An adaptive hyperspectral imager: design, control, processing and applications

Size: px
Start display at page:

Download "An adaptive hyperspectral imager: design, control, processing and applications"

Transcription

1 An adaptive hyperspectral imager: design, control, processing and applications Simon Lacroix LAAS/Robotics Antoine Monmayrant LAAS/Photonics Hervé Carfantan IRAP/Signal & Image LAAS-CNRS / Laboratoire d analyse et d architecture des systèmes du CNRS

2 What is color? > Color: The property possessed by an object of producing different sensations on the eye as a result of the way it reflects or emits light 2

3 What is color? > The property possessed by an object of producing different sensations on the eye as a result of the way it reflects or emits light > Which eye? Human eye? Insect eye? Man/s shrimp eye? 3

4 What is color? > The property possessed by an object of producing different sensations on the eye as a result of the way it reflects or emits light > Light: Electromagnetic radiation within a certain portion of the electromagnetic spectrum An energy spectrum: The human por/on 4

5 What is color? > Color: The property possessed by an object of producing different sensations on the eye as a result of the way it reflects or emits light > Light: Electromagnetic radiation within a certain portion of the electromagnetic spectrum > Light through eyes 3 numbers 4 numbers 12 numbers! 5

6 Hyperspectral images: true colors > B&W image (aka intensity image): every pixel encodes the integral of energy over a given wavelength interval > Color image: every pixel encodes the energy captured along three wavelength intervals ( 3 image planes ) > Multi-spectral images: up to a dozen image planes > Hyperspectral images: hundreds of image planes 6

7 Hyperspectral images: true colors > B&W image (aka intensity image): every pixel encodes the integral of energy over a given wavelength interval > Color image: every pixel encodes the energy captured along three wavelength intervals ( 3 image planes ) > Multi-spectral images: up to a dozen image planes > Hyperspectral images: hundreds of image planes Hyperspectral cube 7

8 What for? > The reflected spectrum of a surface is characteristic of its physical nature Various materials Various minerals 8

9 What for? > The reflected spectrum of a surface is characteristic of its physical nature A wide spectrum of applications Astronomy Earth observation Agriculture Gaz detection Forensic Medicine Art paint analysis Microscopy... 9

10 What for? > The reflected spectrum of a surface is characteristic of its physical nature A wide spectrum of applications Astronomy Earth observation Agriculture Gaz detection Forensic Medicine Art paint analysis Microscopy... 10

11 Hyperspectral cameras > Core component: dispersing element Gra/ng (diffrac/on) Prism (refrac/on) > Main difficulty: recovering a 3D data cube with a 2D sensor 11

12 Hyperspectral cameras > Classic technology: imaging a slit through a disperser 12

13 Hyperspectral cameras > Classic technology: imaging a slit through a disperser > Alternative technologies: snapshot hyperspectral imaging Imaging several orders of diffrac/on + tomography-like reconstruc/on 13

14 Hyperspectral cameras > Classic technology: imaging a slit through a disperser > Alternative technologies: snapshot hyperspectral imaging Coded aperture snapshot spectral imaging (CASSI) Compressed sensing reconstruc/on 14

15 Hyperspectral cameras > Classic technology: imaging a slit through a disperser Main issue: sequential acquisition 15

16 Hyperspectral cameras > Classic technology: imaging a slit through a disperser Main issue: sequential acquisition > Alternative technologies: snapshot hyperspectral imaging Several issues High CPU load to produce the HS cube Performances fixed by design Tough calibration issues 16

17 Hyperspectral cameras > Classic technology: imaging a slit through a disperser Main issue: sequential acquisition > Alternative technologies: snapshot hyperspectral imaging Several issues High CPU load to produce the HS cube Performances fixed by design Tough calibration issues All approaches produce heavy data (~ 1 Gb): To acquire To process To transmit 17

18 An adaptive hyperspectral imager > Principle 18

19 An adaptive hyperspectral imager > Principle (illustration) A partial masking of the signal defines a spectral filter 19

20 An adaptive hyperspectral imager > Principle (illustration) A partial masking of the signal defines a spectral filter 20

21 An adaptive hyperspectral imager > Principle (illustration) A partial masking of the signal defines a spectral filter 21

22 An adaptive hyperspectral imager > Principle (illustration) A partial masking of the signal defines a spectral filter 22

23 An adaptive hyperspectral imager > Principle (illustration) A partial masking of the signal defines a spectral filter 23

24 An adaptive hyperspectral imager > Principle (illustration) A partial masking of the signal defines a spectral filter 24

25 An adaptive hyperspectral imager > Principle (illustration) A partial masking of the signal defines a spectral filter 25

26 An adaptive hyperspectral imager > Principle (illustration) A partial masking of the signal defines a spectral filter 26

27 An adaptive hyperspectral imager > Principle (illustration) For the same mask, different spatial rays are differently spectrally filtered 27

28 An adaptive hyperspectral imager > Principle (illustration) For the same mask, different spatial rays are differently spectrally filtered 28

29 An adaptive hyperspectral imager > Design: dual 4f-line "Single-shot compressive spectral imaging with a dual-disperser architecture", Ghem et al. Op/cs Express

