A Note on Computation of a Ray Bending Path

Size: px
Start display at page:

Download "A Note on Computation of a Ray Bending Path"

Transcription

1 A Note on Computation of a Ray Bending Path Jerry Tessendorf August 7, starting point Index of refraction spatial variations within a volume induce bending of the ray marching path that light takes through the participating medium. The driving equations for this bending describes the shape of the path xs and direction of propation ˆns as functions of the arclength s along the path. Both are modified by variations in the index of refraction n via the equations d xs dˆns = ˆns 1 = s ˆns ˆns s where s is the gradient of the log of the index of refraction: s = log n xs 3 The direction of propagation is also the tangent of the path. This sets up an initial value problem: Given the values at the initial arclength of x = x 0 and ˆn = ˆn 0, compute from these equations the position and direction for arclengths s > of interest. Here we consider a situation in which the the gradient vector is constant along a stretch of arclength of interest. There are two situations in which this occurs, and many more may be relevant. One of them is when the volume is modeled as a stack of layers and the gradient is constant within each layer. Another is the volume rendering ray march process with varying with each ray march step, but constant along the length of a single step. This latter situation is consistent with other assumptions in ray marching, which assumes that the material density and color are also constant over the distance of a single ray march step. In the next section, equation in solved exactly under the constant gradient assumption by expressing ˆns as a rotation about an axis. The path is found in section 3 by integrating equation 1 exactly. 1

2 ray bending as a direction rotation Ray bending alters the direction of the path tangent, while preserving the fact that the tangent vector is a unit vector. This means that the alteration of the path tangent can be represented by a rotation of the tangent vector. A general rotation is described by a unit vector ˆαs for the axis of rotation, and an angle αs for the amount of rotation about the axis. Using these two quantities, the rotation is expressible as ˆns = ˆn 0 cos αs + ˆαs ˆn 0 ˆαs 1 cos αs + ˆn 0 ˆαs sin αs 4 along with the initial condition α = 0. Ray bending with a constant provides a natural rotation axis: the path is contained in a plane defined by the two vectors ˆn 0 and ˆ = /, so the axis of rotation is constat and perpendicular to both of these: ˆα = ˆn 0 ˆ ˆn 0 ˆ 5 Because of this choice of rotation axis, the second term on the RHS of equation 4 is zero, and the third term has the vector ˆn 0 ˆα = ˆn 0 ˆ ˆn 0 ˆ ˆn 0 ˆ 6 which is a unit vector: ˆn 0 ˆα = 1 ˆn 0 ˆ ˆn 0 ˆ = 1 7 This brings the expression for the path tangent to ˆns = ˆn 0 cos αs + ˆn 0 ˆα sin αs 8 and the problem of describing the ray bending path tangent has been reduced to solving for the angle αs. To solve for αs, this expression for ˆns can be inserted into equation. The derivative on the LHS becomes dˆns = dαs { ˆn 0 sin αs + ˆn 0 ˆα cos αs} 9 Since equation has reduced to a differential equation for a single degree of freedom, taking the inner product of both sides with ˆn 0 simplifies the expressions. The LHS becomes ˆn 0 dˆns = dαs sin αs 10

3 and the RHS side is { ˆn 0 s ˆns ˆns s } = sin αs producing the differential equation dαs = ˆn 0 sin αs + { } ˆn 0 sin αs ˆn 0 ˆα cos αs 11 ˆn 0 ˆα cos αs 1 This expression can be solved for α by setting up the integral equation α 0 dx ˆn 0 ˆα cos x ˆn 0 = s 13 sin x This integral has a closed form expression 1 x + β αs log tan = s 0 ˆn 0 ˆ + ˆn 0 ˆα 14 where ˆn 0 ˆ = cos β. Using ˆn 0 ˆ + ˆn 0 ˆα =, 15 the solution is and β αs tan = tanβ/ e s s0 16 Using some identities, this can be manipulated into the form tanαs/ = tanβ/ 1 e s s0 1 + tan β/ e s s0 17 urther identity manipulation gives 1 + tan β/ e s s0 cosαs/ = cosβ/ tan β/ e s s0 e s s0 1 sinαs/ = sinβ/ tan β/ e s s0 cos αs = cos β + 4 sin β/ e s s0 + sin β/ tan β/ 1 s s0 e 1 + tan 1 β/ e s s0 sin αs = sin β 1 e s s0 1 + tan β/ e s s0 1 + tan β/ e s s0 0 This is a complete solution for the tangent of the ray bending path in a region of constant gradient. 1 Grahteyn and Ryzhik.557.4, pg

