey66pfeusoi1gwgk3krqln9oop7qa+p17khwlozsyj9qtebcxkbemwuqbry7qb1bhdioqfzcemvtojn2zbnfsgaxl4uskjhi0++axg8qkftqcwrfspcdowmuwbey4nztcvneekxee0j6merzuedns+ol1qpxacmopkwjrpv6eylbqaix83skwdnwinxx/83ophbdexqikbrqr+aiw5rbe1jqkk2cseubjttcrtn9qksgwmiaorkrdcbzfxibtes2xa85tvdy4zomoomn0gqriqeeoga5re7uqqy/ogb2in+pjedhejy95a8hizw7rhxifp7gyllg=</latexit><latexit sha1_base64="st2bqj20yeutesdi5o+jrmrg1m4=">aaab/xicbvc7tsnaedyhvwgv8+holbkk0er2gigjakalenlisrwdz+fkldvbulsjghxxkzquietlf9dxn1wsf5aw0kqjmv3t7vgjzwps+9sorkyurw8un0tb2zu7e+b+qvvfqss0rwiey66pfeusoi1gwgk3krqln9oop7qa+p17khwlozsyj9qtebcxkbemwuqbry7qb1bhdioqfzcemvtojn2zbnfsgaxl4uskjhi0++axg8qkftqcwrfspcdowmuwbey4nztcvneekxee0j6merzuedns+ol1qpxacmopkwjrpv6eylbqaix83skwdnwinxx/83ophbdexqikbrqr+aiw5rbe1jqkk2cseubjttcrtn9qksgwmiaorkrdcbzfxibtes2xa85tvdy4zomoomn0gqriqeeoga5re7uqqy/ogb2in+pjedhejy95a8hizw7rhxifp7gyllg=</latexit><latexit <latexit Im( ) Truth Recon yk ScaDec Fig. 2. The overview of the proposed approach that first backpropagates the data into a Im( ) Re( ) complex valued image and then maps this image into the final image with a ConvNet x x 2 max pooling {yi }i=1,...,n <latexit sha1_base64="vmjngclxwcrmghlngkjfmao1zcu=">aaacfnicbvdlsgmxfm3uv62vuzecbivgopqzexshuhdjsoj9qgcymmmmdu0yq5irhmf2fotf4fbx7sstw5f+ieljyvspba7n3mo9owhcqnko822vvlbx1jfkm5wt7z3dpxv/ok3ivglswjglztdeijaqsettzug3kqtxkjfoolod+51hihwnxypoeujznba0ohhpiwx2szd7ic+ziqbeeequ3kc3br1+rfuniikwq07dmqaue3dgqmcgzmd/mcxooream6ruz3us7ediaoozkspeqkic8agnsm9qgthrfj75rwfpjdkhusznexpo1l+jhhglmh6asy70uc16y/e/r5fq6mrpquhstqselopsbnumx6xappuea5yzgrck5laih0gire11c1tcpu7exwxgmbtp667h9xfvxvwsnti4aifgdljgejtahwicfsdgcbyav/bmpvvv1of1or0twbpmizid9ful1m2fbq==</latexit> x 2 up-conv. + BN + ReLU x 3 conv. + BN + ReLU skip connection + concatenation x 1 conv. xi = f (yi ) Fig. 3. Visual illustration of the proposed learning architecture based on U-Net [45]. The input consists of two channels for the real and imaginary parts of the backpropagated vector w 2 C N. The output is a single image of the scattering potential x 2 R N. <latexit sha1_base64="k2ptv2veyd5j9b4k+etx5wksdje=">aaachhicbvdlssnafj3uv62vqks3g1wom5kioaufghuxfwwttcvmppn26ewszm7eevidfotf4fbx7sst4ni/cdjmyvspdjx7zr3co8elbndg299wywl5zxwtuf7a2nza3inv7rv0gcvkmjquowp7rdpba9yedok1i8wi9as790bxmx//wjtmyxah44j1jbke3oeugjhc8lhxk8lj6nj8hx03yaoudbmqnk1mxdhyj265ytfscfaicxjsqtkabvmn2w9plfkavbcto44dqs8hcjgvlc11y80iqkdkwdqgbkqy3usmv0nxsvh62a+veqhgifp3iifs67h0tkckmntzxib+53vi8c96cq+igfhap4v8wgaicryn7npfkiixiyqqbm7fdeguowacnnniydrk4swnsehapzxh8nuzsv0yt6eidtahqiihnam6uken1equpaex9irergfr3fqwpqetbsuf2uczsl5+atcmooo=</latexit> {xi }i=1,...,n <latexit sha1_base64="2m1umcgrgepirxzstsum17tcmok=">aaacfnicbvdlsgmxfm34rpu16lkqybfcldijgi4ucm5cvrap6axdjk3b0cqzjbmxdlpzi/wgt7p2j27duvrpzlszsk0haodz7uhendbmvgnh+bawlldw19zlg+xnre2dxxtvv6wirglsxbglzcdeijaqsfntzugnlgtxkjf2olrj/fydkypg4l6py+jznbc0tzhsrgrsiy/1qp4+zgh1sicl8bq6vej1iq2qugsbxxfqzgrwkbgfqyacjcd+mvmccci0zkipruve2k+r1bqzkpw9rjey4reakk6hangi/htyjwyegkuh+5e0t2g4uf8mussvgvpqthkkh2rey8x/vg6i+5d+skwcaclwdfe/yvbhmc8f9qgkwloxiqhlam6feigkwtpun7ml5hkn7nwdi6r1vnmnvzuv1k+kdkrgebydu+ccc1aht6abmgcdj/acxsgb9wy9wx/w53r0ysoyb2ag1tcv1mofba==</latexit> to the image domain. Weof definethe the backprojection of the measurements Training is andomain optimization weights in thegenerated by the kth transmitter as z = Pand y withreliable P, diag(u algorithm )S, (8) neural net using some fast k k in,k H where vector yk 2 C M are the measurements consistent with the kth transmitter and collected by M receivers, and matrix Pk 2 C N M is the backprojection operator. Inside the operator Pk, matrix SH 2 C N M is the Hermitian transpose of the discretized Green s function S, and u in,k is n of the incident light field emitted by the kth transmitter. The output the element-wise conjugate zk 2 C N is a complex vector with N elements, which matches the2number of pixels in the original image. When the data is collected withi multiple transmissions, i we define the backprojection of K transmitters as K K i=1 w= zk = Pk yk, (9) = arg min <latexit sha1_base64="llk2ffw8dcgmxqlggkqvw3pgcv8=">aaachxicbvfnb9qwehvsokv8leweufhdirwjvklvaqcqlbhwlblbvlrvro53smvvdij7unxl+ifwaznyg/gdookeui0jwx6e98yzelm2sjrmst9juvhg4apnrcfbt54+e/5i8hln1nwtftastarteckdkglghbivndcwuc4vnjux3zr+7bksk7x5icsgjprpjayk4bhtxeaxk7vnuadkycq4q/qfms1xute+v13luz2z91qaeap/sx4ou1ah86yyxpg8eboya3xhzfwkd1nd2xwnvwqf3k/wa/e6xzis79j19jbzov8gc8vgmb1kfdd7if+bivnfsth4w2a1aduyfio7n86zbidxyprcqdhmryogiws+h3gehmtwe9/bfujbmjnrqrbxgkr99naf59q5ps6jsnfiltcl/8enw6w+tbw0tytgxe2jqluua9rtgm6kbyfqgqexvszzqvjwaclgta11kxxnsx7xgfvg9pagj/jh0fd488qdlfkg7ji9kpop5jh8jydkrat5m7xodpnhupnup0fphxtpmqxqxpg1sl/+a0wdydk=</latexit> k k ( 1X kx n f (y )k k=1 ) find weights that produce the smallest average prediction error k=1 where vector w 2 C N is the linear combination of zk and K denotes the number of transmitters. Note that the backprojection (9) does not rely on the actual forward model H( ) in (5) which is both nonlinear and object dependent. Remarkably, as we shall see, our simple backprojection followed by a specific ConvNet architecture will be sufficient to recover a high-quality image

