Size: px
Start display at page:

Download "Nº"

Transcription

1 COMUNICAÇÃO TÉCNICA Nº The use of CFD on the Naval Engineering Research at IPT João Lucas Dozzi Dantas Palestra apresentada no SIMCETER USERS MEETING SOUTH AMERICA, 2018, São Paulo A série Comunicação Técnica compreende trabalhos elaborados por técnicos do IPT, apresentados em eventos, publicados em revistas especializadas ou quando seu conteúdo apresentar relevância pública. Instituto de Pesquisas Tecnológicas do Estado de São Paulo S/A - IPT Av. Prof. Almeida Prado, 532 Cidade Universitária ou Caixa Postal 0141 CEP São Paulo SP Brasil CEP Tel /4000 Fax

2 The use of CFD on the Naval Engineering Research at IPT IPT Institute for Technological Research João Lucas Dozzi Dantas

3 Agenda: About IPT Institute for Technological Research Vessel Resistance and Motion Geometry simplification using porous approach Propeller blockage and hydrophobic investigation Laminar-turbulent transition model

4 IPT Institute for Technological Research Page 3

5 IPT Institute for Technological Research Page 4

6 IPT-NAVAL: Towing Tank Large Section: 200 x 6.6 x 4.5 m Narrow Section: 60 x 3.7 x 2.0 m Maximum test speed: 3.5 m/s Model length: up to 6.0 m Page 5

7 IPT-NAVAL: Cavitation Tunnel IPT s Cavitation Tunnel, model Kempf & Remmers K18, was inaugurated in 1963 in a partnership with Brazilian navy Section test: 0.5 x 0.5 m² Range of pressure: 0.2 ~ 1.6 atm Propeller rotation: up to 3000 rpm Advance velocity: up to 5.0 m/s Page 6

8 IPT-NAVAL: Cavitation Tunnel: Instrumentation Capabilities Force, torque and vibration measurement Strain gauges and load cells Strobe light Velocity measurements Pitot Acoustic (ADV) Laser (PIV and LDV) Measurement of dissolved oxygen Underwater acoustic sensors Page 7

9 Vessel Resistance and Motion Some results published in: PELICIA, R.S.; DANTAS, J.L.D. Model Calm Water Resistance and Motion Simulation, Experiments and Verification.The 30th American Towing Tank Conference. SNAME

10 Vessel Resistance and Motion Objectives Calm water resistance test are common test in towing tanks, being used to verify a hull performance or calibrate a numerical model. Verify the numerical model through mesh sensitiveness analysis Validate the numerical model by comparison of towing tank results Page 9

11 Case study Two platform supply vessel model Prototype planform: Page 10

12 Results: Resistance Page 11

13 Results: Wave incidence Only M536 (Prototype I) Draft of 6.6 m Vp =1.048 m/s (15 knot) Page 12

14 Simplification of a floating line using porous approach Some results published in: KATSUNO, E.T.; CASTRO, F.S.; DANTAS, J.L.D. Debris Containment Grid CFD validation with Towing Tank Tests.The 30th American Towing Tank Conference. SNAME KATSUNO, E.T.; CASTRO, F.S.; DANTAS, J.L.D. Hydrodynamic Analysis of Debris Containment Grid in Hydropower Plant Using Porous Media.24th International Congress of Mechanical Engineering. ABCM KATSUNO, E.T.; GOMES, G.G.; CASTRO, F.S.; DANTAS, J.L.D. Numerical Analysis of Debris Containment Grid Fluid-Body Interaction.37th International Conference on Ocean, Offshore and Artic Engineering. ASME

15 Objectives Develop a simplified numerical model of a truncated version (with fewer modules) of a debris containment grid line Dynamic Fluid Body Interaction - DFBI Several conditions: Advance velocity and side-slip angle Hydrodynamic Investigation is conducted using CFD software Page 14

16 Methodology Complete representation Simplified representation using porous media approach Line with simplified representation Page 15

17 Complete representation setup Two DoF: sinkage of the module and rotation of the chassis Two regions: domain region (include the grid) and chassis region Boundary conditions of domain region Log boom module: Grid + chassis Boundary conditions of chassis region Page 16

18 Simplified representation setup Dimensions are the same as complete representation. Grid are simplified by a porous region Boundary Conditions of Domain (I), Grid (II), Chassis (III) and Frontal part of Chassis (IV) regions (figures are not in the same scale) Fewer elements Page 17

19 Porous formulation Comparative of complete and porous model in grid force magnitude (x and y directions) (left); and in moment (right) Page 18

20 Log Boom line Float-Grid Six simplified representation 13 regions with overset interfaces Grid-Grid Edges Page 19

21 Next steps Modeling porous region using Momentum source Increase number os lof boom modules Compare results with experimental values obtained in IPT s Towing Tank Page 20

22 Propeller blockage and hydrophobic investigation Some results published in: KATSUNO, E.T.; DANTAS, J.L.D. Investigação da metodologia para simulações de propulsores utilizando fluidodinâmica computacional. 26º Congresso Nacional de Transporte Aquaviário, Construção Naval e Offshore. SOBENA KATSUNO, E.T.; DANTAS, J.L.D. Analysis of the Blockage Effect on a Cavitation Tunnel using CFD Tools. 36th International Conference on Ocean, Offshore and Artic Engineering. ASME KATSUNO, E.T.; DANTAS, J.L.D.; SILVA, E.C.N. Analysis of Hydrophobic Painting in Model-Scale propeller. 37th International Conference on Ocean, Offshore and Artic Engineering. ASME

23 Number of elements CFD model study Domain size study V&V study Mesh topology study Turbulence model Model KT KQ η Experimental 0,330 0,0433 0,231 SA 0,317 0,0419 0,256 SST 0,316 0,0417 0,256 SST LowRe 0,316 0,0418 0,256 Realizable k ε 0,317 0,0419 0,256 Trimmed Polyhedral Page 22