4 3 integrating the path The ray bending path xs follows from integrating equation 1 using equations 8, 1, and : xs = x 0 + ˆn 0 cos αs + ˆn 0 ˆα sin αs 3 These integrals have the generic form dt A + B e t + C e t 1 + D e t 4 for appropriate values of A, B, C, D. Using some integral identities this evaluates to dt A + B e t + C e t 1 + D e t = A t log 1 + D e t B + D tan 1 D e t + C D log 1 + D e t 5 Assembling all of the algebra that follows from these expressions, cos αs = cos β 1 + tan β/ s + log 1 + tan β/ e s s0 and + sin β sin αs = sin β sin β tan 1 tanβ/ e s s0 β/ tan β/ s + log 1 + tan β/ e s s0 1 tan β/ tanβ/ tan 1 tanβ/ e s s0 β/ 7 igure 1 shows these two functions, plotted parametrically by varying the value of s, for a range of values of β. 4 curved path intersection with a plane We can evaluate the problem of computing the point of intersection of a curved ray with a plane. The plane is characterized by the implicit equation Grahteyn and Ryzhik.313.1, pg. 9;.14.1, pg. 60 x x P ˆn P = 0 8 4

5 10 β = 0 π/ 8 6 s 0 sin αs s cos αs s0 igure 1: The two components of the ray bending path, plotted parametrically. Each line is a different value of β, which ranges in value from 0 to π/. 5

6 where x P is a reference point on the plane, ˆn P is the normal to the plane, and x is any point in space lying on the plane. Abbreviating the curved ray expression 3 as xs = x 0 + ˆn 0 fs + ˆn 0 ˆα gs, 9 where fs is equation 6 and gs is equation 7, the equation for intersection of the curved ray with the plane is x 0 x P ˆn P + ˆn 0 ˆn P fs + ˆn 0 ˆα ˆn P gs = 0 30 This equation is amenable to solution via recursive estimation. Note that, in the special case of no bending = 0, fs = s and gs = 0, and the intersection equation reduces to the one normaliy used for straight ray intersection: s = x P x 0 ˆn P /ˆn 0 ˆn P. Because of this, and because many of the situations of interest involve small amounts of ray bending over long distances, it can be useful to rewrite the curved ray intersection equation to look like the straight ray intersection with an alteration: s = x P x 0 ˆn P fs s + ˆn 0 ˆα ˆn P gs 31 This form is still the full curved ray problem. No approximations have been made to the intersection equaiton, just a rearrangement of terms. This arrangement naturally provides an iterative estimate procedure s n+1 = x P x 0 ˆn P and a natural initialization fs n s n + ˆn 0 ˆα ˆn P gs n 3 = x P x 0 ˆn P 33 This iterative scheme has theoretically unknown convergence properties, but in some preliminary testing in naminal conditions it converges to double precision accuracy in as little at two iterations, and under more stressing conditions in as many at 10 iterations. A special case that this iterative scheme fails is the situation where the plane is parallel to the initial direction ˆn 0, in which case ˆn 0 ˆn P = 0 and the initialization is poor. Under this condition, the intersection equation is x 0 x P ˆn P + ˆn 0 ˆα ˆn P gs = 0 34 ollowing a similar approach as with the other case, an iterative scheme can be set up as with initial value s n+1 = x P x 0 ˆn P ˆn 0 ˆα ˆn P gs n s n + 35 = x P x 0 ˆn P ˆn 0 ˆα ˆn P 36 Preliminary tests show the convergence of this case to be slower, around 100 iterations. 6

Mathematics for Computer Graphics. Trigonometry

Mathematics for Computer Graphics. Trigonometry Mathematics for Computer Graphics Trigonometry Trigonometry...????? The word trigonometry is derived from the ancient Greek language and means measurement of triangles. trigonon triangle + metron measure

