Gaps between theory practice in!!! large scale matrix computations for networks

Size: px
Start display at page:

Download "Gaps between theory practice in!!! large scale matrix computations for networks"

Transcription

1 Gaps between theory practice in!!! large scale matrix computations for networks David F. Gleich Assistant Professor Computer Science Purdue University

2 Networks as matrices Bott, Genetic Psychology Manuscripts, 1928

3 Networks as matrices

4 Networks as matrices

5 Networks as matrices A =

6 Everything in the world can be explained by a matrix, and we see how deep the rabbit hole goes The talk ends, you believe -- whatever you want to. Image from rockysprings, deviantart, CC share-alike

7

8 Matrix computations in a red-pill Solve a problem better by exploiting its structure!

9 My research! Models and algorithms for high performance! matrix and network computations on data Network alignment methods: j k i Triangle j 0 i 0 Big data methods too k 0 A L B Massive matrix " computations Ax = b min kax bk Ax = x on multi-threaded and distributed architectures Fast & Scalable" Network analysis

10 One canonical problem PageRank ( A T D 1 )x = f Protein function prediction Personalized PageRank A D adjacency matrix degree matrix Gene-experiment association Semi-supervised" learning on graphs regularization Network alignment f prior or givens Food webs

11 One canonical problem ( A T D 1 )x = f Vahab - clustering Karl - clustering Art prediction Jen - prediction Sebastiano ranking/centrality

12 An example on a graph PageRank b B B B B B 2 4 1/ 1/ / 0 0 1/ / 1/2 0 1/ / 0 1/ / 0 1/2 1/ / C C C C C C A 2 4 x 1 x 2 x 3 x 4 x 5 x 3 5 = ( A T D 1 )x = f non-singular linear system ( < 1), non-negative inverse, works with weights, directed & undirected graphs, weights that don t sum to less than 1 in each column,

13 An example on a bigger graph f has a single " one here Newman s netscience graph 39 vertices 1828 non-zeros zero on most of the nodes

14 A special case one column or one node ( A T D 1 )x = e i x = column i of ( A T D 1 ) 1 localized solutions

15 An example on a bigger graph Crawl of flickr from 200 ~800k nodes, M edges, alpha=1/ error x true x nnz plot(x) x nonzeros

16 Complexity is complex Linear system O(n 3 ) Sparse linear sys. (undir.) O(m log(m) ) where is a function of latest result on solving SDD systems on graphs Neumann series O(m log( )/log(tol))

17 Forsythe and Liebler, 1950

18 Monte Carlo methods for PageRank K. Avrachenkov et al Monte Carlo methods in PageRank Fogaras et al Fully scaling personalized PageRank. Das Sarma et al Estimating PageRank on graph streams. Bahmani et al Fast and Incremental Personalized PageRank Bahmani et al PageRank & MapReduce Borgs et al Sublinear PageRank Complexity O(log V )

19 Gauss-Seidel and Gauss-Southwell Methods to solve A x = b Update x (k+1) = x (k) + j e j such that [Ax (k+1) ] j =[b] j In words Relax or free the jth coordinate of your solution vector in order to satisfy the jth equation of your linear system. Gauss-Seidel repeatedly cycle through j = 1 to n Gauss-Southwell use the value of j that has the highest magnitude residual r (k) = b Ax (k)

20 Matrix computations in a red-pill Solve a problem better by exploiting its structure!

21 Gauss-Seidel/Southwell for PageRank w/ access to in-links & degs. PageRankPull j = blue node x (k+1) j x (k+1) j = f j Solve for x (k+1) j X i!j x (k) a / x (k) (k) b /2 x c /3 x (k) i /deg i = f j w/ access to out-links PageRankPush Let b r (k) = f + A T D 1 x (k) a c then x (k+1) j = x (k) j + r j j = blue node Update r (k+1) r (k+1) j =0 r a (k+1) = r a (k) + r (k) j /3 r (k+1) b = r (k) b + r (k) j /3 r (k+1) = r (k) + r (k) /3 x (k)

22 Python code for PPR Push # main loop! while sumr > eps/(1-alpha):! j = max(r.iteritems,! key=(lambda x: r[x])! rj = r[j]! x[j] += rj! r[j] = 0! sumr -= rj! deg = len(graph[j])! for i in graph[j]:! if i not in r: r[i] = 0.! r[j] += alpha/deg*rj! sumr += alpha/deg*rj!! If f 0, this terminates when x true x alg 1 < # initialization! # graph is a set of sets! # eps is stopping tol! # 0 < alpha < 1! x = dict()! r = dict()! sumr = 0.! for (node,fi) in f.items():! r[node] = fi! sumr += fi!