24 Open Water results Periodic condition with cavitation model Experimental comparatives Page 23

25 Cavitation and Blockage results Results Results with blockage correction Page 24

26 Next steps Analysis for lower cavitation number Noted a high influence of blockage ratio in the cavitation area Comparative between two blockage ratio for the same advance ratio of Not contemplated in Glauert mode Page 25

27 Research at superhydrophobic painting Perform a numerical analysis of superhydrophobic surface on propeller Boundary condition not implemented Trade-off between gain in performance and suction pressure Using Field Functions and storing previous results in Monitors Page 26

28 Laminar-Turbulent transition model Some results published in: GOMES, G.G.; ESTEVES, F.R.; KATSUNO, E.T.; DANTAS, J.L.D. Simulations of Laminar Turbulent Transition in foils using CFD. 27º Congresso Internacional de Transporte Aquaviário, Construção Naval e Offshore. SOBENA

29 Laminar to turbulent transition simulations using Gamma- ReTheta turbulence model Transition for the S9000 airfoil, α = 5.21 degrees. Intermittency field (upper figure), alongside the wall shear stress for the upper side of the airfoil, transition occurs between Rex = 9*10⁴ and 1.1*10⁵ Page 28

30 Bubble comparative Comparison between the separation bubble in the upper side of the airfoil obtained with the SST low- Reynolds Turbulence model (top) and with γ-reθ (bottom) Page 29

31 Turbulence Intensity Use of ambient turbulent source to counteract turbulence decay Page 30

32 Comparison with experimental values Comparison with other turbulence models for simulations with low-reynolds number over airfoils NACA43012A airfoil using different turbulence models with experimental data Re = 6e4 Page 31

33 Conclusions CFD has demonstrated great potential in assisting NAVAL-IPT experiments, allowing new types of analysis and results to be incorporated into the laboratory portfolio. NAVAL-IPT will continue to improve its researchers to use this tool to offer more specialized services to their clients Page 32

34 João Lucas Dozzi Dantas Head of Laboratory Naval Architecture and Ocean Engineering Laboratory Center for Mechanical, Electrical and Naval Technologies

Use of STAR-CCM+ in Marine and Off-Shore Engineering - Key Features and Future Developments - M. Perić, F. Schäfer, E. Schreck & J.

Use of STAR-CCM+ in Marine and Off-Shore Engineering - Key Features and Future Developments - M. Perić, F. Schäfer, E. Schreck & J. Use of STAR-CCM+ in Marine and Off-Shore Engineering - Key Features and Future Developments - M. Perić, F. Schäfer, E. Schreck & J. Singh Contents Main features of STAR-CCM+ relevant for marine and offshore

More information

CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+

CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+ CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+ by G. J. Grigoropoulos and I..S. Kefallinou 1. Introduction and setup 1. 1 Introduction The

More information

SIMULATION OF PROPELLER-SHIP HULL INTERACTION USING AN INTEGRATED VLM/RANSE SOLVER MODELING.

SIMULATION OF PROPELLER-SHIP HULL INTERACTION USING AN INTEGRATED VLM/RANSE SOLVER MODELING. SIMULATION OF PROPELLER-SHIP HULL INTERACTION USING AN INTEGRATED VLM/RANSE SOLVER MODELING. M.N.Senthil Prakash, Department of Ocean Engineering, IIT Madras, India V. Anantha Subramanian Department of

More information

Best Practices for Maneuvering

Best Practices for Maneuvering Best Practices for Maneuvering STAR Global Conference - Berlin 2017 Timothy Yen, PhD Marine and Offshore Technical Specialist Priyanka Cholletti Advanced Application Engineer Carlo Pettinelli Engineering

More information

Computational Fluid Dynamics Simulation of a Rim Driven Thruster

Computational Fluid Dynamics Simulation of a Rim Driven Thruster Computational Fluid Dynamics Simulation of a Rim Driven Thruster Aleksander J Dubas, N. W. Bressloff, H. Fangohr, S. M. Sharkh (University of Southampton) Abstract An electric rim driven thruster is a

More information

Numerical Simulation of the Self-Propulsion Model Tests

Numerical Simulation of the Self-Propulsion Model Tests Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Numerical Simulation of the Self-Propulsion Model Tests Tomasz Bugalski, Paweł Hoffmann 1 1 Ship Design and Research

More information

University of Southampton Fluid-Structure Interactions Group OpenFOAM Research

University of Southampton Fluid-Structure Interactions Group OpenFOAM Research 2 nd Gothenburg OpenFOAM user-group meeting Chalmers University, 14 th November 2012 University of Southampton Fluid-Structure Interactions Group OpenFOAM Research Tom Lloyd T.P.Lloyd@soton.ac.uk Marion

More information

Numerical and experimental investigations into liquid sloshing in a rectangular tank

Numerical and experimental investigations into liquid sloshing in a rectangular tank The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Numerical and experimental investigations into liquid sloshing in a rectangular

More information

Simulation of a Free Surface Flow over a Container Vessel Using CFD

Simulation of a Free Surface Flow over a Container Vessel Using CFD Simulation of a Free Surface Flow over a Container Vessel Using CFD Krishna Atreyapurapu 1 Bhanuprakash Tallapragada 2 Kiran Voonna 3 M.E Student Professor Manager Dept. of Marine Engineering Dept. of

More information

CFD-BASED NUMERICAL SIMULATION OF SELF-PROPULSION FOR JAPAN BULK CARRIER

CFD-BASED NUMERICAL SIMULATION OF SELF-PROPULSION FOR JAPAN BULK CARRIER CFD-BASED NUMERICAL SIMULATION OF SELF-PROPULSION FOR JAPAN BULK CARRIER Jianwei Wu(Shanghai Jiao Tong University, State Key Laboratory of Ocean Engineering, Collaborative Innovation Center for Advanced