More information

C3 Numerical methods

C3 Numerical methods Verulam School C3 Numerical methods 138 min 108 marks 1. (a) The diagram shows the curve y =. The region R, shaded in the diagram, is bounded by the curve and by the lines x = 1, x = 5 and y = 0. The region

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Grade 12 Revision Trigonometry (Compound Angles)

Grade 12 Revision Trigonometry (Compound Angles) Compound angles are simply the sum of, or the difference between, two other angles This angle is an example of a compound angle P (x ; 0) Easy to calculate trig ratios of angles α and β but what about

More information

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT:

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT: CALCULUS WITH PARAMETERIZED CURVES In calculus I we learned how to differentiate and integrate functions. In the chapter covering the applications of the integral, we learned how to find the length of

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46 Polar Coordinates Polar Coordinates: Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ)

More information

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations Lecture 15 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Length of a Curve and Parametric Equations Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 5 Lecture 15 1 Length of a

More information

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals Section 16.4 Parametrized Surfaces and Surface Integrals (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals MATH 127 (Section 16.4) Parametrized Surfaces and Surface Integrals

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

TEAMS National Competition Middle School Version Photometry Solution Manual 25 Questions

TEAMS National Competition Middle School Version Photometry Solution Manual 25 Questions TEAMS National Competition Middle School Version Photometry Solution Manual 25 Questions Page 1 of 14 Photometry Questions 1. When an upright object is placed between the focal point of a lens and a converging

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

TEAMS National Competition High School Version Photometry Solution Manual 25 Questions

TEAMS National Competition High School Version Photometry Solution Manual 25 Questions TEAMS National Competition High School Version Photometry Solution Manual 25 Questions Page 1 of 15 Photometry Questions 1. When an upright object is placed between the focal point of a lens and a converging

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG.

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG. Computer Vision Coordinates Prof. Flávio Cardeal DECOM / CEFET- MG cardeal@decom.cefetmg.br Abstract This lecture discusses world coordinates and homogeneous coordinates, as well as provides an overview

More information

CSC418 / CSCD18 / CSC2504

CSC418 / CSCD18 / CSC2504 5 5.1 Surface Representations As with 2D objects, we can represent 3D objects in parametric and implicit forms. (There are also explicit forms for 3D surfaces sometimes called height fields but we will

More information

(ii) Use Simpson s rule with two strips to find an approximation to Use your answers to parts (i) and (ii) to show that ln 2.

(ii) Use Simpson s rule with two strips to find an approximation to Use your answers to parts (i) and (ii) to show that ln 2. C umerical Methods. June 00 qu. 6 (i) Show by calculation that the equation tan = 0, where is measured in radians, has a root between.0 and.. [] Use the iteration formula n+ = tan + n with a suitable starting

More information

What you will learn today

What you will learn today What you will learn today Tangent Planes and Linear Approximation and the Gradient Vector Vector Functions 1/21 Recall in one-variable calculus, as we zoom in toward a point on a curve, the graph becomes

More information

Method for computing angle constrained isoptic curves for surfaces

Method for computing angle constrained isoptic curves for surfaces Annales Mathematicae et Informaticae 42 (2013) pp. 65 70 http://ami.ektf.hu Method for computing angle constrained isoptic curves for surfaces Ferenc Nagy, Roland Kunkli Faculty of Informatics, University

More information

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 33 Notes These notes correspond to Section 9.3 in the text. Polar Coordinates Throughout this course, we have denoted a point in the plane by an ordered

More information

Geometry: Unit 1: Transformations. Chapter 14 (In Textbook)

Geometry: Unit 1: Transformations. Chapter 14 (In Textbook) Geometry: Unit 1: Transformations Chapter 14 (In Textbook) Transformations Objective: Students will be able to do the following, regarding geometric transformations. Write Transformations Symbolically

More information

JUST THE MATHS SLIDES NUMBER 5.2. GEOMETRY 2 (The straight line) A.J.Hobson

JUST THE MATHS SLIDES NUMBER 5.2. GEOMETRY 2 (The straight line) A.J.Hobson JUST THE MATHS SLIDES NUMBER 5.2 GEOMETRY 2 (The straight line) by A.J.Hobson 5.2.1 Preamble 5.2.2 Standard equations of a straight line 5.2.3 Perpendicular straight lines 5.2.4 Change of origin UNIT 5.2

More information

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane.