23 Relaxation methods for PageRank Arasu et al. 2002, PageRank computation and the structure of the web Jeh and Widom 2003, Scaling personalized PageRank McSherry 2005, A unified framework for PageRank acceleration Andersen et al. 200, Local PageRank Berkhin 200, Bookmark coloring algorithm for PageRank Complexity O( E )

24 10 5 Monte Carlo Relaxation x true x alg gap Sublinear" in theory 10 5 nnz(a) gap Node degree=155 22k node, 2M edge Facebook graph Number of edges the algorithm touches 10" nnz(a) How I d solve it

25 Matrix computations in a red-pill Solve a problem better by exploiting its structure!

26 Some unity? Theorem (Gleich and Kloster, 2013 arxiv: )" Consider solving personalized PageRank using the Gauss- Southwell relaxation method in a graph with a Zipf-law in the degrees with exponent p=1 and max-degree d, then the work involved in getting a solution with 1-norm error is work = O (1/") 1 1 d(log d) 2 Improve this? * (the paper currently bounds exp(a D -1 ) e i but analysis yields this bound for PageRank) ** (this bound is not very useful, but it justifies that this method isn t horrible in theory)

27 There is more structure The one ring. (See C. Seshadhri s talk for the reference)

28 Further open directions Nice to solve Unifying convergence results for Monte Carlo and relaxation on large networks to have provably efficient, practical algs. Use triangles? Use preconditioning? A curiosity Is there any reason to use a Krylov method? Staple of matrix computations, A! AV k+1 = V k H k with H k small BIG gap Can we get algorithms with top k or ordering convergence? See Bahmani et al. 2010; Sarkar et al (Proximity Search) Important? Are the useful, tractable multi-linear problems on a network? e.g. triangles for network alignment; e.g. Kannan s planted clique problem. Supported by NSF CAREER CCF

Fast Personalized PageRank On MapReduce Authors: Bahman Bahmani, Kaushik Chakrabart, Dong Xin In SIGMOD 2011 Presenter: Adams Wei Yu

Fast Personalized PageRank On MapReduce Authors: Bahman Bahmani, Kaushik Chakrabart, Dong Xin In SIGMOD 2011 Presenter: Adams Wei Yu Fast Personalized PageRank On MapReduce Authors: Bahman Bahmani, Kaushik Chakrabart, Dong Xin In SIGMOD 2011 Presenter: Adams Wei Yu March 2015, CMU Graph data is Ubiquitous Basic Problem in Graphs: How

More information

Core ideas: Neumann series

Core ideas: Neumann series Radiosity methods Core ideas: Neumann series We have B( x) = E( x) + ρ d ( x) B( u) cosθ i cosθ s all other surfaces πr(x,u) 2 Vis( x,u)da u Can write: Which gives B = E + ρkb B = E + (ρk)e + (ρk)(ρk)e

More information

Computing Heat Kernel Pagerank and a Local Clustering Algorithm

Computing Heat Kernel Pagerank and a Local Clustering Algorithm Computing Heat Kernel Pagerank and a Local Clustering Algorithm Fan Chung and Olivia Simpson University of California, San Diego La Jolla, CA 92093 {fan,osimpson}@ucsd.edu Abstract. Heat kernel pagerank

More information

COMPARATIVE ANALYSIS OF POWER METHOD AND GAUSS-SEIDEL METHOD IN PAGERANK COMPUTATION

COMPARATIVE ANALYSIS OF POWER METHOD AND GAUSS-SEIDEL METHOD IN PAGERANK COMPUTATION International Journal of Computer Engineering and Applications, Volume IX, Issue VIII, Sep. 15 www.ijcea.com ISSN 2321-3469 COMPARATIVE ANALYSIS OF POWER METHOD AND GAUSS-SEIDEL METHOD IN PAGERANK COMPUTATION

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 2 Don t you just invert

More information

G(B)enchmark GraphBench: Towards a Universal Graph Benchmark. Khaled Ammar M. Tamer Özsu

G(B)enchmark GraphBench: Towards a Universal Graph Benchmark. Khaled Ammar M. Tamer Özsu G(B)enchmark GraphBench: Towards a Universal Graph Benchmark Khaled Ammar M. Tamer Özsu Bioinformatics Software Engineering Social Network Gene Co-expression Protein Structure Program Flow Big Graphs o

More information

Streaming verification of graph problems

Streaming verification of graph problems Streaming verification of graph problems Suresh Venkatasubramanian The University of Utah Joint work with Amirali Abdullah, Samira Daruki and Chitradeep Dutta Roy Outsourcing Computations We no longer

More information

Big Data Analytics: What is Big Data? Stony Brook University CSE545, Fall 2016 the inaugural edition