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 2 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University

More information

NUMERICAL SIMULATION OF SHALLOW WATERS EFFECTS ON SAILING SHIP "MIRCEA" HULL

NUMERICAL SIMULATION OF SHALLOW WATERS EFFECTS ON SAILING SHIP MIRCEA HULL NUMERICAL SIMULATION OF SHALLOW WATERS EFFECTS ON SAILING SHIP "MIRCEA" HULL Petru Sergiu ȘERBAN 1 1 PhD Student, Department of Navigation and Naval Transport, Mircea cel Batran Naval Academy, Constanța,

More information

DNV GL s 16th Technology Week

DNV GL s 16th Technology Week OIL & GAS DNV GL s 16th Technology Week Advanced Simulation for Offshore Application: Application of CFD for Computing VIM of Floating Structures 1 SAFER, SMARTER, GREENER OUTLINE Introduction Elements

More information

RANSE Simulations of Surface Piercing Propellers

RANSE Simulations of Surface Piercing Propellers RANSE Simulations of Surface Piercing Propellers Mario Caponnetto, Rolla Research, mariocaponnetto@hotmail.com RANSE methods have been applied to the analysis of ship propellers in open-water condition

More information

DEVELOPMENT OF A CFD MODEL FOR SIMULATION OF SELF-PROPULSION TESTS

DEVELOPMENT OF A CFD MODEL FOR SIMULATION OF SELF-PROPULSION TESTS DEVELOPMENT OF A CFD MODEL FOR SIMULATION OF SELF-PROPULSION TESTS Alexandre T. P. Alho Laboratório de Sistemas de Propulsão DENO/POLI, UFRJ INTRODUCTION Motivation Growing demand for high efficiency propulsion

More information

D DAVID PUBLISHING. Uncertainty Analysis in CFD for Resistance. 1. Introduction

D DAVID PUBLISHING. Uncertainty Analysis in CFD for Resistance. 1. Introduction Journal of Shipping and Ocean Engineering 7 (2017) 192-202 doi 10.17265/2159-5879/2017.05.003 D DAVID PUBLISHING WANG Zhongcheng 1, LIU Xiaoyu 1, ZHANG Shenglong 1, XU Leping 1 and ZHOU Peilin 2 1. MMC

More information

Comparison of model tests and calculations

Comparison of model tests and calculations Comparison of model tests and calculations Experimental Methods in Marine Hydrodynamics Lecture in week 45 Covers chapter 12 in the lecture notes 1 Contents Validation or verification? Numerical vs. Physical

More information

Numerical Simulation of Regular Wave in a Tank

Numerical Simulation of Regular Wave in a Tank Numerical Simulation of Regular Wave in a Tank Authors: Monica Campos Silva, Dr. student PENO/UFRJ email: mcsilva@peno.coppe.ufrj.br Waldir Terra Pinto, Dr. FURG email: w_pinto@dmc.furg.br Marcelo de A.

More information

Numerical Modeling of Ship-Propeller Interaction under Self-Propulsion Condition

Numerical Modeling of Ship-Propeller Interaction under Self-Propulsion Condition STAR Global Conference 2014 Vienna, Austria, March 17-19 Numerical Modeling of Ship-Propeller Interaction under Self-Propulsion Condition Vladimir Krasilnikov Department of Ship Technology, MARINTEK Trondheim,

More information

KCS Resistance Calculation

KCS Resistance Calculation KCS Resistance Calculation Author: Ludwig Kerner Last update: 19-09-2014 Reviewed by : Jonathan Brunel Date of Review : 19-09-2014 1 Content 0 Executive Summary 1 3 Computations 4 Test Case Description

More information

Milovan Perić CD-adapco. Use of STAR-CCM+ in Marine and Offshore Engineering and Future Trends

Milovan Perić CD-adapco. Use of STAR-CCM+ in Marine and Offshore Engineering and Future Trends Milovan Perić CD-adapco Use of STAR-CCM+ in Marine and Offshore Engineering and Future Trends Introduction CD-adapco is developing simulation capabilities in STAR-CCM+ specifically for marine and offshore

More information

Taming OpenFOAM for Ship Hydrodynamics Applications

Taming OpenFOAM for Ship Hydrodynamics Applications Taming OpenFOAM for Ship Hydrodynamics Applications Sung-Eun Kim, Ph. D. Computational Hydromechanics Division (Code 5700) Naval Surface Warfare Center Carderock Division Background Target Applications

More information

Numerical Study of Propeller Ventilation

Numerical Study of Propeller Ventilation Fifth International Symposium on Marine Propulsors smp 17, Espoo, Finland, June 2017 Numerical Study of Propeller Ventilation Camille Yvin 1, Pol Muller 1, Kourosh Koushan 2 1 DCNS RESEARCH/SIREHNA, Nantes,

More information

Extension and Validation of the CFX Cavitation Model for Sheet and Tip Vortex Cavitation on Hydrofoils

Extension and Validation of the CFX Cavitation Model for Sheet and Tip Vortex Cavitation on Hydrofoils Extension and Validation of the CFX Cavitation Model for Sheet and Tip Vortex Cavitation on Hydrofoils C. Lifante, T. Frank, M. Kuntz ANSYS Germany, 83624 Otterfing Conxita.Lifante@ansys.com 2006 ANSYS,

More information

Advances in Simulation for Marine And Offshore Applications. Milovan Perić

Advances in Simulation for Marine And Offshore Applications. Milovan Perić Advances in Simulation for Marine And Offshore Applications Milovan Perić Introduction Extensions and enhancements in STAR-CCM+ for marine and offshore applications: Creation of irregular long-crested