30 An adaptive hyperspectral imager > Design: dual 4f-line Digital Micro-mirror Device 30

31 An adaptive hyperspectral imager > Design: dual 4f-line % :$:;<3<:=>8?<;4:3 B475<?<C8B43678%$6;<! #! # " " # $! %&#'()*+,-. & ) " * / 0#1 2# $ 1 31

32 An adaptive hyperspectral imager > Properties Possibility to acquire an intensity image 32

33 An adaptive hyperspectral imager > Properties Possibility to acquire an intensity image Colocation 33

34 An adaptive hyperspectral imager > Properties Possibility to acquire an intensity image Colocation Independence of lines 34

35 An adaptive hyperspectral imager > Properties Possibility to acquire an intensity image Colocation Independence of lines Simplicity of the model 35

36 An adaptive hyperspectral imager > Properties Possibility to acquire an intensity image Colocation Independence of lines Simplicity of the model Programmable acquisition Various acquisi/on schemes 36

37 First proof of concept > Design implementation 37

38 First proof of concept 38

39 First proof of concept > Scanning a slit on the DMD %)""" 9"" 7""!"# :)*+,-./0)12) "" $"" '"" #"" &""!"" %"" &'' Imaged object: known light source through a ()*+,-./0)12) $"" '"" #"" &""!"" %""!"" #"" $"" 7"" %)""" %)!""!$#!%# ()*+,-./0)12) &'' 7!" 7&" 7#" 7'" 7$" 78" 77" ;4<./.2=>?)*250 bi-λ illumination 39

40 Overview of the system possibilities > The control of the DMD allows to: Configure the system for a given purpose / characteristic Control the system to optimize its output (active perception paradigm) > Taxonomy of acquisition schemes, along 2 dimensions 1. Type of recovered information (defined by operational goals) - Full HS cube - Specific information (e.g. a set of given spectra) 2. Way to control the system - Pre-configured DMD patterns - On-line controlled / adapted patterns > Criteria to consider for application contexts: Number of acquisitions Computational load to recover the information Quantity/quality of recovered information 40

41 Overview of the system possibilities > Example 1: scanning slit Fills the whole cube 41

42 Overview of the system possibilities > Example 2: monochromatic imager Random access to any spectral plane in one acquistion 42

43 Overview of the system possibilities > Example 3: spectrum response image Exhibits the presence of a given spectrum in one acquisition Monochromatique Corrélation spectrale > V > > V V > V V > V > V V DMD DMD DMD DMD DMD > V > > VV V > V V > V > V V CMOS CMOS CMOS CMOS CMOS λ λ λ Monochroma/c image Spectrum correla/on 43

44 Overview of the system possibilities > Example 4: generalized bayer mosaics Numerous possible patterns DMD DMD DMD CMOS CMOS CMOS 44

45 Overview of the system possibilities > Example 5: near-snapshot partitioning 2 acquisitions: 1 panchro, 1 controlled 45

46 Overview of the system possibilities > Example 6: quadratic regularization Recovering the full cube from a small set of random DMD acquisitions (PhD of Ibrahim Ardi, IRAP/LAAS) Reconstruc/on of a 31 wavelengths cube from 5 images 46

47 Latest prototype > Really engineered > Images the visible nm > Integrated acquisition & DMD control 47

48 Earth observation applications? > Configurability yields a series of trade-offs in terms of: Number of acquisitions Computational load to recover the information Quantity/quality of recovered information 48

49 Earth observation applications? > Configurability yields a series of trade-offs in terms of: Number of acquisitions Computational load to recover the information Quantity/quality of recovered information > Matrix sensor in a push-broom configuration: Time delayed integration Real-time adaptive control of the acquisitions TDI (acquisi/on n) TDI (acquisi/on 2) TDI (acquisi/on 1) 49

50 As a conclusion > Co-design: interdisciplinary cross fertilization Op/c systems design Signal & image processing Adap*ve hyperspectral imager Ac/ve percep/on paradigm 50

(0, 1, 1) (0, 1, 1) (0, 1, 0) What is light? What is color? Terminology

(0, 1, 1) (0, 1, 1) (0, 1, 0) What is light? What is color? Terminology lecture 23 (0, 1, 1) (0, 0, 0) (0, 0, 1) (0, 1, 1) (1, 1, 1) (1, 1, 0) (0, 1, 0) hue - which ''? saturation - how pure? luminance (value) - intensity What is light? What is? Light consists of electromagnetic

More information

Computer Vision. The image formation process

Computer Vision. The image formation process Computer Vision The image formation process Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2016/2017 The image

More information

Vision-Based Technologies for Security in Logistics. Alberto Isasi

Vision-Based Technologies for Security in Logistics. Alberto Isasi Vision-Based Technologies for Security in Logistics Alberto Isasi aisasi@robotiker.es INFOTECH is the Unit of ROBOTIKER-TECNALIA specialised in Research, Development and Application of Information and

More information

Non-scanning Hyperspectral Imaging and Spectral Video Technique for Object Documentation

Non-scanning Hyperspectral Imaging and Spectral Video Technique for Object Documentation Non-scanning Hyperspectral Imaging and Spectral Video Technique for Object Documentation András Jung, René Michels & Rainer Graser Founders of Cubert GmbH and Developers of the Hyperspectral Frame Camera