13 A modern machine learning solution: Train a deep neural net on a dataset full data 5x faster 5x faster + ML Example 1 Example 2

14 A modern machine learning solution: Train a deep neural net on a dataset evolution of the cost across iterations

15 Today we will talk about Motivating example from CIG Optimization as a pillar of machine learning Brief overview of optimization What will we learn during this semester? Class structure Assignments, grades, assistant instructors, etc.

16 The goal of optimization is to find the smallest value of a function under constraints Mathematical optimization problem minimize subject to f(x) x 2 X Optimization variable: x =(x 1,...,x n ) Objective function: f : R n! R Contraint set: X = {x h(x) =0} \ {x g(x) apple 0} Optimal solution x has smallest value of f among all vectors that satisfy the constraints

17 Sample applications of optimization: finance, engineering, and computer science portfolio optimization variables: amounts invested in different assets constraints: budget, minimum return objective: overall risk or return variance device sizing in electronic circuits variables: device width and lengths constraints: manufacturing limits, timing requirenemnts objective: power consumption machine learning variables: model parameters constraints: prior information, parameter limits objective: prediction error

18 Brief history of optimization Antiquity: Greek mathematicians solve some optimization problems that are related to their geometrical studies Euclid (300bc): minimal distance between a point and a line Heron (100 bc): light travels between two points through the path with shortest length when reflecting from a mirror 17th-18th: before the invention of calculus of variations only some separate optimization problems are being investigated Kepler (1615): Optimal dimensions of wine barrel. Formulated the secretary problem when searching for a new wife Fermat: derivative of a function vanishes at the extreme point the (1636). Shows that light travels between two points in minimal time (1657) Newton (1660s) and Leibniz (1670s) create mathematical analysis that forms the basis of calculus of variations

19 Brief history of optimization 19th century: the first optimization algorithms are presented Legendre (1806): least square method, which also Gauss claims to have invented Cauchy (1847): presents the gradient method Gibbs shows that chemical equilibrium is an energy minimum 20th century: the field of algorithmic research expands as electronic calculation develops von Neuman and Morgenstern (1944): dynamic programming for solving sequential decision problems Dantzig (1947): simplex method for solving LP-problems Kuhn and Tucker (1951): reinvent optimality conditions for nonlinear problems. Similar conditions in 1939 by Karush. Nesterov (1983): accelerated gradient method Karmarkar (1984): polynomial time algorithm for LP-problems begins a boom of interior point methods. Modern era: nonsmooth analysis, stochastic optimization

20 Today we will talk about Motivating example from CIG Optimization as a pillar of machine learning Brief overview of optimization What will we learn during this semester? Class structure Assignments, grades, assistant instructors, etc.