Big Data Analytics: What is Big Data? Stony Brook University CSE545, Fall 2016 the inaugural edition Big Data Analytics: What is Big Data? Stony Brook University CSE545, Fall 2016 the inaugural edition What s the BIG deal?! 2011 2011 2008 2010 2012 What s the BIG deal?! (Gartner Hype Cycle) What s the

More information

SDD Solvers: Bridging theory and practice

SDD Solvers: Bridging theory and practice Yiannis Koutis University of Puerto Rico, Rio Piedras joint with Gary Miller, Richard Peng Carnegie Mellon University SDD Solvers: Bridging theory and practice The problem: Solving very large Laplacian

More information

Local higher-order graph clustering

Local higher-order graph clustering Local higher-order graph clustering Hao Yin Stanford University yinh@stanford.edu Austin R. Benson Cornell University arb@cornell.edu Jure Leskovec Stanford University jure@cs.stanford.edu David F. Gleich

More information

CS 5220: Parallel Graph Algorithms. David Bindel

CS 5220: Parallel Graph Algorithms. David Bindel CS 5220: Parallel Graph Algorithms David Bindel 2017-11-14 1 Graphs Mathematically: G = (V, E) where E V V Convention: V = n and E = m May be directed or undirected May have weights w V : V R or w E :

More information

Fast Nearest Neighbor Search on Large Time-Evolving Graphs

Fast Nearest Neighbor Search on Large Time-Evolving Graphs Fast Nearest Neighbor Search on Large Time-Evolving Graphs Leman Akoglu Srinivasan Parthasarathy Rohit Khandekar Vibhore Kumar Deepak Rajan Kun-Lung Wu Graphs are everywhere Leman Akoglu Fast Nearest Neighbor

More information

Graph-Parallel Problems. ML in the Context of Parallel Architectures

Graph-Parallel Problems. ML in the Context of Parallel Architectures Case Study 4: Collaborative Filtering Graph-Parallel Problems Synchronous v. Asynchronous Computation Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February 20 th, 2014

More information

Graph Algorithms on A transpose A. Benjamin Chang John Gilbert, Advisor

Graph Algorithms on A transpose A. Benjamin Chang John Gilbert, Advisor Graph Algorithms on A transpose A. Benjamin Chang John Gilbert, Advisor June 2, 2016 Abstract There are strong correspondences between matrices and graphs. Of importance to this paper are adjacency matrices

More information

Lecture 11: Randomized Least-squares Approximation in Practice. 11 Randomized Least-squares Approximation in Practice

Lecture 11: Randomized Least-squares Approximation in Practice. 11 Randomized Least-squares Approximation in Practice Stat60/CS94: Randomized Algorithms for Matrices and Data Lecture 11-10/09/013 Lecture 11: Randomized Least-squares Approximation in Practice Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these

More information

Code Generation for Embedded Convex Optimization

Code Generation for Embedded Convex Optimization Code Generation for Embedded Convex Optimization Jacob Mattingley Stanford University October 2010 Convex optimization Problems solvable reliably and efficiently Widely used in scheduling, finance, engineering

More information

Measurements on (Complete) Graphs: The Power of Wedge and Diamond Sampling

Measurements on (Complete) Graphs: The Power of Wedge and Diamond Sampling Measurements on (Complete) Graphs: The Power of Wedge and Diamond Sampling Tamara G. Kolda plus Grey Ballard, Todd Plantenga, Ali Pinar, C. Seshadhri Workshop on Incomplete Network Data Sandia National

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 20: Sparse Linear Systems; Direct Methods vs. Iterative Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 26

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu HITS (Hypertext Induced Topic Selection) Is a measure of importance of pages or documents, similar to PageRank

More information

Numerical Algorithms

Numerical Algorithms Chapter 10 Slide 464 Numerical Algorithms Slide 465 Numerical Algorithms In textbook do: Matrix multiplication Solving a system of linear equations Slide 466 Matrices A Review An n m matrix Column a 0,0

More information

Contents. F10: Parallel Sparse Matrix Computations. Parallel algorithms for sparse systems Ax = b. Discretized domain a metal sheet

Contents. F10: Parallel Sparse Matrix Computations. Parallel algorithms for sparse systems Ax = b. Discretized domain a metal sheet Contents 2 F10: Parallel Sparse Matrix Computations Figures mainly from Kumar et. al. Introduction to Parallel Computing, 1st ed Chap. 11 Bo Kågström et al (RG, EE, MR) 2011-05-10 Sparse matrices and storage

More information

S0432 NEW IDEAS FOR MASSIVELY PARALLEL PRECONDITIONERS

S0432 NEW IDEAS FOR MASSIVELY PARALLEL PRECONDITIONERS S0432 NEW IDEAS FOR MASSIVELY PARALLEL PRECONDITIONERS John R Appleyard Jeremy D Appleyard Polyhedron Software with acknowledgements to Mark A Wakefield Garf Bowen Schlumberger Outline of Talk Reservoir