More information

IMAGING SPECTROMETER DATA CORRECTION

IMAGING SPECTROMETER DATA CORRECTION S E S 2 0 0 5 Scientific Conference SPACE, ECOLOGY, SAFETY with International Participation 10 13 June 2005, Varna, Bulgaria IMAGING SPECTROMETER DATA CORRECTION Valentin Atanassov, Georgi Jelev, Lubomira

More information

Wat is licht, wat is meten? Belgisch Perspectief! Spectraal of niet-spectraal meten: that s the question

Wat is licht, wat is meten? Belgisch Perspectief! Spectraal of niet-spectraal meten: that s the question Wat is licht, wat is meten? Belgisch Perspectief! Spectraal of niet-spectraal meten: that s the question IGOV kenniscafé Arnhem, 31 oktober 2013 Peter Hanselaer Light&Lighting Laboratory Introduction Spectral

More information

Introduction to color science

Introduction to color science Introduction to color science Trichromacy Spectral matching functions CIE XYZ color system xy-chromaticity diagram Color gamut Color temperature Color balancing algorithms Digital Image Processing: Bernd

More information

Ulrik Söderström 17 Jan Image Processing. Introduction

Ulrik Söderström 17 Jan Image Processing. Introduction Ulrik Söderström ulrik.soderstrom@tfe.umu.se 17 Jan 2017 Image Processing Introduction Image Processsing Typical goals: Improve images for human interpretation Image processing Processing of images for

More information

Multi-wavelength compressive computational ghost imaging

Multi-wavelength compressive computational ghost imaging Multi-wavelength compressive computational ghost imaging Stephen S. Welsh a, Matthew P. Edgar a, Phillip Jonathan b, Baoqing Sun a, Miles. J. Padgett a a University of Glasgow, Kelvin Building University

More information

Information page for written examinations at Linköping University TER2

Information page for written examinations at Linköping University TER2 Information page for written examinations at Linköping University Examination date 2016-08-19 Room (1) TER2 Time 8-12 Course code Exam code Course name Exam name Department Number of questions in the examination

More information

UHD 185 FAQs. Optical System

UHD 185 FAQs. Optical System UHD 185 FAQs System Setup How is a typical setup of the UHD 185? Is a wireless control during flight possible? How do I trigger the image acquisition? What is the power consumption? What are the specs

More information

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location.

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Interference Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Thus, interacting electromagnetic waves also add together.

More information

Light. Properties of light. What is light? Today What is light? How do we measure it? How does light propagate? How does light interact with matter?

Light. Properties of light. What is light? Today What is light? How do we measure it? How does light propagate? How does light interact with matter? Light Properties of light Today What is light? How do we measure it? How does light propagate? How does light interact with matter? by Ted Adelson Readings Andrew Glassner, Principles of Digital Image

More information

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision.

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision. Announcements HW1 has been posted See links on web page for readings on color. Introduction to Computer Vision CSE 152 Lecture 6 Deviations from the lens model Deviations from this ideal are aberrations

More information

Sensors and applications for drone based remote sensing

Sensors and applications for drone based remote sensing Sensors and applications for drone based remote sensing Dr. Ilkka Pölönen Dr. Eija Honkavaara, NLS Dr. Heikki Saari, VTT Dr. Sakari Tuominen, Mr. Jere Kaivosoja, Luke Laboratory Joint research with Finnish

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.2 Refraction

Higher -o-o-o- Past Paper questions o-o-o- 3.2 Refraction Higher -o-o-o- Past Paper questions 2000-2010 -o-o-o- 3.2 Refraction 2000 Q27 A student is investigating the effect that a semicircular glass block has on a ray of monochromatic light. She observes that

More information

HYPERSPECTRAL REMOTE SENSING

HYPERSPECTRAL REMOTE SENSING HYPERSPECTRAL REMOTE SENSING By Samuel Rosario Overview The Electromagnetic Spectrum Radiation Types MSI vs HIS Sensors Applications Image Analysis Software Feature Extraction Information Extraction 1

More information

Estimating the wavelength composition of scene illumination from image data is an

Estimating the wavelength composition of scene illumination from image data is an Chapter 3 The Principle and Improvement for AWB in DSC 3.1 Introduction Estimating the wavelength composition of scene illumination from image data is an important topics in color engineering. Solutions

More information

Hyperspectral Chemical Imaging: principles and Chemometrics.

Hyperspectral Chemical Imaging: principles and Chemometrics. Hyperspectral Chemical Imaging: principles and Chemometrics aoife.gowen@ucd.ie University College Dublin University College Dublin 1,596 PhD students 6,17 international students 8,54 graduate students

More information

Compressive Sensing of High-Dimensional Visual Signals. Aswin C Sankaranarayanan Rice University

Compressive Sensing of High-Dimensional Visual Signals. Aswin C Sankaranarayanan Rice University Compressive Sensing of High-Dimensional Visual Signals Aswin C Sankaranarayanan Rice University Interaction of light with objects Reflection Fog Volumetric scattering Human skin Sub-surface scattering

More information

CS635 Spring Department of Computer Science Purdue University

CS635 Spring Department of Computer Science Purdue University Color and Perception CS635 Spring 2010 Daniel G Aliaga Daniel G. Aliaga Department of Computer Science Purdue University Elements of Color Perception 2 Elements of Color Physics: Illumination Electromagnetic