21 Practical information Course website: cigroup.wustl.edu/teaching/ese / Schedule: Lectures: Tue and Thu at 1:00-2:30 pm Additional tutorials: TBD Optional reading to complement lecture notes:

22 Practical information By the end of the semester, hopefully, you will be able to: recognize and formulate problems as optimization characterize and understand optimal solutions develop code for optimization algorithms Topics: optimality conditions convex sets and functions constrained and unconstrained optimization optimization algorithms analysis of optimization algorithms examples and applications

23 Practical information Grading policy: homework (40%) consists of 6 assignments midterm (30%) is on Thursday, 7 March 2019 final (30%): is on Tuesday, 7 May 2019 Grading convention: A A B B B C D below 60 F

24 Practical information Homework assignments will be collected only via Gradescope (use code: M2P3R8) Assignment #0 is out and due this Thursday! It is mandatory, but you will not get graded on it Academic integrity policy: You are encouraged to discuss with colleagues, but you must submit your own individual homework. No copying from colleagues will be tolerated in this class.

25 Practical information Head assistant instructors: Xiaojian Xu Hesam Mazidi Yu Sun The rest of the team: Yiran Sun Weiran Wang Jiaming Liu Joseph Han Yifan Wang Fa Long Guancheng Jiang

26 To conclude Optimization is extensively used in almost all engineering applications The goal of ESE 415 is to build solid basics that you can rely on for the rest of your career Optimization is still an active research area with many open questions

27 Computational Imaging Group (CIG) at Washington University in St. Louis (WashU) Prof. Ulugbek Kamilov Personal CONTACT INFO Web: Group If you are interested in doing research at the intersection of Computational Imaging, Machine Learning, and Optimization contact me or my PhD students

ME 555: Distributed Optimization

ME 555: Distributed Optimization ME 555: Distributed Optimization Duke University Spring 2015 1 Administrative Course: ME 555: Distributed Optimization (Spring 2015) Instructor: Time: Location: Office hours: Website: Soomin Lee (email:

More information

IE521 Convex Optimization Introduction

IE521 Convex Optimization Introduction IE521 Convex Optimization Introduction Instructor: Niao He Jan 18, 2017 1 About Me Assistant Professor, UIUC, 2016 Ph.D. in Operations Research, M.S. in Computational Sci. & Eng. Georgia Tech, 2010 2015

More information

Convex Optimization. August 26, 2008

Convex Optimization. August 26, 2008 Convex Optimization Instructor: Angelia Nedich August 26, 2008 Outline Lecture 1 What is the Course About Who Cares and Why Course Objective Convex Optimization History New Interest in the Topic Formal

More information

EE/AA 578: Convex Optimization

EE/AA 578: Convex Optimization EE/AA 578: Convex Optimization Instructor: Maryam Fazel University of Washington Fall 2016 1. Introduction EE/AA 578, Univ of Washington, Fall 2016 course logistics mathematical optimization least-squares;

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 1: Introduction to Optimization. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 1: Introduction to Optimization. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 013 Lecture 1: Introduction to Optimization Instructor: Shaddin Dughmi Outline 1 Course Overview Administrivia 3 Linear Programming Outline 1 Course Overview

More information

CO367/CM442 Nonlinear Optimization Lecture 1

CO367/CM442 Nonlinear Optimization Lecture 1 CO367/CM442 Nonlinear Optimization Lecture 1 Instructor: Henry Wolkowicz hwolkowi@uwaterloo.ca TA: Vris Cheung, yl2cheun@math.uwaterloo.ca orion.math.uwaterloo.ca/ hwolkowi/henry/teaching/w10/367.w10/index.shtml

More information

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics 1. Introduction EE 546, Univ of Washington, Spring 2016 performance of numerical methods complexity bounds structural convex optimization course goals and topics 1 1 Some course info Welcome to EE 546!

More information

OPTIMIZATION METHODS

OPTIMIZATION METHODS D. Nagesh Kumar Associate Professor Department of Civil Engineering, Indian Institute of Science, Bangalore - 50 0 Email : nagesh@civil.iisc.ernet.in URL: http://www.civil.iisc.ernet.in/~nagesh Brief Contents

More information

CSE 559A: Computer Vision

CSE 559A: Computer Vision CSE 559A: Computer Vision Fall 2018: T-R: 11:30-1pm @ Lopata 101 Instructor: Ayan Chakrabarti (ayan@wustl.edu). Course Staff: Zhihao Xia, Charlie Wu, Han Liu http://www.cse.wustl.edu/~ayan/courses/cse559a/