More information

Parallel and Distributed Sparse Optimization Algorithms

Parallel and Distributed Sparse Optimization Algorithms Parallel and Distributed Sparse Optimization Algorithms Part I Ruoyu Li 1 1 Department of Computer Science and Engineering University of Texas at Arlington March 19, 2015 Ruoyu Li (UTA) Parallel and Distributed

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 1 Don t you just invert

More information

6-2 Matrix Multiplication, Inverses and Determinants

6-2 Matrix Multiplication, Inverses and Determinants Find AB and BA, if possible. 4. A = B = A = ; B = A is a 2 1 matrix and B is a 1 4 matrix. Because the number of columns of A is equal to the number of rows of B, AB exists. To find the first entry of

More information

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Zero elements of first column below 1 st row multiplying 1 st

More information

Massive Data Analysis

Massive Data Analysis Professor, Department of Electrical and Computer Engineering Tennessee Technological University February 25, 2015 Big Data This talk is based on the report [1]. The growth of big data is changing that

More information

Linear Programming: Introduction

Linear Programming: Introduction CSC 373 - Algorithm Design, Analysis, and Complexity Summer 2016 Lalla Mouatadid Linear Programming: Introduction A bit of a historical background about linear programming, that I stole from Jeff Erickson

More information

More Data, Less Work: Runtime as a decreasing function of data set size. Nati Srebro. Toyota Technological Institute Chicago

More Data, Less Work: Runtime as a decreasing function of data set size. Nati Srebro. Toyota Technological Institute Chicago More Data, Less Work: Runtime as a decreasing function of data set size Nati Srebro Toyota Technological Institute Chicago Outline we are here SVM speculations, other problems Clustering wild speculations,

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu 11/13/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 2 Observations Models

More information

Iterative Methods for Linear Systems

Iterative Methods for Linear Systems Iterative Methods for Linear Systems 1 the method of Jacobi derivation of the formulas cost and convergence of the algorithm a Julia function 2 Gauss-Seidel Relaxation an iterative method for solving linear

More information

Part 1: Link Analysis & Page Rank

Part 1: Link Analysis & Page Rank Chapter 8: Graph Data Part 1: Link Analysis & Page Rank Based on Leskovec, Rajaraman, Ullman 214: Mining of Massive Datasets 1 Graph Data: Social Networks [Source: 4-degrees of separation, Backstrom-Boldi-Rosa-Ugander-Vigna,

More information

Problem Set 1. Solution. CS4234: Optimization Algorithms. Solution Sketches

Problem Set 1. Solution. CS4234: Optimization Algorithms. Solution Sketches CS4234: Optimization Algorithms Sketches Problem Set 1 S-1. You are given a graph G = (V, E) with n nodes and m edges. (Perhaps the graph represents a telephone network.) Each edge is colored either blue

More information

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3 6 Iterative Solvers Lab Objective: Many real-world problems of the form Ax = b have tens of thousands of parameters Solving such systems with Gaussian elimination or matrix factorizations could require

More information

Single link clustering: 11/7: Lecture 18. Clustering Heuristics 1

Single link clustering: 11/7: Lecture 18. Clustering Heuristics 1 Graphs and Networks Page /7: Lecture 8. Clustering Heuristics Wednesday, November 8, 26 8:49 AM Today we will talk about clustering and partitioning in graphs, and sometimes in data sets. Partitioning

More information

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear.

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear. AMSC 600/CMSC 760 Fall 2007 Solution of Sparse Linear Systems Multigrid, Part 1 Dianne P. O Leary c 2006, 2007 What is Multigrid? Originally, multigrid algorithms were proposed as an iterative method to

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Theory of Variational Inference: Inner and Outer Approximation Eric Xing Lecture 14, February 29, 2016 Reading: W & J Book Chapters Eric Xing @

More information

Parallel Local Graph Clustering

Parallel Local Graph Clustering Parallel Local Graph Clustering Kimon Fountoulakis, joint work with J. Shun, X. Cheng, F. Roosta-Khorasani, M. Mahoney, D. Gleich University of California Berkeley and Purdue University Based on J. Shun,

More information

3. Replace any row by the sum of that row and a constant multiple of any other row.

3. Replace any row by the sum of that row and a constant multiple of any other row. Math Section. Section.: Solving Systems of Linear Equations Using Matrices As you may recall from College Algebra or Section., you can solve a system of linear equations in two variables easily by applying

More information

Algorithms for Grid Graphs in the MapReduce Model

Algorithms for Grid Graphs in the MapReduce Model University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Computer Science and Engineering: Theses, Dissertations, and Student Research Computer Science and Engineering, Department