More information

Lenses: Focus and Defocus

Lenses: Focus and Defocus Lenses: Focus and Defocus circle of confusion A lens focuses light onto the film There is a specific distance at which objects are in focus other points project to a circle of confusion in the image Changing

More information

Supplementary materials of Multispectral imaging using a single bucket detector

Supplementary materials of Multispectral imaging using a single bucket detector Supplementary materials of Multispectral imaging using a single bucket detector Liheng Bian 1, Jinli Suo 1,, Guohai Situ 2, Ziwei Li 1, Jingtao Fan 1, Feng Chen 1 and Qionghai Dai 1 1 Department of Automation,

More information

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture #6: Color Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday, October 14

More information

Modeling Light. Michal Havlik

Modeling Light. Michal Havlik Modeling Light Michal Havlik 15-463: Computational Photography Alexei Efros, CMU, Spring 2010 What is light? Electromagnetic radiation (EMR) moving along rays in space R( ) is EMR, measured in units of

More information

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception Color and Shading Color Shapiro and Stockman, Chapter 6 Color is an important factor for for human perception for object and material identification, even time of day. Color perception depends upon both

More information

Lecture 6 Proper,es of laser beams *

Lecture 6 Proper,es of laser beams * Lecture 6 Proper,es of laser beams * Min Yan Op,cs and Photonics, KTH 12/04/16 1 * Some figures and texts belong to: O. Svelto, Principles of Lasers, 5th Ed., Springer. Reading Principles of Lasers (5th

More information

Regularization parameter estimation for non-negative hyperspectral image deconvolution:supplementary material

Regularization parameter estimation for non-negative hyperspectral image deconvolution:supplementary material Regularization parameter estimation for non-negative hyperspectral image deconvolution:supplementary material Yingying Song, David Brie, El-Hadi Djermoune, Simon Henrot To cite this version: Yingying Song,

More information

Time-resolved wavelet- based acquisitions using a single pixel camera

Time-resolved wavelet- based acquisitions using a single pixel camera Florian Rousset 1,2, Nicolas Ducros 1, Andrea Farina 2, Gianluca Valentini 2, Cosimo D Andrea 2, Françoise Peyrin 1 1 Univ Lyon, INSA Lyon, CNRS 5220, INSERM U1206, CREATIS Lyon, France 2 Politecnico di

More information

Astronomical spectrographs. ASTR320 Wednesday February 20, 2019

Astronomical spectrographs. ASTR320 Wednesday February 20, 2019 Astronomical spectrographs ASTR320 Wednesday February 20, 2019 Spectrographs A spectrograph is an instrument used to form a spectrum of an object Much higher spectral resolutions than possible with multiband

More information

Announcements. Camera Calibration. Thin Lens: Image of Point. Limits for pinhole cameras. f O Z

Announcements. Camera Calibration. Thin Lens: Image of Point. Limits for pinhole cameras. f O Z Announcements Introduction to Computer Vision CSE 152 Lecture 5 Assignment 1 has been posted. See links on web page for reading Irfanview: http://www.irfanview.com/ is a good windows utility for manipulating

More information

(Fiber-optic Reosc Echelle Spectrograph of Catania Observatory)

(Fiber-optic Reosc Echelle Spectrograph of Catania Observatory) (Fiber-optic Reosc Echelle Spectrograph of Catania Observatory) The echelle spectrograph delivered by REOSC (France), was designed to work at the F/15 cassegrain focus of the 91-cm telescope. The spectrograph

More information

Color to Binary Vision. The assignment Irfanview: A good utility Two parts: More challenging (Extra Credit) Lighting.

Color to Binary Vision. The assignment Irfanview: A good utility Two parts: More challenging (Extra Credit) Lighting. Announcements Color to Binary Vision CSE 90-B Lecture 5 First assignment was available last Thursday Use whatever language you want. Link to matlab resources from web page Always check web page for updates

More information

Overview of Active Vision Techniques

Overview of Active Vision Techniques SIGGRAPH 99 Course on 3D Photography Overview of Active Vision Techniques Brian Curless University of Washington Overview Introduction Active vision techniques Imaging radar Triangulation Moire Active

More information

Models of Light The wave model: The ray model: The photon model:

Models of Light The wave model: The ray model: The photon model: Models of Light The wave model: under many circumstances, light exhibits the same behavior as sound or water waves. The study of light as a wave is called wave optics. The ray model: The properties of

More information

Modeling Light. Slides from Alexei A. Efros and others

Modeling Light. Slides from Alexei A. Efros and others Project 3 Results http://www.cs.brown.edu/courses/cs129/results/proj3/jcmace/ http://www.cs.brown.edu/courses/cs129/results/proj3/damoreno/ http://www.cs.brown.edu/courses/cs129/results/proj3/taox/ Stereo

More information

Cophasing activities at Onera

Cophasing activities at Onera Cophasing activities at Onera Kamel Houairi Frédéric Cassaing Cophasing at Onera I/ Pupil-plane fringe sensing Persee Gravity II/ Focal-plane fringe sensing Phase retrieval/diversity New algorithms under