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 9 Table of Contents 1. OVERVIEW... 2 2. CHOICE OF MODEL OR FULL SCALE... 2 3. NOMINAL WAKE IN MODEL SCALE... 3 3.1 Pre-processing... 3 3.1.1 Geometry... 3 3.1.2 Computational Domain and Boundary

More information

SHAPE pilot Monotricat SRL: Hull resistance simulations for an innovative hull using OpenFOAM

SHAPE pilot Monotricat SRL: Hull resistance simulations for an innovative hull using OpenFOAM Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe SHAPE pilot Monotricat SRL: Hull resistance simulations for an innovative hull using OpenFOAM Lilit Axner a,b, Jing Gong

More information

Numerische Untersuchungen von Windkraftanlagen: Leistung, Wake und Steuerungsstrategien

Numerische Untersuchungen von Windkraftanlagen: Leistung, Wake und Steuerungsstrategien Fachtagung Lasermethoden in der Strömungsmesstechnik 8. 10. September 2015, Dresden Numerische Untersuchungen von Windkraftanlagen: Leistung, Wake und Steuerungsstrategien Numerical Investigations of Wind

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 9 Table of Contents 1. OVERVIEW... 2 2. COMPUTATIONAL PROCEDURE.. 2 2.1 Preliminaries... 2 2.2 Code and Computer... 3 2.3 Ship Geometry, Computational Domain, and Boundary Conditions... 3 2.4

More information

Optimization of Appendages Using RANS-CFD-Methods

Optimization of Appendages Using RANS-CFD-Methods -Methods HENDRIK VORHOELTER, STEFAN KRUEGER, Hamburg University of Technology Numerical Towing Tank Symposium, Hamburg 2007 There has been a lot of development on RANS- CFD-methods in the past years. The

More information

Eng Ship Structures 1 L E C T U R E 1 0 : F I N I T E E L E M E N T T E C H N I Q U E S I N S H I P S T R U C T U R A L D E S I G N

Eng Ship Structures 1 L E C T U R E 1 0 : F I N I T E E L E M E N T T E C H N I Q U E S I N S H I P S T R U C T U R A L D E S I G N Eng. 6002 Ship Structures 1 L E C T U R E 1 0 : F I N I T E E L E M E N T T E C H N I Q U E S I N S H I P S T R U C T U R A L D E S I G N Contents Introduction Linear Analysis Static Non-linear Analysis

More information

CFD Application in Offshore Structures Design at PETROBRAS

CFD Application in Offshore Structures Design at PETROBRAS CFD Application in Offshore Structures Design at PETROBRAS Marcus Reis ESSS CFD Director Mooring System Design of Floating Production Systems; Current and Wind Loads; Wave Induced Drag Coefficients. Case

More information

Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon Kim, Hogeon Kim

Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon Kim, Hogeon Kim Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon Kim, Hogeon Kim Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon

More information

Ship Energy Systems Modelling: a Gray-Box approach

Ship Energy Systems Modelling: a Gray-Box approach MOSES Workshop: Modelling and Optimization of Ship Energy Systems Ship Energy Systems Modelling: a Gray-Box approach 25 October 2017 Dr Andrea Coraddu andrea.coraddu@strath.ac.uk 30/10/2017 Modelling &

More information

EXPERIMENTAL VALIDATION OF STAR-CCM+ FOR LIQUID CONTAINER SLOSH DYNAMICS

EXPERIMENTAL VALIDATION OF STAR-CCM+ FOR LIQUID CONTAINER SLOSH DYNAMICS EXPERIMENTAL VALIDATION OF STAR-CCM+ FOR LIQUID CONTAINER SLOSH DYNAMICS Brandon Marsell a.i. solutions, Launch Services Program, Kennedy Space Center, FL 1 Agenda Introduction Problem Background Experiment

More information

CFD Simulation of Cavitation in an Internal Gear Pump

CFD Simulation of Cavitation in an Internal Gear Pump CFD Simulation of Cavitation in an Internal Gear Pump Dr. Andreas Spille-Kohoff Jan Hesse CFX Berlin Software GmbH Berlin andreas.spille@cfx-berlin.de Contents Introduction Geometry and mesh Simulation

More information

Coupled Simulation of Flow and Body Motion Using Overset Grids. Eberhard Schreck & Milovan Perić

Coupled Simulation of Flow and Body Motion Using Overset Grids. Eberhard Schreck & Milovan Perić Coupled Simulation of Flow and Body Motion Using Overset Grids Eberhard Schreck & Milovan Perić Contents Dynamic Fluid-Body Interaction (DFBI) model in STAR-CCM+ Overset grids method in STAR-CCM+ Advantages

More information

CFD in COMSOL Multiphysics

CFD in COMSOL Multiphysics CFD in COMSOL Multiphysics Christian Wollblad Copyright 2017 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of

More information

Application of Hydrodynamics and Dynamics Models for Efficient Operation of Modular Mini-AUVs in Shallow and Very-Shallow Waters

Application of Hydrodynamics and Dynamics Models for Efficient Operation of Modular Mini-AUVs in Shallow and Very-Shallow Waters Application of Hydrodynamics and Dynamics Models for Efficient Operation of Modular Mini-AUVs in Shallow and Very-Shallow Waters P. Ananthakrishnan Department of Ocean Engineering Florida Atlantic University

More information

Drag and Lift Validation of Wing Profiles

Drag and Lift Validation of Wing Profiles Drag and Lift Validation of Wing Profiles STAR European Conference 2010 London By: Dr Martin van Staden Aerotherm Computational Dynamics 14th IAHR Conference December 2009 Outline of Presentation Background

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

The Spalart Allmaras turbulence model

The Spalart Allmaras turbulence model The Spalart Allmaras turbulence model The main equation The Spallart Allmaras turbulence model is a one equation model designed especially for aerospace applications; it solves a modelled transport equation