More information

Constrained Optimization COS 323

Constrained Optimization COS 323 Constrained Optimization COS 323 Last time Introduction to optimization objective function, variables, [constraints] 1-dimensional methods Golden section, discussion of error Newton s method Multi-dimensional

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

Machine Learning for Software Engineering

Machine Learning for Software Engineering Machine Learning for Software Engineering Introduction and Motivation Prof. Dr.-Ing. Norbert Siegmund Intelligent Software Systems 1 2 Organizational Stuff Lectures: Tuesday 11:00 12:30 in room SR015 Cover

More information

Residual Networks And Attention Models. cs273b Recitation 11/11/2016. Anna Shcherbina

Residual Networks And Attention Models. cs273b Recitation 11/11/2016. Anna Shcherbina Residual Networks And Attention Models cs273b Recitation 11/11/2016 Anna Shcherbina Introduction to ResNets Introduced in 2015 by Microsoft Research Deep Residual Learning for Image Recognition (He, Zhang,

More information

Optimization. Industrial AI Lab.

Optimization. Industrial AI Lab. Optimization Industrial AI Lab. Optimization An important tool in 1) Engineering problem solving and 2) Decision science People optimize Nature optimizes 2 Optimization People optimize (source: http://nautil.us/blog/to-save-drowning-people-ask-yourself-what-would-light-do)

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 1 A. d Aspremont. Convex Optimization M2. 1/49 Today Convex optimization: introduction Course organization and other gory details... Convex sets, basic definitions. A. d

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

5 Machine Learning Abstractions and Numerical Optimization

5 Machine Learning Abstractions and Numerical Optimization Machine Learning Abstractions and Numerical Optimization 25 5 Machine Learning Abstractions and Numerical Optimization ML ABSTRACTIONS [some meta comments on machine learning] [When you write a large computer

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 22, 2016 Course Information Website: http://www.stat.ucdavis.edu/~chohsieh/teaching/ ECS289G_Fall2016/main.html My office: Mathematical Sciences

More information

Lecture 4 of Artificial Intelligence. Heuristic Search. Produced by Qiangfu Zhao (2008), All rights reserved

Lecture 4 of Artificial Intelligence. Heuristic Search. Produced by Qiangfu Zhao (2008), All rights reserved Lecture 4 of Artificial Intelligence Heuristic Search AI Lec04/1 Topics of this lecture What are heuristics? What is heuristic search? Best first search A* algorithm Generalization of search problems AI

More information

MATH3016: OPTIMIZATION

MATH3016: OPTIMIZATION MATH3016: OPTIMIZATION Lecturer: Dr Huifu Xu School of Mathematics University of Southampton Highfield SO17 1BJ Southampton Email: h.xu@soton.ac.uk 1 Introduction What is optimization? Optimization is

More information

Convex Optimization. Lijun Zhang Modification of

Convex Optimization. Lijun Zhang   Modification of Convex Optimization Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Modification of http://stanford.edu/~boyd/cvxbook/bv_cvxslides.pdf Outline Introduction Convex Sets & Functions Convex Optimization

More information

Lecture 25 Nonlinear Programming. November 9, 2009

Lecture 25 Nonlinear Programming. November 9, 2009 Nonlinear Programming November 9, 2009 Outline Nonlinear Programming Another example of NLP problem What makes these problems complex Scalar Function Unconstrained Problem Local and global optima: definition,

More information

Convex and Distributed Optimization. Thomas Ropars

Convex and Distributed Optimization. Thomas Ropars >>> Presentation of this master2 course Convex and Distributed Optimization Franck Iutzeler Jérôme Malick Thomas Ropars Dmitry Grishchenko from LJK, the applied maths and computer science laboratory and

More information

Bilevel Sparse Coding

Bilevel Sparse Coding Adobe Research 345 Park Ave, San Jose, CA Mar 15, 2013 Outline 1 2 The learning model The learning algorithm 3 4 Sparse Modeling Many types of sensory data, e.g., images and audio, are in high-dimensional

More information

Deep Learning and Its Applications

Deep Learning and Its Applications Convolutional Neural Network and Its Application in Image Recognition Oct 28, 2016 Outline 1 A Motivating Example 2 The Convolutional Neural Network (CNN) Model 3 Training the CNN Model 4 Issues and Recent

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Yuejie Chi Departments of ECE and BMI The Ohio State University September 24, 2015 Time, location, and office hours Time: Tue/Thu

More information

Motivation ffl In process modeling, chemical engineers frequently need to solve nonlinear equation systems in which the variables are constrained phys

Motivation ffl In process modeling, chemical engineers frequently need to solve nonlinear equation systems in which the variables are constrained phys New Interval Methodologies for Reliable Process Modeling Chao-Yang Gau, Robert W. Maier and Mark A. Stadtherr 1 Department of Chemical Engineering University of Notre Dame Notre Dame, IN 46556 USA AIChE

More information

A Brief Look at Optimization

A Brief Look at Optimization A Brief Look at Optimization CSC 412/2506 Tutorial David Madras January 18, 2018 Slides adapted from last year s version Overview Introduction Classes of optimization problems Linear programming Steepest