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane. Math 21a Tangent Lines and Planes Fall, 2016 What do we know about the gradient f? Tangent Lines to Curves in the Plane. 1. For each of the following curves, find the tangent line to the curve at the point

More information

Tutorial 4. Differential Geometry I - Curves

Tutorial 4. Differential Geometry I - Curves 23686 Numerical Geometry of Images Tutorial 4 Differential Geometry I - Curves Anastasia Dubrovina c 22 / 2 Anastasia Dubrovina CS 23686 - Tutorial 4 - Differential Geometry I - Curves Differential Geometry

More information

TEST 3 REVIEW DAVID BEN MCREYNOLDS

TEST 3 REVIEW DAVID BEN MCREYNOLDS TEST 3 REVIEW DAVID BEN MCREYNOLDS 1. Vectors 1.1. Form the vector starting at the point P and ending at the point Q: P = (0, 0, 0), Q = (1,, 3). P = (1, 5, 3), Q = (8, 18, 0). P = ( 3, 1, 1), Q = (, 4,

More information

Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations / 17

Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations / 17 Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, Parametric equations Johns Hopkins University Fall 2014 Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations 2014 1 / 17

More information

The Straight Line. m is undefined. Use. Show that mab

The Straight Line. m is undefined. Use. Show that mab The Straight Line What is the gradient of a horizontal line? What is the equation of a horizontal line? So the equation of the x-axis is? What is the gradient of a vertical line? What is the equation of

More information

Advanced Algebra. Equation of a Circle

Advanced Algebra. Equation of a Circle Advanced Algebra Equation of a Circle Task on Entry Plotting Equations Using the table and axis below, plot the graph for - x 2 + y 2 = 25 x -5-4 -3 0 3 4 5 y 1 4 y 2-4 3 2 + y 2 = 25 9 + y 2 = 25 y 2

More information

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b.

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. Practice problems 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. 1, 1 = c 1 3, 2 + c 2 2, 1. Solve c 1, c 2. 2. Suppose a is a vector in the plane. If the component of the a in

More information

MAT1B01: Curves defined by parametric equations

MAT1B01: Curves defined by parametric equations MAT1B01: Curves defined by parametric equations Dr Craig 24 October 2016 My details: acraig@uj.ac.za Consulting hours: Thursday 11h20 12h55 Friday 11h30 13h00 Office C-Ring 508 https://andrewcraigmaths.wordpress.com/

More information

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables 302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.8 Chapter Review 3.8.1 Concepts to Know You should have an understanding of, and be able to explain the concepts listed below. 1. Boundary and interior points

More information

Equation of tangent plane: for implicitly defined surfaces section 12.9

Equation of tangent plane: for implicitly defined surfaces section 12.9 Equation of tangent plane: for implicitly defined surfaces section 12.9 Some surfaces are defined implicitly, such as the sphere x 2 + y 2 + z 2 = 1. In general an implicitly defined surface has the equation

More information

Diffraction: Propagation of wave based on Huygens s principle.

Diffraction: Propagation of wave based on Huygens s principle. Diffraction: In addition to interference, waves also exhibit another property diffraction, which is the bending of waves as they pass by some objects or through an aperture. The phenomenon of diffraction

More information

Plane Curve [Parametric Equation]

Plane Curve [Parametric Equation] Plane Curve [Parametric Equation] Bander Almutairi King Saud University December 1, 2015 Bander Almutairi (King Saud University) Plane Curve [Parametric Equation] December 1, 2015 1 / 8 1 Parametric Equation

More information

ENGI Parametric & Polar Curves Page 2-01

ENGI Parametric & Polar Curves Page 2-01 ENGI 3425 2. Parametric & Polar Curves Page 2-01 2. Parametric and Polar Curves Contents: 2.1 Parametric Vector Functions 2.2 Parametric Curve Sketching 2.3 Polar Coordinates r f 2.4 Polar Curve Sketching