More information

CFD Modeling of Lapple Cyclone for Gas-Solid Separation

CFD Modeling of Lapple Cyclone for Gas-Solid Separation CFD Modeling of Lapple Cyclone for Gas-Solid Separation Authors: M. K. Silva, C. A. Claumann, R. A. F. Machado and M. B. Quadri Federal University of Santa Catarina UFSC Chemical Engeneering Department

More information

SIMULATION OF FLOW AROUND KCS-HULL

SIMULATION OF FLOW AROUND KCS-HULL SIMULATION OF FLOW AROUND KCS-HULL Sven Enger (CD-adapco, Germany) Milovan Perić (CD-adapco, Germany) Robinson Perić (University of Erlangen-Nürnberg, Germany) 1.SUMMARY The paper describes results of

More information

Ana L. Quaresma PhD Student, IST António N. Pinheiro Full Professor, IST

Ana L. Quaresma PhD Student, IST António N. Pinheiro Full Professor, IST Is CFD an efficient tool to develop pool type fishways? Ana L. Quaresma PhD Student, IST analopesquaresma@tecnico.ulisboa.pt António N. Pinheiro Full Professor, IST antonio.pinheiro@tecnico.ulisboa.pt

More information

Evaluation of hydrodynamic coefficients on riser floaters using CFD

Evaluation of hydrodynamic coefficients on riser floaters using CFD Evaluation of hydrodynamic coefficients on riser floaters using CFD Erico Santos, Pedro Mendes, Bruno Luna PETROBRAS (CENPES/PDEP/TDUT) Ricardo Damian ESSS AGENDA MOTIVATION PROCEADURE OVERVIEW RISER GLOBAL

More information

SPEED-UP GEARBOX SIMULATIONS BY INTEGRATING SCORG. Dr. Christine Klier, Sahand Saheb-Jahromi, Ludwig Berger*

SPEED-UP GEARBOX SIMULATIONS BY INTEGRATING SCORG. Dr. Christine Klier, Sahand Saheb-Jahromi, Ludwig Berger* SPEED-UP GEARBOX SIMULATIONS BY INTEGRATING SCORG Dr. Christine Klier, Sahand Saheb-Jahromi, Ludwig Berger* CFD SCHUCK ENGINEERING Engineering Services in computational fluid Dynamics (CFD) 25 employees

More information

OMAE SLOSHING AND SWIRLING IN PARTIALLY LOADED PRISMATIC CHAMFERED TANKS

OMAE SLOSHING AND SWIRLING IN PARTIALLY LOADED PRISMATIC CHAMFERED TANKS Proceedings of the 36 th International Conference on Ocean, Offshore & Arctic Engineering June 25-30, 2017, Trondheim, Norway OMAE2017-61562 SLOSHING AND SWIRLING IN PARTIALLY LOADED PRISMATIC CHAMFERED

More information

Numerical propusion test for a tug boat using a RANS solver

Numerical propusion test for a tug boat using a RANS solver Numerical propusion test for a tug boat using a RANS solver R. Broglia, A. Di Mascio, D. Calcagni & F. Salvatore INSEAN, Italian Ship Model Basin, Rome, Italy ABSTRACT: This paper deals with the analysis

More information

Numerical calculation of the wind action on buildings using Eurocode 1 atmospheric boundary layer velocity profiles

Numerical calculation of the wind action on buildings using Eurocode 1 atmospheric boundary layer velocity profiles Numerical calculation of the wind action on buildings using Eurocode 1 atmospheric boundary layer velocity profiles M. F. P. Lopes IDMEC, Instituto Superior Técnico, Av. Rovisco Pais 149-1, Lisboa, Portugal

More information

NUMERICAL STUDY OF CAVITATING FLOW INSIDE A FLUSH VALVE

NUMERICAL STUDY OF CAVITATING FLOW INSIDE A FLUSH VALVE Conference on Modelling Fluid Flow (CMFF 09) The 14th International Conference on Fluid Flow Technologies Budapest, Hungary, September 9-12, 2009 NUMERICAL STUDY OF CAVITATING FLOW INSIDE A FLUSH VALVE

More information

Mesh Morphing and the Adjoint Solver in ANSYS R14.0. Simon Pereira Laz Foley

Mesh Morphing and the Adjoint Solver in ANSYS R14.0. Simon Pereira Laz Foley Mesh Morphing and the Adjoint Solver in ANSYS R14.0 Simon Pereira Laz Foley 1 Agenda Fluent Morphing-Optimization Feature RBF Morph with ANSYS DesignXplorer Adjoint Solver What does an adjoint solver do,

More information

WONG HSI, J. J. MIAU,

WONG HSI, J. J. MIAU, Flow Separation Control with a Truncated Ellipse Airfoil in Cycling Aerodynamics WONG HSI, J. J. MIAU Department of Aeronautics and Astronautics (DAA), National Cheng Kung University, Tainan, Taiwan (R.O.C)

More information

Simulation of Turbulent Flow in an Asymmetric Diffuser

Simulation of Turbulent Flow in an Asymmetric Diffuser Simulation of Turbulent Flow in an Asymmetric Diffuser 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 3 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University of Iowa C.