More information

A Parallel Solver for Laplacian Matrices. Tristan Konolige (me) and Jed Brown

A Parallel Solver for Laplacian Matrices. Tristan Konolige (me) and Jed Brown A Parallel Solver for Laplacian Matrices Tristan Konolige (me) and Jed Brown Graph Laplacian Matrices Covered by other speakers (hopefully) Useful in a variety of areas Graphs are getting very big Facebook

More information

Parallel Methods for Convex Optimization. A. Devarakonda, J. Demmel, K. Fountoulakis, M. Mahoney

Parallel Methods for Convex Optimization. A. Devarakonda, J. Demmel, K. Fountoulakis, M. Mahoney Parallel Methods for Convex Optimization A. Devarakonda, J. Demmel, K. Fountoulakis, M. Mahoney Problems minimize g(x)+f(x; A, b) Sparse regression g(x) =kxk 1 f(x) =kax bk 2 2 mx Sparse SVM g(x) =kxk

More information

Scalable Network Analysis

Scalable Network Analysis Inderjit S. Dhillon University of Texas at Austin COMAD, Ahmedabad, India Dec 20, 2013 Outline Unstructured Data - Scale & Diversity Evolving Networks Machine Learning Problems arising in Networks Recommender

More information

Counting Triangles & The Curse of the Last Reducer. Siddharth Suri Sergei Vassilvitskii Yahoo! Research

Counting Triangles & The Curse of the Last Reducer. Siddharth Suri Sergei Vassilvitskii Yahoo! Research Counting Triangles & The Curse of the Last Reducer Siddharth Suri Yahoo! Research Why Count Triangles? 2 Why Count Triangles? Clustering Coefficient: Given an undirected graph G =(V,E) cc(v) = fraction

More information

University of Maryland. Tuesday, March 2, 2010

University of Maryland. Tuesday, March 2, 2010 Data-Intensive Information Processing Applications Session #5 Graph Algorithms Jimmy Lin University of Maryland Tuesday, March 2, 2010 This work is licensed under a Creative Commons Attribution-Noncommercial-Share

More information

arxiv: v3 [cs.ds] 15 Dec 2015

arxiv: v3 [cs.ds] 15 Dec 2015 Personalized PageRank Estimation and Search: A Bidirectional Approach Peter Lofgren Department of CS Stanford University plofgren@cs.stanford.edu Siddhartha Banerjee School of ORIE Cornell University sbanerjee@cornell.edu

More information

The Pixel Array method for solving nonlinear systems

The Pixel Array method for solving nonlinear systems The Pixel Array method for solving nonlinear systems David I. Spivak Joint with Magdalen R.C. Dobson, Sapna Kumari, and Lawrence Wu dspivak@math.mit.edu Mathematics Department Massachusetts Institute of

More information

Absorbing Random walks Coverage

Absorbing Random walks Coverage DATA MINING LECTURE 3 Absorbing Random walks Coverage Random Walks on Graphs Random walk: Start from a node chosen uniformly at random with probability. n Pick one of the outgoing edges uniformly at random

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Matrix Multiplication and All Pairs Shortest Paths (2002; Zwick)

Matrix Multiplication and All Pairs Shortest Paths (2002; Zwick) Matrix Multiplication and All Pairs Shortest Paths (2002; Zwick) Tadao Takaoka, University of Canterbury www.cosc.canterbury.ac.nz/tad.takaoka INDEX TERMS: all pairs shortest path problem, matrix multiplication,

More information

Combinatorial Optimization

Combinatorial Optimization Combinatorial Optimization Frank de Zeeuw EPFL 2012 Today Introduction Graph problems - What combinatorial things will we be optimizing? Algorithms - What kind of solution are we looking for? Linear Programming

More information

Operations Research and Optimization: A Primer

Operations Research and Optimization: A Primer Operations Research and Optimization: A Primer Ron Rardin, PhD NSF Program Director, Operations Research and Service Enterprise Engineering also Professor of Industrial Engineering, Purdue University Introduction

More information

Sparse matrices: Basics

Sparse matrices: Basics Outline : Basics Bora Uçar RO:MA, LIP, ENS Lyon, France CR-08: Combinatorial scientific computing, September 201 http://perso.ens-lyon.fr/bora.ucar/cr08/ 1/28 CR09 Outline Outline 1 Course presentation

More information

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND Student Submission for the 5 th OpenFOAM User Conference 2017, Wiesbaden - Germany: SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND TESSA UROIĆ Faculty of Mechanical Engineering and Naval Architecture, Ivana