More information

Convex Optimization. Chapter 1 - chapter 2.2

Convex Optimization. Chapter 1 - chapter 2.2 Convex Optimization Chapter 1 - chapter 2.2 Introduction In optimization literatures, one will frequently encounter terms like linear programming, convex set convex cone, convex hull, semidefinite cone

More information

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia Lagrange multipliers From Wikipedia, the free encyclopedia In mathematical optimization problems, Lagrange multipliers, named after Joseph Louis Lagrange, is a method for finding the local extrema of a

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 3: Linear Programming, Continued Prof. John Gunnar Carlsson September 15, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 15, 2010

More information

Backpropagation + Deep Learning

Backpropagation + Deep Learning 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Backpropagation + Deep Learning Matt Gormley Lecture 13 Mar 1, 2018 1 Reminders

More information

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz Gradient Descent Wed Sept 20th, 2017 James McInenrey Adapted from slides by Francisco J. R. Ruiz Housekeeping A few clarifications of and adjustments to the course schedule: No more breaks at the midpoint

More information

Solution Methods Numerical Algorithms

Solution Methods Numerical Algorithms Solution Methods Numerical Algorithms Evelien van der Hurk DTU Managment Engineering Class Exercises From Last Time 2 DTU Management Engineering 42111: Static and Dynamic Optimization (6) 09/10/2017 Class

More information

Mysteries of Parameterizing Camera Motion - Part 1

Mysteries of Parameterizing Camera Motion - Part 1 Mysteries of Parameterizing Camera Motion - Part 1 Instructor - Simon Lucey 16-623 - Advanced Computer Vision Apps Today Motivation SO(3) Convex? Exponential Maps SL(3) Group. Adapted from: Computer vision:

More information

Optimization. Using Analytic Solver Platform REVIEW BASED ON MANAGEMENT SCIENCE

Optimization. Using Analytic Solver Platform REVIEW BASED ON MANAGEMENT SCIENCE Optimization Using Analytic Solver Platform REVIEW BASED ON MANAGEMENT SCIENCE What We ll Cover Today Introduction Frontline Systems Session Ι beta training program goals Overview of Analytic Solver Platform

More information

Invariant Recognition of Hand-Drawn Pictograms Using HMMs with a Rotating Feature Extraction

Invariant Recognition of Hand-Drawn Pictograms Using HMMs with a Rotating Feature Extraction Invariant Recognition of Hand-Drawn Pictograms Using HMMs with a Rotating Feature Extraction Stefan Müller, Gerhard Rigoll, Andreas Kosmala and Denis Mazurenok Department of Computer Science, Faculty of

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

Linear Optimization and Extensions: Theory and Algorithms

Linear Optimization and Extensions: Theory and Algorithms AT&T Linear Optimization and Extensions: Theory and Algorithms Shu-Cherng Fang North Carolina State University Sarai Puthenpura AT&T Bell Labs Prentice Hall, Englewood Cliffs, New Jersey 07632 Contents

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

Optimization. 1. Optimization. by Prof. Seungchul Lee Industrial AI Lab POSTECH. Table of Contents

Optimization. 1. Optimization. by Prof. Seungchul Lee Industrial AI Lab  POSTECH. Table of Contents Optimization by Prof. Seungchul Lee Industrial AI Lab http://isystems.unist.ac.kr/ POSTECH Table of Contents I. 1. Optimization II. 2. Solving Optimization Problems III. 3. How do we Find x f(x) = 0 IV.

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture - 35 Quadratic Programming In this lecture, we continue our discussion on

More information

Two Dimensional Microwave Imaging Using a Divide and Unite Algorithm

Two Dimensional Microwave Imaging Using a Divide and Unite Algorithm Two Dimensional Microwave Imaging Using a Divide and Unite Algorithm Disha Shur 1, K. Yaswanth 2, and Uday K. Khankhoje 2 1 Indian Institute of Engineering Science and Technology, Shibpur, India 2 Indian

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

Part A: Course Outline

Part A: Course Outline University of Macau Faculty of Science and Technology Course Title: Department of Electrical and Computer Engineering Part A: Course Outline Communication System and Data Network Course Code: ELEC460 Year

More information

Introduction to Optimization Problems and Methods

Introduction to Optimization Problems and Methods Introduction to Optimization Problems and Methods wjch@umich.edu December 10, 2009 Outline 1 Linear Optimization Problem Simplex Method 2 3 Cutting Plane Method 4 Discrete Dynamic Programming Problem Simplex

More information

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone:

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone: MA4254: Discrete Optimization Defeng Sun Department of Mathematics National University of Singapore Office: S14-04-25 Telephone: 6516 3343 Aims/Objectives: Discrete optimization deals with problems of

More information

Tutorial on Convex Optimization for Engineers

Tutorial on Convex Optimization for Engineers Tutorial on Convex Optimization for Engineers M.Sc. Jens Steinwandt Communications Research Laboratory Ilmenau University of Technology PO Box 100565 D-98684 Ilmenau, Germany jens.steinwandt@tu-ilmenau.de

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong April 21st, 2016 Today Administrivia Free parameters in an approach, model, or algorithm? Egocentric videos by Aisha