More information

Marine Hydrodynamics Solver in OpenFOAM

Marine Hydrodynamics Solver in OpenFOAM Marine Hydrodynamics Solver in OpenFOAM p. 1/14 Marine Hydrodynamics Solver in OpenFOAM Hrvoje Jasak and Henrik Rusche h.jasak@wikki.co.uk, h.rusche@wikki.co.uk Wikki, United Kingdom and Germany 4 December

More information

Offshore Platform Fluid Structure Interaction (FSI) Simulation

Offshore Platform Fluid Structure Interaction (FSI) Simulation Offshore Platform Fluid Structure Interaction (FSI) Simulation Ali Marzaban, CD-adapco Murthy Lakshmiraju, CD-adapco Nigel Richardson, CD-adapco Mike Henneke, CD-adapco Guangyu Wu, Chevron Pedro M. Vargas,

More information

Current status in CFD Resistance & Propulsion

Current status in CFD Resistance & Propulsion Current status in CFD Resistance & Propulsion Application of CFD in the maritime and offshore industry Progress in Viscous Flow Calculation Methods Trends: from G2K to CFDWT 05 Analysis and design 15/09/2008

More information

Toward Predicting Performance of an Axial Flow Waterjet Including the Effects of Cavitation and Thrust Breakdown

Toward Predicting Performance of an Axial Flow Waterjet Including the Effects of Cavitation and Thrust Breakdown First International Symposium on Marine Propulsors smp 09, Trondheim, Norway, June 2009 Toward Predicting Performance of an Axial Flow Waterjet Including the Effects of Cavitation and Thrust Breakdown

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

Numerical Study of Turbulent Flow over Backward-Facing Step with Different Turbulence Models

Numerical Study of Turbulent Flow over Backward-Facing Step with Different Turbulence Models Numerical Study of Turbulent Flow over Backward-Facing Step with Different Turbulence Models D. G. Jehad *,a, G. A. Hashim b, A. K. Zarzoor c and C. S. Nor Azwadi d Department of Thermo-Fluids, Faculty

More information

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS March 18-20, 2013 THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS Authors: M.R. Chiarelli, M. Ciabattari, M. Cagnoni, G. Lombardi Speaker:

More information

Application of Wray-Agarwal Turbulence Model for Accurate Numerical Simulation of Flow Past a Three-Dimensional Wing-body

Application of Wray-Agarwal Turbulence Model for Accurate Numerical Simulation of Flow Past a Three-Dimensional Wing-body Washington University in St. Louis Washington University Open Scholarship Mechanical Engineering and Materials Science Independent Study Mechanical Engineering & Materials Science 4-28-2016 Application

More information

Direct simulation of zigzag maneuver for fully appended ship

Direct simulation of zigzag maneuver for fully appended ship Direct simulation of zigzag maneuver for fully appended ship Jianhua Wang, Decheng Wan * State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao

More information

Introduction. Chapter 1. Contents. 1.1 Background

Introduction. Chapter 1. Contents. 1.1 Background 1 Introduction Chapter 1 Contents 1.1 Background 1.2 Two-Part Towing System 1.3 Overall objectives 1.4 Scope of the present study 1.5 Methodology 1.6 Organization of the Report 1.1 Background As an effective

More information

Pure Drift of Surface Combatant DTMB 5415 Free to Sink, Roll, and Pitch: Tutorial 1

Pure Drift of Surface Combatant DTMB 5415 Free to Sink, Roll, and Pitch: Tutorial 1 Pure Drift of Surface Combatant DTMB 5415 Free to Sink, Roll, and Pitch: Tutorial 1 COMPUTATIONAL NAVAL HYDRODYNAMICS Surface Combatant 5512 at 0, 10, and 20 Degree Static Drift Conditions Gregory Dooley,

More information

INTERNATIONAL CONFERENCE ON SHIP DRAG REDUCTION (SMOOTH-Ships)

INTERNATIONAL CONFERENCE ON SHIP DRAG REDUCTION (SMOOTH-Ships) INTERNATIONAL CONFERENCE ON SHIP DRAG REDUCTION (SMOOTH-Ships) ISTANBUL TECHNICAL UNIVERSITY 20-21 May 2010 Macka Campus, Istanbul, Turkey Editors Mustafa Insel Ismail Hakki Helvacioglu Sebnem Helvacioglu

More information

Analysis of the Velocities in the Wake of an Azimuthing Thruster, using PIV Measurements and CFD Calculations

Analysis of the Velocities in the Wake of an Azimuthing Thruster, using PIV Measurements and CFD Calculations Analysis of the Velocities in the Wake of an Azimuthing Thruster, using PIV Measurements and CFD Calculations Hans Cozijn (MARIN) Rink Hallmann, Arjen Koop Presentation Outline Background and Objectives

More information

Physics-Based Modeling of Hydrodynamics around Surface Ships Drs. Bong Rhee, Sung-Eun Kim, Hua Shan and Joseph Gorski

Physics-Based Modeling of Hydrodynamics around Surface Ships Drs. Bong Rhee, Sung-Eun Kim, Hua Shan and Joseph Gorski Physics-Based Modeling of Hydrodynamics around Surface Ships Drs. Bong Rhee, Sung-Eun Kim, Hua Shan and Joseph Gorski Computational R & D Branch (Code 572) Hydromechanics Department Naval Surface Warfare

More information

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder Aerospace Application Areas Aerodynamics Subsonic through Hypersonic Aeroacoustics Store release & weapons bay analysis High lift devices

More information

Session D7: Is CFD an Efficient Tool ao Develop Pool Type Fishways?

Session D7: Is CFD an Efficient Tool ao Develop Pool Type Fishways? University of Massachusetts - Amherst ScholarWorks@UMass Amherst International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish

More information

WAVE PATTERNS, WAVE INDUCED FORCES AND MOMENTS FOR A GRAVITY BASED STRUCTURE PREDICTED USING CFD

WAVE PATTERNS, WAVE INDUCED FORCES AND MOMENTS FOR A GRAVITY BASED STRUCTURE PREDICTED USING CFD Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering OMAE2011 June 19-24, 2011, Rotterdam, The Netherlands OMAE2011-49593 WAVE PATTERNS, WAVE INDUCED FORCES

More information

CDA Workshop Physical & Numerical Hydraulic Modelling. STAR-CCM+ Presentation

CDA Workshop Physical & Numerical Hydraulic Modelling. STAR-CCM+ Presentation CDA Workshop Physical & Numerical Hydraulic Modelling STAR-CCM+ Presentation ENGINEERING SIMULATION CFD FEA Mission Increase the competitiveness of companies through optimization of their product development