More information

AQA GCSE Maths - Higher Self-Assessment Checklist

AQA GCSE Maths - Higher Self-Assessment Checklist AQA GCSE Maths - Higher Self-Assessment Checklist Number 1 Use place value when calculating with decimals. 1 Order positive and negative integers and decimals using the symbols =,, , and. 1 Round to

More information

Review of Trigonometry

Review of Trigonometry Worksheet 8 Properties of Trigonometric Functions Section Review of Trigonometry This section reviews some of the material covered in Worksheets 8, and The reader should be familiar with the trig ratios,

More information

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones Physics 42200 Waves & Oscillations Lecture 27 Propagation of Light Hecht, chapter 5 Spring 2016 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

3-D D Euclidean Space - Vectors

3-D D Euclidean Space - Vectors 3-D D Euclidean Space - Vectors Rigid Body Motion and Image Formation A free vector is defined by a pair of points : Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Coordinates of the vector : 3D Rotation

More information

Section Polar Coordinates. or 4 π (restricting θ to the domain of the lemniscate). So, there are horizontal tangents at ( 4 3

Section Polar Coordinates. or 4 π (restricting θ to the domain of the lemniscate). So, there are horizontal tangents at ( 4 3 Section 10.3 Polar Coordinates 66. r = e θ x = r cos θ = e θ cos θ, y = r sin θ = e θ sin θ. = eθ sin θ+e θ cos θ = e θ (sin θ+cos θ), dx = eθ cos θ e θ sin θ = e θ (cos θ sin θ). Let 1 = 0 sin θ = cos

More information

521466S Machine Vision Exercise #1 Camera models

521466S Machine Vision Exercise #1 Camera models 52466S Machine Vision Exercise # Camera models. Pinhole camera. The perspective projection equations or a pinhole camera are x n = x c, = y c, where x n = [x n, ] are the normalized image coordinates,

More information

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19 Lecture 17: Recursive Ray Tracing Where is the way where light dwelleth? Job 38:19 1. Raster Graphics Typical graphics terminals today are raster displays. A raster display renders a picture scan line

More information

CARTESIAN OVOIDS. A. Cartesian Ovoids in the case n o < n i

CARTESIAN OVOIDS. A. Cartesian Ovoids in the case n o < n i CARTESIAN OVOIDS The Cartesian ovoids are plane curves that have been first described by Rene Descartes (in 1637 AD) and represent the geometric locus of points that have the same linear combination of

More information

Fast marching methods

Fast marching methods 1 Fast marching methods Lecture 3 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Metric discretization 2 Approach I:

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures Grad operator, triple and line integrals Notice: this material must not be used as a substitute for attending the lectures 1 .1 The grad operator Let f(x 1, x,..., x n ) be a function of the n variables

More information

with slopes m 1 and m 2 ), if and only if its coordinates satisfy the equation y y 0 = 0 and Ax + By + C 2

with slopes m 1 and m 2 ), if and only if its coordinates satisfy the equation y y 0 = 0 and Ax + By + C 2 CHAPTER 10 Straight lines Learning Objectives (i) Slope (m) of a non-vertical line passing through the points (x 1 ) is given by (ii) If a line makes an angle α with the positive direction of x-axis, then

More information

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f Gradients and the Directional Derivative In 14.3, we discussed the partial derivatives f f and, which tell us the rate of change of the x y height of the surface defined by f in the x direction and the

More information

Topics in Analytic Geometry Part II

Topics in Analytic Geometry Part II Name Chapter 9 Topics in Analytic Geometry Part II Section 9.4 Parametric Equations Objective: In this lesson you learned how to evaluate sets of parametric equations for given values of the parameter

More information

Reflection and Refraction

Reflection and Refraction Reflection and Refraction Theory: Whenever a wave traveling in some medium encounters an interface or boundary with another medium either (or both) of the processes of (1) reflection and (2) refraction

More information

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations.