More information

Image Restoration Using DNN

Image Restoration Using DNN Image Restoration Using DNN Hila Levi & Eran Amar Images were taken from: http://people.tuebingen.mpg.de/burger/neural_denoising/ Agenda Domain Expertise vs. End-to-End optimization Image Denoising and

More information

Challenges motivating deep learning. Sargur N. Srihari

Challenges motivating deep learning. Sargur N. Srihari Challenges motivating deep learning Sargur N. srihari@cedar.buffalo.edu 1 Topics In Machine Learning Basics 1. Learning Algorithms 2. Capacity, Overfitting and Underfitting 3. Hyperparameters and Validation

More information

Research Interests Optimization:

Research Interests Optimization: Mitchell: Research interests 1 Research Interests Optimization: looking for the best solution from among a number of candidates. Prototypical optimization problem: min f(x) subject to g(x) 0 x X IR n Here,

More information

Pose estimation using a variety of techniques

Pose estimation using a variety of techniques Pose estimation using a variety of techniques Keegan Go Stanford University keegango@stanford.edu Abstract Vision is an integral part robotic systems a component that is needed for robots to interact robustly

More information

Multi-layer Perceptron Forward Pass Backpropagation. Lecture 11: Aykut Erdem November 2016 Hacettepe University

Multi-layer Perceptron Forward Pass Backpropagation. Lecture 11: Aykut Erdem November 2016 Hacettepe University Multi-layer Perceptron Forward Pass Backpropagation Lecture 11: Aykut Erdem November 2016 Hacettepe University Administrative Assignment 2 due Nov. 10, 2016! Midterm exam on Monday, Nov. 14, 2016 You are

More information

Deep Generative Models Variational Autoencoders

Deep Generative Models Variational Autoencoders Deep Generative Models Variational Autoencoders Sudeshna Sarkar 5 April 2017 Generative Nets Generative models that represent probability distributions over multiple variables in some way. Directed Generative

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

MODEL-based recovery of images from noisy and sparse. MoDL: Model Based Deep Learning Architecture for Inverse Problems

MODEL-based recovery of images from noisy and sparse. MoDL: Model Based Deep Learning Architecture for Inverse Problems 1 MoDL: Model Based Deep Learning Architecture for Inverse Problems Hemant K. Aggarwal, Member, IEEE, Merry P. Mani, and Mathews Jacob, Senior Member, IEEE arxiv:1712.02862v3 [cs.cv] 10 Aug 2018 Abstract

More information

Pre- and Post-Processing for Video Compression

Pre- and Post-Processing for Video Compression Whitepaper submitted to Mozilla Research Pre- and Post-Processing for Video Compression Aggelos K. Katsaggelos AT&T Professor Department of Electrical Engineering and Computer Science Northwestern University

More information

Quantitative Finance COURSE NUMBER: 22:839:615 COURSE TITLE: Special Topics Oriented Programming 2

Quantitative Finance COURSE NUMBER: 22:839:615 COURSE TITLE: Special Topics Oriented Programming 2 Quantitative Finance COURSE NUMBER: 22:839:615 COURSE TITLE: Special Topics Oriented Programming 2 COURSE DESCRIPTION This course assumes a student has prior programming language experience with C++. It

More information

Mathematics of Optimization Viewpoint of Applied Mathematics Logic of Optimization

Mathematics of Optimization Viewpoint of Applied Mathematics Logic of Optimization Global Focus on Knowledge Lecture (The World of Mathematics #7) 2007 06 07 Mathematics of Optimization Viewpoint of Applied Mathematics Logic of Optimization Kazuo Murota Department. of Mathematical Engineering

More information

Introduction Optimization Geoff Gordon Ryan Tibshirani

Introduction Optimization Geoff Gordon Ryan Tibshirani Introduction 10-75 Optimization Geoff Gordon Ryan Tibshirani Administrivia http://www.cs.cmu.edu/~ggordon/1075-f1/ http://groups.google.com/group/1075-f1 Administrivia Prerequisites: no formal ones, but

More information

5LSH0 Advanced Topics Video & Analysis

5LSH0 Advanced Topics Video & Analysis 1 Multiview 3D video / Outline 2 Advanced Topics Multimedia Video (5LSH0), Module 02 3D Geometry, 3D Multiview Video Coding & Rendering Peter H.N. de With, Sveta Zinger & Y. Morvan ( p.h.n.de.with@tue.nl

More information

CS489/698: Intro to ML

CS489/698: Intro to ML CS489/698: Intro to ML Lecture 14: Training of Deep NNs Instructor: Sun Sun 1 Outline Activation functions Regularization Gradient-based optimization 2 Examples of activation functions 3 5/28/18 Sun Sun

More information

ENGN D Photography / Spring 2018 / SYLLABUS

ENGN D Photography / Spring 2018 / SYLLABUS ENGN 2502 3D Photography / Spring 2018 / SYLLABUS Description of the proposed course Over the last decade digital photography has entered the mainstream with inexpensive, miniaturized cameras routinely

More information

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa Instructors: Parth Shah, Riju Pahwa Lecture 2 Notes Outline 1. Neural Networks The Big Idea Architecture SGD and Backpropagation 2. Convolutional Neural Networks Intuition Architecture 3. Recurrent Neural