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.6 CHARACTERIZING

More information

NUMERICAL MODELING STUDY FOR FLOW PATTERN CHANGES INDUCED BY SINGLE GROYNE

NUMERICAL MODELING STUDY FOR FLOW PATTERN CHANGES INDUCED BY SINGLE GROYNE NUMERICAL MODELING STUDY FOR FLOW PATTERN CHANGES INDUCED BY SINGLE GROYNE Jungseok Ho 1, Hong Koo Yeo 2, Julie Coonrod 3, and Won-Sik Ahn 4 1 Research Assistant Professor, Dept. of Civil Engineering,

More information

THE INFLUENCE OF ROTATING DOMAIN SIZE IN A ROTATING FRAME OF REFERENCE APPROACH FOR SIMULATION OF ROTATING IMPELLER IN A MIXING VESSEL

THE INFLUENCE OF ROTATING DOMAIN SIZE IN A ROTATING FRAME OF REFERENCE APPROACH FOR SIMULATION OF ROTATING IMPELLER IN A MIXING VESSEL Journal of Engineering Science and Technology Vol. 2, No. 2 (2007) 126-138 School of Engineering, Taylor s University College THE INFLUENCE OF ROTATING DOMAIN SIZE IN A ROTATING FRAME OF REFERENCE APPROACH

More information

CFD Simulation of a dry Scroll Vacuum Pump including Leakage Flows

CFD Simulation of a dry Scroll Vacuum Pump including Leakage Flows CFD Simulation of a dry Scroll Vacuum Pump including Leakage Flows Jan Hesse, Rainer Andres CFX Berlin Software GmbH, Berlin, Germany 1 Introduction Numerical simulation results of a dry scroll vacuum

More information

Simulation Technology for Offshore and Marine Hydrodynamics Status Review and Emerging Capabilities

Simulation Technology for Offshore and Marine Hydrodynamics Status Review and Emerging Capabilities Simulation Technology for Offshore and Marine Hydrodynamics Status Review and Emerging Capabilities Lee Sing-Kwan and Seah Ah Kuan American Bureau of Shipping Presented at the 2 nd International MTEC 2007

More information

ITTC Recommended Procedures and Guidelines. ITTC Quality System Manual. Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines. ITTC Quality System Manual. Recommended Procedures and Guidelines Offshore Structures with Mooring Lines 7.5 Page 1 of 6 ITTC Quality System Manual Recommended Procedure Offshore Structures with Mooring Lines 7.5 Process Control 7.5- Testing and Extrapolation Methods

More information

Numerical Study on the Ellipsoid

Numerical Study on the Ellipsoid Chapter 10 Numerical Study on the 4.2 2 1 Ellipsoid The format of this chapter is similar to that of Chapter 9 without the need for details of the UDFs, other code, nor turbulence models. The initial part

More information

Study on Unsteady Cavitating Flow Simulation around Marine Propeller using a RANS CFD code

Study on Unsteady Cavitating Flow Simulation around Marine Propeller using a RANS CFD code Proceedings of the 7 th International Symposium on Cavitation CAV2009 Paper No. 68 August 17-22, 2009, Ann Arbor, Michigan, USA Study on Unsteady Cavitating Flow Simulation around Marine Propeller using

More information

Simulation of Freak Wave Impact Using the Higher Order Spectrum

Simulation of Freak Wave Impact Using the Higher Order Spectrum Simulation of Freak Wave Impact Using the Higher Order Spectrum The Naval Hydro Pack Hrvoje Jasak and Vuko Vukčević Faculty of Mechanical Engineering and Naval Architecture, Uni Zagreb, Croatia Wikki Ltd.

More information

6DOF RANS Simulations of Floating and Submerged Bodies using OpenFOAM

6DOF RANS Simulations of Floating and Submerged Bodies using OpenFOAM 6DOF RANS Simulations of Floating and Submerged Bodies using OpenFOAM Eric Paterson, David Boger, Kevin Smith, Scott Miller, and Gina Casadei Applied Research Laboratory, Penn State Univ, State College,

More information

Numerical Wave Tank Modeling of Hydrodynamics of Permeable Barriers

Numerical Wave Tank Modeling of Hydrodynamics of Permeable Barriers ICHE 2014, Hamburg - Lehfeldt & Kopmann (eds) - 2014 Bundesanstalt für Wasserbau ISBN 978-3-939230-32-8 Numerical Wave Tank Modeling of Hydrodynamics of Permeable Barriers K. Rajendra & R. Balaji Indian

More information

CFD-DEM MODELING OF THE GRAVEL PACKING PROCESS DURING PETROLEUM HORIZONTAL WELL COMPLETIONS

CFD-DEM MODELING OF THE GRAVEL PACKING PROCESS DURING PETROLEUM HORIZONTAL WELL COMPLETIONS Mecánica Computacional Vol XXIX, págs. 8651-8659 (artículo completo) Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.) Buenos Aires, Argentina, 15-18 Noviembre 2010 CFD-DEM MODELING OF THE GRAVEL

More information

Hydro-elastic analysis of a propeller using CFD and FEM co-simulation

Hydro-elastic analysis of a propeller using CFD and FEM co-simulation Fifth International Symposium on Marine Propulsors smp 17, Espoo, Finland, June 2017 Hydro-elastic analysis of a propeller using CFD and FEM co-simulation Vesa Nieminen 1 1 VTT Technical Research Centre

More information

Preliminary investigation into two-way fluid structure interaction of heliostat wind loads Josh Wolmarans