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

Preconditioning Linear Systems Arising from Graph Laplacians of Complex Networks

Preconditioning Linear Systems Arising from Graph Laplacians of Complex Networks Preconditioning Linear Systems Arising from Graph Laplacians of Complex Networks Kevin Deweese 1 Erik Boman 2 1 Department of Computer Science University of California, Santa Barbara 2 Scalable Algorithms

More information

Barcelona, Spain b Ayogo Games, Work completed at the University of British. Available online: 06 Mar 2012

Barcelona, Spain b Ayogo Games, Work completed at the University of British. Available online: 06 Mar 2012 This article was downloaded by: [David Gleich] On: 6 March 212, At: 16:25 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 72954 Registered office: Mortimer House,

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Centrality Measures. Computing Closeness and Betweennes. Andrea Marino. Pisa, February PhD Course on Graph Mining Algorithms, Università di Pisa

Centrality Measures. Computing Closeness and Betweennes. Andrea Marino. Pisa, February PhD Course on Graph Mining Algorithms, Università di Pisa Computing Closeness and Betweennes PhD Course on Graph Mining Algorithms, Università di Pisa Pisa, February 2018 Centrality measures The problem of identifying the most central nodes in a network is a

More information

GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS. Kyle Spagnoli. Research EM Photonics 3/20/2013

GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS. Kyle Spagnoli. Research EM Photonics 3/20/2013 GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS Kyle Spagnoli Research Engineer @ EM Photonics 3/20/2013 INTRODUCTION» Sparse systems» Iterative solvers» High level benchmarks»

More information

Data Mining through Spectral Analysis

Data Mining through Spectral Analysis Data Mining through Spectral Analysis Frank McSherry Microsoft Research, SVC mcsherry@microsoft.com A Matrix Trick Let s imagine that you secretly choose two matrices that are tall and skinny, and multiply

More information

The complement of PATH is in NL

The complement of PATH is in NL 340 The complement of PATH is in NL Let c be the number of nodes in graph G that are reachable from s We assume that c is provided as an input to M Given G, s, t, and c the machine M operates as follows:

More information

Linear Algebra for Network Loss Characterization

Linear Algebra for Network Loss Characterization Linear Algebra for Network Loss Characterization David Bindel UC Berkeley, CS Division Linear Algebra fornetwork Loss Characterization p.1/23 Application: Network monitoring Set of n hosts in a large network

More information

Iterative Sparse Triangular Solves for Preconditioning

Iterative Sparse Triangular Solves for Preconditioning Euro-Par 2015, Vienna Aug 24-28, 2015 Iterative Sparse Triangular Solves for Preconditioning Hartwig Anzt, Edmond Chow and Jack Dongarra Incomplete Factorization Preconditioning Incomplete LU factorizations

More information

Page rank computation HPC course project a.y Compute efficient and scalable Pagerank

Page rank computation HPC course project a.y Compute efficient and scalable Pagerank Page rank computation HPC course project a.y. 2012-13 Compute efficient and scalable Pagerank 1 PageRank PageRank is a link analysis algorithm, named after Brin & Page [1], and used by the Google Internet

More information

Summary: What We Have Learned So Far

Summary: What We Have Learned So Far Summary: What We Have Learned So Far small-world phenomenon Real-world networks: { Short path lengths High clustering Broad degree distributions, often power laws P (k) k γ Erdös-Renyi model: Short path

More information

Latest on Linear Sketches for Large Graphs: Lots of Problems, Little Space, and Loads of Handwaving. Andrew McGregor University of Massachusetts

Latest on Linear Sketches for Large Graphs: Lots of Problems, Little Space, and Loads of Handwaving. Andrew McGregor University of Massachusetts Latest on Linear Sketches for Large Graphs: Lots of Problems, Little Space, and Loads of Handwaving Andrew McGregor University of Massachusetts Latest on Linear Sketches for Large Graphs: Lots of Problems,

More information

Joe Wingbermuehle, (A paper written under the guidance of Prof. Raj Jain)

Joe Wingbermuehle, (A paper written under the guidance of Prof. Raj Jain) 1 of 11 5/4/2011 4:49 PM Joe Wingbermuehle, wingbej@wustl.edu (A paper written under the guidance of Prof. Raj Jain) Download The Auto-Pipe system allows one to evaluate various resource mappings and topologies

More information

1 Homophily and assortative mixing

1 Homophily and assortative mixing 1 Homophily and assortative mixing Networks, and particularly social networks, often exhibit a property called homophily or assortative mixing, which simply means that the attributes of vertices correlate

More information

Centralities (4) By: Ralucca Gera, NPS. Excellence Through Knowledge

Centralities (4) By: Ralucca Gera, NPS. Excellence Through Knowledge Centralities (4) By: Ralucca Gera, NPS Excellence Through Knowledge Some slide from last week that we didn t talk about in class: 2 PageRank algorithm Eigenvector centrality: i s Rank score is the sum