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations. Objectives Sketch the graph of a curve given by a set of parametric equations. Eliminate the parameter in a set of parametric equations. Find a set of parametric equations to represent a curve. Understand

More information

Double Integrals, Iterated Integrals, Cross-sections

Double Integrals, Iterated Integrals, Cross-sections Chapter 14 Multiple Integrals 1 ouble Integrals, Iterated Integrals, Cross-sections 2 ouble Integrals over more general regions, efinition, Evaluation of ouble Integrals, Properties of ouble Integrals

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES A coordinate system represents a point in the plane by an ordered pair of numbers called coordinates. PARAMETRIC EQUATIONS

More information

Chapter 11. Parametric Equations And Polar Coordinates

Chapter 11. Parametric Equations And Polar Coordinates Instructor: Prof. Dr. Ayman H. Sakka Chapter 11 Parametric Equations And Polar Coordinates In this chapter we study new ways to define curves in the plane, give geometric definitions of parabolas, ellipses,

More information

Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ x + 5y + 7z 9x + 3y + 11z

Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ x + 5y + 7z 9x + 3y + 11z Basic Linear Algebra Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ 1 5 ] 7 9 3 11 Often matrices are used to describe in a simpler way a series of linear equations.

More information

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines Math 18.02 (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines February 12 Reading Material: From Simmons: 17.1 and 17.2. Last time: Square Systems. Word problem. How many solutions?

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0 FROM ROGAWSKI S CALCULUS (2ND ED.) SECTION 5.4 18.) Express the antiderivative F (x) of f(x) satisfying the given initial condition as an integral. f(x) = x + 1 x 2 + 9, F (7) = 28.) Find G (1), where

More information

SPM Add Math Form 5 Chapter 3 Integration

SPM Add Math Form 5 Chapter 3 Integration SPM Add Math Form Chapter Integration INDEFINITE INTEGRAL CHAPTER : INTEGRATION Integration as the reverse process of differentiation ) y if dy = x. Given that d Integral of ax n x + c = x, where c is

More information

CHAPTER 4 RAY COMPUTATION. 4.1 Normal Computation

CHAPTER 4 RAY COMPUTATION. 4.1 Normal Computation CHAPTER 4 RAY COMPUTATION Ray computation is the second stage of the ray tracing procedure and is composed of two steps. First, the normal to the current wavefront is computed. Then the intersection of

More information

KINEMATIC ANALYSIS OF A THREE-MEMBER END CAM MECHANISM

KINEMATIC ANALYSIS OF A THREE-MEMBER END CAM MECHANISM Tome V (year 2007), Fascicole 2, (ISSN 1584 2665) KINEMATIC ANALYSIS OF A THREE-MEMBER END CAM MECHANISM Milcho DIMITROV TASHEV Department of Mechanical and Electrical Engineering TC John Atanasoff TU

More information

9-1 GCSE Maths. GCSE Mathematics has a Foundation tier (Grades 1 5) and a Higher tier (Grades 4 9).

9-1 GCSE Maths. GCSE Mathematics has a Foundation tier (Grades 1 5) and a Higher tier (Grades 4 9). 9-1 GCSE Maths GCSE Mathematics has a Foundation tier (Grades 1 5) and a Higher tier (Grades 4 9). In each tier, there are three exams taken at the end of Year 11. Any topic may be assessed on each of

More information

first name (print) last name (print) brock id (ab17cd) (lab date)

first name (print) last name (print) brock id (ab17cd) (lab date) (ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 3 Refraction of light In this Experiment you will learn that the bending of light crossing the boundary of two

More information

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let Calculus Lia Vas Polar Coordinates If P = (x, y) is a point in the xy-plane and O denotes the origin, let r denote the distance from the origin O to the point P = (x, y). Thus, x + y = r ; θ be the angle

More information

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation Phys. 281B Geometric Optics This Chapter 3 Physics Department Yarmouk University 21163 Irbid Jordan 1- Images Formed by Flat Mirrors 2- Images Formed by Spherical Mirrors 3- Images Formed by Refraction

More information

Centre for Autonomous Systems

Centre for Autonomous Systems Robot Henrik I Centre for Autonomous Systems Kungl Tekniska Högskolan hic@kth.se 27th April 2005 Outline 1 duction 2 Kinematic and Constraints 3 Mobile Robot 4 Mobile Robot 5 Beyond Basic 6 Kinematic 7