Preliminary investigation into two-way fluid structure interaction of heliostat wind loads Josh Wolmarans Preliminary investigation into two-way fluid structure interaction of heliostat wind loads Josh Wolmarans Supervisor: Prof Ken Craig Clean Energy Research Group (CERG), Department of Mechanical and Aeronautical

More information

Presentation summary

Presentation summary Nantes - 2014 Aérojoules project: Vertical axis Wind Turbine Blade Aerodynamic optimisation MICHAEL O CONNOR 1 Presentation summary I. Aérojoules project Aim of the study II. Understanding Blade aerodynamics

More information

McNair Scholars Research Journal

McNair Scholars Research Journal McNair Scholars Research Journal Volume 2 Article 1 2015 Benchmarking of Computational Models against Experimental Data for Velocity Profile Effects on CFD Analysis of Adiabatic Film-Cooling Effectiveness

More information

Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD)

Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) Fernando Prevedello Regis Ataídes Nícolas Spogis Wagner Ortega Guedes Fabiano Armellini

More information

Engineering Simulation Software for the Offshore, Marine and Wave/Tidal Renewable Energy Industries. Viscous CFD Applications. Phil Stopford ANSYS UK

Engineering Simulation Software for the Offshore, Marine and Wave/Tidal Renewable Energy Industries. Viscous CFD Applications. Phil Stopford ANSYS UK Engineering Simulation Software for the Offshore, Marine and Wave/Tidal Renewable Energy Industries Viscous CFD Applications Phil Stopford ANSYS UK 2011 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

More information

Supercomputing of Tsunami Damage Mitigation Using Offshore Mega-Floating Structures

Supercomputing of Tsunami Damage Mitigation Using Offshore Mega-Floating Structures International Innovation Workshop on Tsunami, Snow Avalanche and Flash Flood Energy Dissipation January 21-22, 2016, Maison Villemanzy in Lyon, France Supercomputing of Tsunami Damage Mitigation Using

More information

Cloud Cavitating Flow around an Axisymmetric Projectile in the shallow water

Cloud Cavitating Flow around an Axisymmetric Projectile in the shallow water Cloud Cavitating Flow around an Axisymmetric Projectile in the shallow water 1,2 Chang Xu; 1,2 Yiwei Wang*; 1,2 Jian Huang; 1,2 Chenguang Huang 1 Key Laboratory for Mechanics in Fluid Solid Coupling Systems,

More information

Comparison Between Numerical & PIV Experimental Results for Gas-Solid Flow in Ducts

Comparison Between Numerical & PIV Experimental Results for Gas-Solid Flow in Ducts Fabio Kasper Comparison Between Numerical & PIV Experimental Results for Gas-Solid Flow in Ducts Rodrigo Decker, Oscar Sgrott Jr., Henry F. Meier Waldir Martignoni Agenda Introduction The Test Bench Case

More information

CFD FOR OFFSHORE APPLICATIONS USING REFRESCO. Arjen Koop - Senior Project Manager Offshore MARIN

CFD FOR OFFSHORE APPLICATIONS USING REFRESCO. Arjen Koop - Senior Project Manager Offshore MARIN CFD FOR OFFSHORE APPLICATIONS USING REFRESCO Arjen Koop - Senior Project Manager Offshore MARIN COMPUTATIONAL FLUID DYNAMICS (CFD) Advantages: Quantitative predictions Detailed insight in physical processes

More information

Recent Advances in Modelling Wind Parks in STAR CCM+ Steve Evans

Recent Advances in Modelling Wind Parks in STAR CCM+ Steve Evans Recent Advances in Modelling Wind Parks in STAR CCM+ Steve Evans Introduction Company STAR-CCM+ Agenda Wind engineering at CD-adapco STAR-CCM+ & EnviroWizard Developments for Offshore Simulation CD-adapco:

More information

NUMERICAL COMPUTATIONS OF RESISTANCE FOR JAPAN BULK CARRIER IN CALM WATER. Tao Sun, Chonghong Yin, Jianwei Wu, Decheng Wan*

NUMERICAL COMPUTATIONS OF RESISTANCE FOR JAPAN BULK CARRIER IN CALM WATER. Tao Sun, Chonghong Yin, Jianwei Wu, Decheng Wan* NUMERICAL COMPUTATIONS OF RESISTANCE FOR JAPAN BULK CARRIER IN CALM WATER Tao Sun, Chonghong Yin, Jianwei Wu, Decheng Wan* State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean

More information

Usage of CFX for Aeronautical Simulations

Usage of CFX for Aeronautical Simulations Usage of CFX for Aeronautical Simulations Florian Menter Development Manager Scientific Coordination ANSYS Germany GmbH Overview Elements of CFD Technology for aeronautical simulations: Grid generation

More information

Recent & Upcoming Features in STAR-CCM+ for Aerospace Applications Deryl Snyder, Ph.D.

Recent & Upcoming Features in STAR-CCM+ for Aerospace Applications Deryl Snyder, Ph.D. Recent & Upcoming Features in STAR-CCM+ for Aerospace Applications Deryl Snyder, Ph.D. Outline Introduction Aerospace Applications Summary New Capabilities for Aerospace Continuity Convergence Accelerator

More information

Verification of CFD analysis methods for predicting the drag force and thrust power of an underwater disk robot

Verification of CFD analysis methods for predicting the drag force and thrust power of an underwater disk robot csnak, 2014 Int. J. Nav. Archit. Ocean Eng. (2014) 6:269~281 http://dx.doi.org/10.2478/ijnaoe-2013-0178 pissn: 2092-6782, eissn: 2092-6790 Verification of CFD analysis methods for predicting the drag force

More information

Simulation of Flow Development in a Pipe

Simulation of Flow Development in a Pipe Tutorial 4. Simulation of Flow Development in a Pipe Introduction The purpose of this tutorial is to illustrate the setup and solution of a 3D turbulent fluid flow in a pipe. The pipe networks are common

More information