More information

Optics Vac Work MT 2008

Optics Vac Work MT 2008 Optics Vac Work MT 2008 1. Explain what is meant by the Fraunhofer condition for diffraction. [4] An aperture lies in the plane z = 0 and has amplitude transmission function T(y) independent of x. It is

More information

Charles L. Bennett, USA. Livermore, CA 94550

Charles L. Bennett, USA. Livermore, CA 94550 i.., s, co S-76,642 tfc- RL-118 65 IMAGING FOURIER TRANSFORM SPECTROMETER Inventor, Charles L. Bennett, USA 5845 H e i d i Way Livermore, CA 94550 4 0 rl rl I This report was prepared as an account of

More information

Particles and Waves Final Revision Exam Questions Part 2

Particles and Waves Final Revision Exam Questions Part 2 Particles and Waves Final Revision Exam Questions Part 2 This illustration shows the dual nature of light, which acts like both particles and waves. In a new experiment reported in November 2012, researchers

More information

Image Formation. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Image Formation. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Image Formation Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Fundamental imaging notions Physical basis for image formation

More information

Hyperspectral interferometry for single-shot absolute measurement of 3-D shape and displacement fields

Hyperspectral interferometry for single-shot absolute measurement of 3-D shape and displacement fields EPJ Web of Conferences 6, 6 10007 (2010) DOI:10.1051/epjconf/20100610007 Owned by the authors, published by EDP Sciences, 2010 Hyperspectral interferometry for single-shot absolute measurement of 3-D shape

More information

Chemical Characterization of Diverse Pharmaceutical Samples by Confocal Raman Microscopy

Chemical Characterization of Diverse Pharmaceutical Samples by Confocal Raman Microscopy Whitepaper Chemical Characterization of Diverse Pharmaceutical Samples by Confocal Raman Microscopy WITec GmbH, Lise-Meitner-Str. 6, 89081 Ulm, Germany, www.witec.de Introduction The development and production

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 4 Jan. 24 th, 2019 Slides from Dr. Shishir K Shah and Frank (Qingzhong) Liu Digital Image Processing COSC 6380/4393 TA - Office: PGH 231 (Update) Shikha

More information

Modeling Light. Michal Havlik : Computational Photography Alexei Efros, CMU, Fall 2011

Modeling Light. Michal Havlik : Computational Photography Alexei Efros, CMU, Fall 2011 Modeling Light Michal Havlik 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 What is light? Electromagnetic radiation (EMR) moving along rays in space R(λ) is EMR, measured in units of power

More information

Graphics Systems and Models

Graphics Systems and Models Graphics Systems and Models 2 nd Week, 2007 Sun-Jeong Kim Five major elements Input device Processor Memory Frame buffer Output device Graphics System A Graphics System 2 Input Devices Most graphics systems

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Chapter 36. Diffraction. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 36. Diffraction. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 36 Diffraction Copyright 36-1 Single-Slit Diffraction Learning Objectives 36.01 Describe the diffraction of light waves by a narrow opening and an edge, and also describe the resulting interference

More information

DEEP LEARNING TO DIVERSIFY BELIEF NETWORKS FOR REMOTE SENSING IMAGE CLASSIFICATION

DEEP LEARNING TO DIVERSIFY BELIEF NETWORKS FOR REMOTE SENSING IMAGE CLASSIFICATION DEEP LEARNING TO DIVERSIFY BELIEF NETWORKS FOR REMOTE SENSING IMAGE CLASSIFICATION S.Dhanalakshmi #1 #PG Scholar, Department of Computer Science, Dr.Sivanthi Aditanar college of Engineering, Tiruchendur

More information

To see how a sharp edge or an aperture affect light. To analyze single-slit diffraction and calculate the intensity of the light

To see how a sharp edge or an aperture affect light. To analyze single-slit diffraction and calculate the intensity of the light Diffraction Goals for lecture To see how a sharp edge or an aperture affect light To analyze single-slit diffraction and calculate the intensity of the light To investigate the effect on light of many

More information

Optical Active 3D Scanning. Gianpaolo Palma

Optical Active 3D Scanning. Gianpaolo Palma Optical Active 3D Scanning Gianpaolo Palma 3D Scanning Taxonomy SHAPE ACQUISTION CONTACT NO-CONTACT NO DESTRUCTIVE DESTRUCTIVE X-RAY MAGNETIC OPTICAL ACOUSTIC CMM ROBOTIC GANTRY SLICING ACTIVE PASSIVE

More information

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Background theory. 1. Characteristics of the apparatus: prismatic, grating, interferometers. 2. Operating

More information

PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4)

PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4) 1 PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4) The first three lectures in this unit dealt with what is for called geometric optics. Geometric optics, treats light as a collection of rays that travel in straight

More information

Spectral imagers for nanosatellites

Spectral imagers for nanosatellites VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Spectral imagers for nanosatellites Finnish Satellite Workshop 2018 Antti Näsilä VTT Microspectrometers Fabry-Perot (FPI) technology for miniaturizing optical

More information

From Eye to Insight. Leica DMC2900. Digital microscope camera for easy, efficient documentation and presentation in industry and research

From Eye to Insight. Leica DMC2900. Digital microscope camera for easy, efficient documentation and presentation in industry and research From Eye to Insight Leica DMC2900 Digital microscope camera for easy, efficient documentation and presentation in industry and research 3 High Speed Imaging Leica DMC2900 with USB 3.0 interface for highest