More information

Deep Learning. Architecture Design for. Sargur N. Srihari

Deep Learning. Architecture Design for. Sargur N. Srihari Architecture Design for Deep Learning Sargur N. srihari@cedar.buffalo.edu 1 Topics Overview 1. Example: Learning XOR 2. Gradient-Based Learning 3. Hidden Units 4. Architecture Design 5. Backpropagation

More information

Algebraic Iterative Methods for Computed Tomography

Algebraic Iterative Methods for Computed Tomography Algebraic Iterative Methods for Computed Tomography Per Christian Hansen DTU Compute Department of Applied Mathematics and Computer Science Technical University of Denmark Per Christian Hansen Algebraic

More information

WEINER FILTER AND SUB-BLOCK DECOMPOSITION BASED IMAGE RESTORATION FOR MEDICAL APPLICATIONS

WEINER FILTER AND SUB-BLOCK DECOMPOSITION BASED IMAGE RESTORATION FOR MEDICAL APPLICATIONS WEINER FILTER AND SUB-BLOCK DECOMPOSITION BASED IMAGE RESTORATION FOR MEDICAL APPLICATIONS ARIFA SULTANA 1 & KANDARPA KUMAR SARMA 2 1,2 Department of Electronics and Communication Engineering, Gauhati

More information

AM 221: Advanced Optimization Spring 2016

AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof Yaron Singer Lecture 3 February 1st 1 Overview In our previous lecture we presented fundamental results from convex analysis and in particular the separating

More information

ME964 High Performance Computing for Engineering Applications

ME964 High Performance Computing for Engineering Applications ME964 High Performance Computing for Engineering Applications Outlining Midterm Projects Topic 3: GPU-based FEA Topic 4: GPU Direct Solver for Sparse Linear Algebra March 01, 2011 Dan Negrut, 2011 ME964

More information

PHYS 219 General Physics: Electricity, Light and Modern Physics

PHYS 219 General Physics: Electricity, Light and Modern Physics PHYS 219 General Physics: Electricity, Light and Modern Physics Exam 2 is scheduled on Tuesday, March 26 @ 8 10 PM In Physics 114 It will cover four Chapters 21, 22, 23, and 24. Start reviewing lecture

More information

Homework 5. Due: April 20, 2018 at 7:00PM

Homework 5. Due: April 20, 2018 at 7:00PM Homework 5 Due: April 20, 2018 at 7:00PM Written Questions Problem 1 (25 points) Recall that linear regression considers hypotheses that are linear functions of their inputs, h w (x) = w, x. In lecture,

More information

EECE 580B Modern Coding Theory

EECE 580B Modern Coding Theory EECE 580B Modern Coding Theory First lecture Tomas Filler (tomas.filler@binghamton.edu) Jessica Fridrich (fridrich@binghamton.edu) Why coding theory? EECE 580B Modern Coding Theory CRN# 95028 Credits:

More information

Convex Optimization MLSS 2015

Convex Optimization MLSS 2015 Convex Optimization MLSS 2015 Constantine Caramanis The University of Texas at Austin The Optimization Problem minimize : f (x) subject to : x X. The Optimization Problem minimize : f (x) subject to :

More information

Drawing a Triangle (and an Intro to Sampling)

Drawing a Triangle (and an Intro to Sampling) Lecture 4: Drawing a Triangle (and an Intro to Sampling) Computer Graphics CMU 15-462/15-662, Spring 2018 HW 0.5 Due, HW 1 Out Today! GOAL: Implement a basic rasterizer - (Topic of today s lecture) - We

More information

CSCI 201L Syllabus Principles of Software Development Spring 2018

CSCI 201L Syllabus Principles of Software Development Spring 2018 L Syllabus Principles of Software Development Spring 2018 Instructor: Jeffrey Miller, Ph.D. Email: jeffrey.miller@usc.edu Web Page: http://www-scf.usc.edu/~csci201 Office: SAL 342 Phone: 213-740-7129 Lectures:

More information

Computational Methods. Constrained Optimization

Computational Methods. Constrained Optimization Computational Methods Constrained Optimization Manfred Huber 2010 1 Constrained Optimization Unconstrained Optimization finds a minimum of a function under the assumption that the parameters can take on

More information

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration Camera Calibration Jesus J Caban Schedule! Today:! Camera calibration! Wednesday:! Lecture: Motion & Optical Flow! Monday:! Lecture: Medical Imaging! Final presentations:! Nov 29 th : W. Griffin! Dec 1

More information

Distance Functions 1

Distance Functions 1 Distance Functions 1 Distance function Given: geometric object F (curve, surface, solid, ) Assigns to each point the shortest distance from F Level sets of the distance function are trimmed offsets F p

More information

Algorithms for convex optimization

Algorithms for convex optimization Algorithms for convex optimization Michal Kočvara Institute of Information Theory and Automation Academy of Sciences of the Czech Republic and Czech Technical University kocvara@utia.cas.cz http://www.utia.cas.cz/kocvara

More information

Ensemble methods in machine learning. Example. Neural networks. Neural networks

Ensemble methods in machine learning. Example. Neural networks. Neural networks Ensemble methods in machine learning Bootstrap aggregating (bagging) train an ensemble of models based on randomly resampled versions of the training set, then take a majority vote Example What if you