More information

Generalized Network Flow Programming

Generalized Network Flow Programming Appendix C Page Generalized Network Flow Programming This chapter adapts the bounded variable primal simplex method to the generalized minimum cost flow problem. Generalized networks are far more useful

More information

MapReduce Algorithms. Barna Saha. March 28, 2016

MapReduce Algorithms. Barna Saha. March 28, 2016 MapReduce Algorithms Barna Saha March 28, 2016 Complexity Model for MapReduce Minimum Spanning Tree in MapReduce Computing Dense Subgraph in MapReduce Complexity Model for MapReduce:MRC i Input: finite

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2015 1 Sequence Alignment Dannie Durand Pairwise Sequence Alignment The goal of pairwise sequence alignment is to establish a correspondence between the

More information

Sergei Silvestrov, Christopher Engström. January 29, 2013

Sergei Silvestrov, Christopher Engström. January 29, 2013 Sergei Silvestrov, January 29, 2013 L2: t Todays lecture:. L2: t Todays lecture:. measurements. L2: t Todays lecture:. measurements. s. L2: t Todays lecture:. measurements. s.. First we would like to define

More information

Algorithms: Lecture 7. Chalmers University of Technology

Algorithms: Lecture 7. Chalmers University of Technology Algorithms: Lecture 7 Chalmers University of Technology Today s Lecture Divide & Conquer Counting Inversions Closest Pair of Points Multiplication of large integers Intro to the forthcoming problems Graphs:

More information

Social-Network Graphs

Social-Network Graphs Social-Network Graphs Mining Social Networks Facebook, Google+, Twitter Email Networks, Collaboration Networks Identify communities Similar to clustering Communities usually overlap Identify similarities

More information

BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY

BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY General definitions; Representations; Graph Traversals; Topological sort; Graphs definitions & representations Graph theory is a fundamental tool in sparse

More information

Scalable K-Means++ Bahman Bahmani Stanford University

Scalable K-Means++ Bahman Bahmani Stanford University Scalable K-Means++ Bahman Bahmani Stanford University K-means Clustering Fundamental problem in data analysis and machine learning By far the most popular clustering algorithm used in scientific and industrial

More information

4 Integer Linear Programming (ILP)

4 Integer Linear Programming (ILP) TDA6/DIT37 DISCRETE OPTIMIZATION 17 PERIOD 3 WEEK III 4 Integer Linear Programg (ILP) 14 An integer linear program, ILP for short, has the same form as a linear program (LP). The only difference is that

More information

Absorbing Random walks Coverage

Absorbing Random walks Coverage DATA MINING LECTURE 3 Absorbing Random walks Coverage Random Walks on Graphs Random walk: Start from a node chosen uniformly at random with probability. n Pick one of the outgoing edges uniformly at random

More information

Exercise Set Decide whether each matrix below is an elementary matrix. (a) (b) (c) (d) Answer:

Exercise Set Decide whether each matrix below is an elementary matrix. (a) (b) (c) (d) Answer: Understand the relationships between statements that are equivalent to the invertibility of a square matrix (Theorem 1.5.3). Use the inversion algorithm to find the inverse of an invertible matrix. Express

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu SPAM FARMING 2/11/2013 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 2/11/2013 Jure Leskovec, Stanford

More information

Graph Connectivity in MapReduce...How Hard Could it Be?

Graph Connectivity in MapReduce...How Hard Could it Be? Graph Connectivity in MapReduce......How Hard Could it Be? Sergei Vassilvitskii +Karloff, Kumar, Lattanzi, Moseley, Roughgarden, Suri, Vattani, Wang August 28, 2015 Google NYC Maybe Easy...Maybe Hard...

More information

Online Subspace Estimation and Tracking from Missing or Corrupted Data

Online Subspace Estimation and Tracking from Missing or Corrupted Data Online Subspace Estimation and Tracking from Missing or Corrupted Data Laura Balzano www.ece.wisc.edu/~sunbeam Work with Benjamin Recht and Robert Nowak Subspace Representations Capture Dependencies Subspace

More information

Link Structure Analysis

Link Structure Analysis Link Structure Analysis Kira Radinsky All of the following slides are courtesy of Ronny Lempel (Yahoo!) Link Analysis In the Lecture HITS: topic-specific algorithm Assigns each page two scores a hub score

More information

PARDISO Version Reference Sheet Fortran

PARDISO Version Reference Sheet Fortran PARDISO Version 5.0.0 1 Reference Sheet Fortran CALL PARDISO(PT, MAXFCT, MNUM, MTYPE, PHASE, N, A, IA, JA, 1 PERM, NRHS, IPARM, MSGLVL, B, X, ERROR, DPARM) 1 Please note that this version differs significantly