More information

THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS EXAMINATION - NOVEMBER 2009 PHYS ADVANCED OPTICS

THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS EXAMINATION - NOVEMBER 2009 PHYS ADVANCED OPTICS THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS EXAMINATION - NOVEMBER 2009 PHYS3060 - ADVANCED OPTICS Time allowed - 2 hours Total number of questions - 4 Attempt ALL questions The questions are of

More information

Spectral Color and Radiometry

Spectral Color and Radiometry Spectral Color and Radiometry Louis Feng April 13, 2004 April 13, 2004 Realistic Image Synthesis (Spring 2004) 1 Topics Spectral Color Light and Color Spectrum Spectral Power Distribution Spectral Color

More information

Reprint (R30) Accurate Chromaticity Measurements of Lighting Components. Reprinted with permission from Craig J. Coley The Communications Repair depot

Reprint (R30) Accurate Chromaticity Measurements of Lighting Components. Reprinted with permission from Craig J. Coley The Communications Repair depot Reprint (R30) Accurate Chromaticity Measurements of Lighting Components Reprinted with permission from Craig J. Coley The Communications Repair depot June 2006 Gooch & Housego 4632 36 th Street, Orlando,

More information

Physical Optics. 1 st year physics laboratories. University of Ottawa.

Physical Optics. 1 st year physics laboratories. University of Ottawa. Physical Optics 1 st year physics laboratories University of Ottawa https://uottawa.brightspace.com/d2l/home INTRODUCTION Physical optics deals with light as a wave which can bend around obstacles (diffraction)

More information

EM Waves Practice Problems

EM Waves Practice Problems PSI AP Physics 2 Name 1. Sir Isaac Newton was one of the first physicists to study light. What properties of light did he explain by using the particle model? 2. Who was the first person who was credited

More information

Hyperspectral Microscope based on Imaging Fourier transform Spectrometry. Dr. Li Jianping, Claude. Copyright: Claude.

Hyperspectral Microscope based on Imaging Fourier transform Spectrometry. Dr. Li Jianping, Claude. Copyright: Claude. The Claude Research Group Hyperspectral Microscope based on Imaging Fourier transform Spectrometry Dr. Li Jianping, Claude jp.li@siat.ac.cn June 2017 Outline Spectral Imaging Fourier transform Imaging

More information

Introduction to Computer Graphics with WebGL

Introduction to Computer Graphics with WebGL Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science Laboratory University of New Mexico Image Formation

More information

IMPORTANT INSTRUCTIONS

IMPORTANT INSTRUCTIONS 2017 Imaging Science Ph.D. Qualifying Examination June 9, 2017 9:00AM to 12:00PM IMPORTANT INSTRUCTIONS You must complete two (2) of the three (3) questions given for each of the core graduate classes.

More information

AISASYSTEMS PRODUCE MORE WITH LESS

AISASYSTEMS PRODUCE MORE WITH LESS AISASYSTEMS PRODUCE MORE WITH LESS AISASYSTEMS SPECIM s AISA systems are state-of-the-art airborne hyperspectral imaging solutions covering the VNIR, NIR, SWIR and LWIR spectral ranges. The sensors unbeatable

More information

Raman Spectrometer Installation Manual

Raman Spectrometer Installation Manual RI Raman Spectrometer Instruction Manual Application software (included in standard configuration) Connection RI RAMAN is recognized by Windows operational system as standard HID device. That is why there

More information

CG T8 Colour and Light

CG T8 Colour and Light CG T8 Colour and Light L:CC, MI:ERSI Miguel Tavares Coimbra (course and slides designed by Verónica Costa Orvalho) What is colour? Light is electromagnetic radiation Optical Prism dispersing light Visible

More information

Estimation of Reflection Properties of Silk Textile with Multi-band Camera

Estimation of Reflection Properties of Silk Textile with Multi-band Camera Estimation of Reflection Properties of Silk Textile with Multi-band Camera Kosuke MOCHIZUKI*, Norihiro TANAKA**, Hideaki MORIKAWA* *Graduate School of Shinshu University, 12st116a@shinshu-u.ac.jp ** Faculty

More information

Lab 5: Diffraction and Interference

Lab 5: Diffraction and Interference Lab 5: Diffraction and Interference Light is a wave, an electromagnetic wave, and under the proper circumstances, it exhibits wave phenomena, such as constructive and destructive interference. The wavelength

More information

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007 Control of Light Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 007 Spectro-radiometry Spectral Considerations Chromatic dispersion

More information

Chapter 4 - Diffraction

Chapter 4 - Diffraction Diffraction is the phenomenon that occurs when a wave interacts with an obstacle. David J. Starling Penn State Hazleton PHYS 214 When a wave interacts with an obstacle, the waves spread out and interfere.