More information

Optimization Plugin for RapidMiner. Venkatesh Umaashankar Sangkyun Lee. Technical Report 04/2012. technische universität dortmund

Optimization Plugin for RapidMiner. Venkatesh Umaashankar Sangkyun Lee. Technical Report 04/2012. technische universität dortmund Optimization Plugin for RapidMiner Technical Report Venkatesh Umaashankar Sangkyun Lee 04/2012 technische universität dortmund Part of the work on this technical report has been supported by Deutsche Forschungsgemeinschaft

More information

Gengsheng Lawrence Zeng. Medical Image Reconstruction. A Conceptual Tutorial

Gengsheng Lawrence Zeng. Medical Image Reconstruction. A Conceptual Tutorial Gengsheng Lawrence Zeng Medical Image Reconstruction A Conceptual Tutorial Gengsheng Lawrence Zeng Medical Image Reconstruction A Conceptual Tutorial With 163 Figures Author Prof. Dr. Gengsheng Lawrence

More information

Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude

Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude A. Migukin *, V. atkovnik and J. Astola Department of Signal Processing, Tampere University of Technology,

More information

Introduction to Information Technology ITP 101x (4 Units)

Introduction to Information Technology ITP 101x (4 Units) Objective Concepts Introduction to Information Technology ITP 101x (4 Units) Upon completing this course, students will: - Understand the fundamentals of information technology - Learn core concepts of

More information

Preface. and Its Applications 81, ISBN , doi: / , Springer Science+Business Media New York, 2013.

Preface. and Its Applications 81, ISBN , doi: / , Springer Science+Business Media New York, 2013. Preface This book is for all those interested in using the GAMS technology for modeling and solving complex, large-scale, continuous nonlinear optimization problems or applications. Mainly, it is a continuation

More information

AM 221: Advanced Optimization Spring 2016

AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 2 Wednesday, January 27th 1 Overview In our previous lecture we discussed several applications of optimization, introduced basic terminology,

More information

A Short SVM (Support Vector Machine) Tutorial

A Short SVM (Support Vector Machine) Tutorial A Short SVM (Support Vector Machine) Tutorial j.p.lewis CGIT Lab / IMSC U. Southern California version 0.zz dec 004 This tutorial assumes you are familiar with linear algebra and equality-constrained optimization/lagrange

More information

Introduction to CVX. Olivier Fercoq and Rachael Tappenden. 24 June pm, ICMS Newhaven Lecture Theatre

Introduction to CVX. Olivier Fercoq and Rachael Tappenden. 24 June pm, ICMS Newhaven Lecture Theatre Introduction to CVX Olivier Fercoq and Rachael Tappenden 24 June 2014 4-5 pm, ICMS Newhaven Lecture Theatre What is optimization? Wikipedia: an optimization problem consists of maximizing or minimizing

More information

Math 180 Written Homework Solutions Assignment #1 Due Thursday, September 4th at the beginning of your discussion class.

Math 180 Written Homework Solutions Assignment #1 Due Thursday, September 4th at the beginning of your discussion class. Math 180 Written Homework Solutions Assignment #1 Due Thursday, September 4th at the beginning of your discussion class. Directions. You are welcome to work on the following problems with other MATH 180

More information

Vulnerability of machine learning models to adversarial examples

Vulnerability of machine learning models to adversarial examples Vulnerability of machine learning models to adversarial examples Petra Vidnerová Institute of Computer Science The Czech Academy of Sciences Hora Informaticae 1 Outline Introduction Works on adversarial

More information

15. Cutting plane and ellipsoid methods

15. Cutting plane and ellipsoid methods EE 546, Univ of Washington, Spring 2012 15. Cutting plane and ellipsoid methods localization methods cutting-plane oracle examples of cutting plane methods ellipsoid method convergence proof inequality

More information

Neural Network Optimization and Tuning / Spring 2018 / Recitation 3

Neural Network Optimization and Tuning / Spring 2018 / Recitation 3 Neural Network Optimization and Tuning 11-785 / Spring 2018 / Recitation 3 1 Logistics You will work through a Jupyter notebook that contains sample and starter code with explanations and comments throughout.

More information

What is linear programming (LP)? NATCOR Convex Optimization Linear Programming 1. Solving LP problems: The standard simplex method

What is linear programming (LP)? NATCOR Convex Optimization Linear Programming 1. Solving LP problems: The standard simplex method NATCOR Convex Optimization Linear Programming 1 Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk 14 June 2016 What is linear programming (LP)? The most important model used in

More information

Constrained and Unconstrained Optimization

Constrained and Unconstrained Optimization Constrained and Unconstrained Optimization Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Oct 10th, 2017 C. Hurtado (UIUC - Economics) Numerical

More information

Drawing a Triangle (and an introduction to sampling)

Drawing a Triangle (and an introduction to sampling) Lecture 4: Drawing a Triangle (and an introduction to sampling) Computer Graphics CMU 15-462/15-662, Spring 2017 Assignment 1 is out! https://15462-s17.github.io/asst1_drawsvg/ Let s draw some triangles

More information