More information

TPA: Fast, Scalable, and Accurate Method for Approximate Random Walk with Restart on Billion Scale Graphs

TPA: Fast, Scalable, and Accurate Method for Approximate Random Walk with Restart on Billion Scale Graphs TPA: Fast, Scalable, and Accurate Method for Approximate Random Walk with Restart on Billion Scale Graphs Minji Yoon Seoul National University riin55@snu.ac.kr Jinhong Jung Seoul National University jinhongjung@snu.ac.kr

More information

Interlude: Solving systems of Equations

Interlude: Solving systems of Equations Interlude: Solving systems of Equations Solving Ax = b What happens to x under Ax? The singular value decomposition Rotation matrices Singular matrices Condition number Null space Solving Ax = 0 under

More information

A Low Level Introduction to High Dimensional Sparse Grids

A Low Level Introduction to High Dimensional Sparse Grids A Low Level Introduction to High Dimensional Sparse Grids http://people.sc.fsu.edu/ jburkardt/presentations/sandia 2007.pdf... John 1 Clayton Webster 2 1 Virginia Tech 2 Sandia National Laboratory. 21

More information

Exploiting the OpenPOWER Platform for Big Data Analytics and Cognitive. Rajesh Bordawekar and Ruchir Puri IBM T. J. Watson Research Center

Exploiting the OpenPOWER Platform for Big Data Analytics and Cognitive. Rajesh Bordawekar and Ruchir Puri IBM T. J. Watson Research Center Exploiting the OpenPOWER Platform for Big Data Analytics and Cognitive Rajesh Bordawekar and Ruchir Puri IBM T. J. Watson Research Center 3/17/2015 2014 IBM Corporation Outline IBM OpenPower Platform Accelerating

More information

Algebraic method for Shortest Paths problems

Algebraic method for Shortest Paths problems Lecture 1 (06.03.2013) Author: Jaros law B lasiok Algebraic method for Shortest Paths problems 1 Introduction In the following lecture we will see algebraic algorithms for various shortest-paths problems.

More information

Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut

Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut Miguel F. Anjos Professor and Canada Research Chair Director, Trottier Energy Institute Joint work with E. Adams (Poly Mtl), F. Rendl,

More information

Complex-Network Modelling and Inference

Complex-Network Modelling and Inference Complex-Network Modelling and Inference Lecture 8: Graph features (2) Matthew Roughan http://www.maths.adelaide.edu.au/matthew.roughan/notes/ Network_Modelling/ School

More information

Online Social Networks and Media

Online Social Networks and Media Online Social Networks and Media Absorbing Random Walks Link Prediction Why does the Power Method work? If a matrix R is real and symmetric, it has real eigenvalues and eigenvectors: λ, w, λ 2, w 2,, (λ

More information

A Brief Look at Optimization

A Brief Look at Optimization A Brief Look at Optimization CSC 412/2506 Tutorial David Madras January 18, 2018 Slides adapted from last year s version Overview Introduction Classes of optimization problems Linear programming Steepest

More information

Algorithms and Applications in Social Networks. 2017/2018, Semester B Slava Novgorodov

Algorithms and Applications in Social Networks. 2017/2018, Semester B Slava Novgorodov Algorithms and Applications in Social Networks 2017/2018, Semester B Slava Novgorodov 1 Lesson #1 Administrative questions Course overview Introduction to Social Networks Basic definitions Network properties

More information

Multigrid Methods for Markov Chains

Multigrid Methods for Markov Chains Multigrid Methods for Markov Chains Hans De Sterck Department of Applied Mathematics, University of Waterloo collaborators Killian Miller Department of Applied Mathematics, University of Waterloo, Canada

More information

Problem Definition. Clustering nonlinearly separable data:

Problem Definition. Clustering nonlinearly separable data: Outlines Weighted Graph Cuts without Eigenvectors: A Multilevel Approach (PAMI 2007) User-Guided Large Attributed Graph Clustering with Multiple Sparse Annotations (PAKDD 2016) Problem Definition Clustering

More information

Linear Programming. Course review MS-E2140. v. 1.1

Linear Programming. Course review MS-E2140. v. 1.1 Linear Programming MS-E2140 Course review v. 1.1 Course structure Modeling techniques Linear programming theory and the Simplex method Duality theory Dual Simplex algorithm and sensitivity analysis Integer

More information

Social Network Analysis With igraph & R. Ofrit Lesser December 11 th, 2014

Social Network Analysis With igraph & R. Ofrit Lesser December 11 th, 2014 Social Network Analysis With igraph & R Ofrit Lesser ofrit.lesser@gmail.com December 11 th, 2014 Outline The igraph R package Basic graph concepts What can you do with igraph? Construction Attributes Centrality

More information