More information

DS-2TD2615-7'10 Thermal Bi-spectrum Network Bullet Camera

DS-2TD2615-7'10 Thermal Bi-spectrum Network Bullet Camera DS-2TD2615-7'10 Thermal Bi-spectrum Network Bullet Camera Hikvision DS-2TD2615-7/10 Thermal Bi-spectrum Network Bullet Camera is applied to perimeter defense and fire-prevention purposes in critical infrastructures

More information

OPTICAL DESIGN OF HYPERSPECTRAL IMAGER AND EVALUATION OF UNWANTED DIFFRACTION ORDER

OPTICAL DESIGN OF HYPERSPECTRAL IMAGER AND EVALUATION OF UNWANTED DIFFRACTION ORDER AN INTERNSHIP REPORT ON OPTICAL DESIGN OF HYPERSPECTRAL IMAGER AND EVALUATION OF UNWANTED DIFFRACTION ORDER AT SPACE APPLICATIONS CENTRE (ISRO) AHMEDABAD, INDIA FROM 19 th MAY TO 18 th JULY 2014 SUBMITTED

More information

Computer Graphics and Visualization. What is computer graphics?

Computer Graphics and Visualization. What is computer graphics? CSCI 120 Computer Graphics and Visualization Shiaofen Fang Department of Computer and Information Science Indiana University Purdue University Indianapolis What is computer graphics? Computer graphics

More information

DS-2TD /15 Thermal Bi-spectrum Network Bullet Camera

DS-2TD /15 Thermal Bi-spectrum Network Bullet Camera DS-2TD2636-10/15 Thermal Bi-spectrum Network Bullet Camera Hikvision DS-2TD2636-10/15 Thermal Bi-spectrum Network Bullet Camera is applied to perimeter defense and fire-prevention purposes in critical

More information

Lighting. Camera s sensor. Lambertian Surface BRDF

Lighting. Camera s sensor. Lambertian Surface BRDF Lighting Introduction to Computer Vision CSE 152 Lecture 6 Special light sources Point sources Distant point sources Strip sources Area sources Common to think of lighting at infinity (a function on the

More information

Depth Camera for Mobile Devices

Depth Camera for Mobile Devices Depth Camera for Mobile Devices Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Stereo Cameras Structured Light Cameras Time of Flight (ToF) Camera Inferring 3D Points Given we have

More information

3D Shape and Indirect Appearance By Structured Light Transport

3D Shape and Indirect Appearance By Structured Light Transport 3D Shape and Indirect Appearance By Structured Light Transport CVPR 2014 - Best paper honorable mention Matthew O Toole, John Mather, Kiriakos N. Kutulakos Department of Computer Science University of

More information

WITec Raman Spectroscopy Solutions

WITec Raman Spectroscopy Solutions Confocal Raman Imaging WITec Raman Spectroscopy Solutions -40-20 0 20 CCD cts 500 1000 1500 2000 2500 3000 3000 relative wavenumbers (cm -1 ) www.witec.de WITec UHTS Ultra-High Throughput Spectrometers

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 27 Chapter 33 sec. 7-8 Fall 2017 Semester Professor Koltick Clicker Question Bright light of wavelength 585 nm is incident perpendicularly on a soap film (n =

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 20: Light, reflectance and photometric stereo Light by Ted Adelson Readings Szeliski, 2.2, 2.3.2 Light by Ted Adelson Readings Szeliski, 2.2, 2.3.2 Properties

More information

LECTURE 14 PHASORS & GRATINGS. Instructor: Kazumi Tolich

LECTURE 14 PHASORS & GRATINGS. Instructor: Kazumi Tolich LECTURE 14 PHASORS & GRATINGS Instructor: Kazumi Tolich Lecture 14 2 Reading chapter 33-5 & 33-8 Phasors n Addition of two harmonic waves n Interference pattern from multiple sources n Single slit diffraction

More information

Outline. Project Goals

Outline. Project Goals Roque Burleson, Mayuri Shakamuri CS 589-04: Image Processing Spring 2008 Instructor: Dr. Qingzhong Liu New Mexico Tech Outline Hyperspectral Imaging Eigen Faces Face Recognition Face Tracking Other Methods

More information

Chapter 35. The Nature of Light and the Laws of Geometric Optics

Chapter 35. The Nature of Light and the Laws of Geometric Optics Chapter 35 The Nature of Light and the Laws of Geometric Optics Introduction to Light Light is basic to almost all life on Earth. Light is a form of electromagnetic radiation. Light represents energy transfer

More information

LLA Instruments GmbH. Multiplexed Near-Infrared-Spectrometer KUSTA 4004M. Product description

LLA Instruments GmbH. Multiplexed Near-Infrared-Spectrometer KUSTA 4004M. Product description LLA Instruments GmbH Multiplexed Near-Infrared-Spectrometer KUSTA 4004M Product description General information KUSTA 4004 series The Near- Infrared Spectrometer, in short NIR-Spectrometer, KUSTA 4004

More information

Diffraction Diffraction occurs when light waves is passed by an aperture/edge Huygen's Principal: each point on wavefront acts as source of another

Diffraction Diffraction occurs when light waves is passed by an aperture/edge Huygen's Principal: each point on wavefront acts as source of another Diffraction Diffraction occurs when light waves is passed by an aperture/edge Huygen's Principal: each point on wavefront acts as source of another circular wave Consider light from point source at infinity

More information

Visualisatie BMT. Rendering. Arjan Kok

Visualisatie BMT. Rendering. Arjan Kok Visualisatie BMT Rendering Arjan Kok a.j.f.kok@tue.nl 1 Lecture overview Color Rendering Illumination 2 Visualization pipeline Raw Data Data Enrichment/Enhancement Derived Data Visualization Mapping Abstract

More information

Indiana Center for Biological Microscopy. BioRad MRC 1024 MP Confocal & Multi-Photon Microscope

Indiana Center for Biological Microscopy. BioRad MRC 1024 MP Confocal & Multi-Photon Microscope Indiana Center for Biological Microscopy BioRad MRC 1024 MP Confocal & Multi-Photon Microscope Microscope and the Attached Accessories A: B: C: D: E: F: G: H: Mercury Lamp Transmission Light Kr/Ar Laser

More information

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2 Lenses lens equation (for a thin lens) 1 1 1 ---- = (η η ) ------ - ------ f r 1 r 2 Where object o f = focal length η = refractive index of lens material η = refractive index of adjacent material r 1

More information

Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude

Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude A. Migukin *, V. atkovnik and J. Astola Department of Signal Processing, Tampere University of Technology,

More information

SPECTRAL IMAGING VIEWER SOFTWARE MANUAL

SPECTRAL IMAGING VIEWER SOFTWARE MANUAL 103 Quality Circle, Suite 215 Huntsville, AL 35806 Phone: (256) 704-3332 Fax: (256) 971-2073 E-Mail: info@axometrics.com Website: http://www.axometrics.com SPECTRAL IMAGING VIEWER SOFTWARE MANUAL 2012

More information

Analysis of Cornell Electron-Positron Storage Ring Test Accelerator's Double Slit Visual Beam Size Monitor

Analysis of Cornell Electron-Positron Storage Ring Test Accelerator's Double Slit Visual Beam Size Monitor Analysis of Cornell Electron-Positron Storage Ring Test Accelerator's Double Slit Visual Beam Size Monitor Senior Project Department of Physics California Polytechnic State University San Luis Obispo By:

More information

MODELING LED LIGHTING COLOR EFFECTS IN MODERN OPTICAL ANALYSIS SOFTWARE LED Professional Magazine Webinar 10/27/2015

MODELING LED LIGHTING COLOR EFFECTS IN MODERN OPTICAL ANALYSIS SOFTWARE LED Professional Magazine Webinar 10/27/2015 MODELING LED LIGHTING COLOR EFFECTS IN MODERN OPTICAL ANALYSIS SOFTWARE LED Professional Magazine Webinar 10/27/2015 Presenter Dave Jacobsen Senior Application Engineer at Lambda Research Corporation for

More information

Spectrographs. C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution.

Spectrographs. C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution. Spectrographs C A Griffith, Class Notes, PTYS 521, 2016 Not for distribution 1 Spectrographs and their characteristics A spectrograph is an instrument that disperses light into a frequency spectrum, which

More information

1. Which diagram best represents the reflection of light from an irregular surface?

1. Which diagram best represents the reflection of light from an irregular surface? waves 6-2-04 Name 02-JUN-04 1. Which diagram best represents the reflection of light from an irregular surface? 1. 1 3. 3 2. 2 4. 4 2. In a vacuum, a monochromatic beam of light as a frequency of 6.3 X

More information

Which row could be correct for the colours seen at X, at Y and at Z?

Which row could be correct for the colours seen at X, at Y and at Z? 1 The ray diagram shows the image of an formed by a converging lens. converging lens image 50 cm What is the focal length of the lens? 40 cm 72 cm 40 cm 50 cm 72 cm 90 cm 2 The diagram shows the dispersion

More information

Presentation and analysis of multidimensional data sets

Presentation and analysis of multidimensional data sets Presentation and analysis of multidimensional data sets Overview 1. 3D data visualisation Multidimensional images Data pre-processing Visualisation methods Multidimensional images wavelength time 3D image

More information

Chapter 36 Diffraction

Chapter 36 Diffraction Chapter 36 Diffraction In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing through a single slit flares diffracts in Young's

More information

AUTOFOCUS SENSORS & MICROSCOPY AUTOMATION IR LASER SCANNING CONFOCAL MICROSCOPE IRLC DEEP SEE. Now See Deeper than ever before

AUTOFOCUS SENSORS & MICROSCOPY AUTOMATION IR LASER SCANNING CONFOCAL MICROSCOPE IRLC DEEP SEE. Now See Deeper than ever before AUTOFOCUS SENSORS & MICROSCOPY AUTOMATION IR LASER SCANNING CONFOCAL MICROSCOPE IRLC DEEP SEE Now See Deeper than ever before Review and inspection of non visible subsurface defects Non visible and subsurface

More information

The diffraction pattern from a hexagonally-shaped hole. Note the six-fold symmetry of the pattern. Observation of such complex patterns can reveal

The diffraction pattern from a hexagonally-shaped hole. Note the six-fold symmetry of the pattern. Observation of such complex patterns can reveal The diffraction pattern from a hexagonally-shaped hole. Note the six-fold symmetry of the pattern. Observation of such complex patterns can reveal the underlying symmetry structure of the object that diffracts

More information

3D graphics, raster and colors CS312 Fall 2010

3D graphics, raster and colors CS312 Fall 2010 Computer Graphics 3D graphics, raster and colors CS312 Fall 2010 Shift in CG Application Markets 1989-2000 2000 1989 3D Graphics Object description 3D graphics model Visualization 2D projection that simulates

More information