More information

Surfaces. Ron Goldman Department of Computer Science Rice University

Surfaces. Ron Goldman Department of Computer Science Rice University Surfaces Ron Goldman Department of Computer Science Rice University Representations 1. Parametric Plane, Sphere, Tensor Product x = f (s,t) y = g(s,t) z = h(s,t) 2. Algebraic Plane, Sphere, Torus F(x,

More information

The Ray model of Light. Reflection. Class 18

The Ray model of Light. Reflection. Class 18 The Ray model of Light Over distances of a terrestrial scale light travels in a straight line. The path of a laser is now the best way we have of defining a straight line. The model of light which assumes

More information

MAT01B1: Curves defined by parametric equations

MAT01B1: Curves defined by parametric equations MAT01B1: Curves defined by parametric equations Dr Craig 10 October 2018 My details: acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 11h20 12h55 Friday 11h20 12h55 Office C-Ring 508 https://andrewcraigmaths.wordpress.com/

More information

What is log a a equal to?

What is log a a equal to? How would you differentiate a function like y = sin ax? What is log a a equal to? How do you prove three 3-D points are collinear? What is the general equation of a straight line passing through (a,b)

More information

Mathematics 134 Calculus 2 With Fundamentals Exam 2 Answers/Solutions for Sample Questions March 2, 2018

Mathematics 134 Calculus 2 With Fundamentals Exam 2 Answers/Solutions for Sample Questions March 2, 2018 Sample Exam Questions Mathematics 1 Calculus 2 With Fundamentals Exam 2 Answers/Solutions for Sample Questions March 2, 218 Disclaimer: The actual exam questions may be organized differently and ask questions

More information

ECE-161C Cameras. Nuno Vasconcelos ECE Department, UCSD

ECE-161C Cameras. Nuno Vasconcelos ECE Department, UCSD ECE-161C Cameras Nuno Vasconcelos ECE Department, UCSD Image formation all image understanding starts with understanding of image formation: projection of a scene from 3D world into image on 2D plane 2

More information

Planes Intersecting Cones: Static Hypertext Version

Planes Intersecting Cones: Static Hypertext Version Page 1 of 12 Planes Intersecting Cones: Static Hypertext Version On this page, we develop some of the details of the plane-slicing-cone picture discussed in the introduction. The relationship between the

More information

OPTI 421/521 Introductory Optomechanical Engineering. 6. Mirror matrices. Matrix formalism is used to model reflection from plane mirrors.

OPTI 421/521 Introductory Optomechanical Engineering. 6. Mirror matrices. Matrix formalism is used to model reflection from plane mirrors. OPTI 42/52 Introductory Optomechanical Engineering 6. irror matrices atrix formalism is used to model reflection from plane mirrors. Start with the vector law of reflection: kˆ kˆ 2(ˆ k 2 nˆ) nˆ 2(ˆ k

More information

TANGENTS AND NORMALS

TANGENTS AND NORMALS Mathematics Revision Guides Tangents and Normals Page 1 of 8 MK HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C1 Edecel: C OCR: C1 OCR MEI: C TANGENTS AND NORMALS Version : 1 Date:

More information

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives Recall that if z = f(x, y), then the partial derivatives f x and f y are defined as and represent the rates of change of z in the x- and y-directions, that is, in the directions of the unit vectors i and

More information

2.3 Thin Lens. Equating the right-hand sides of these equations, we obtain the Newtonian imaging equation:

2.3 Thin Lens. Equating the right-hand sides of these equations, we obtain the Newtonian imaging equation: 2.3 Thin Lens 6 2.2.6 Newtonian Imaging Equation In the Gaussian imaging equation (2-4), the object and image distances S and S, respectively, are measured from the vertex V of the refracting surface.

More information

Angle-gather time migration a

Angle-gather time migration a Angle-gather time migration a a Published in SEP report, 1, 141-15 (1999) Sergey Fomel and Marie Prucha 1 ABSTRACT Angle-gather migration creates seismic images for different reflection angles at the reflector.

More information

PLANE TRIGONOMETRY Exam I September 13, 2007

PLANE TRIGONOMETRY Exam I September 13, 2007 Name Rec. Instr. Rec. Time PLANE TRIGONOMETRY Exam I September 13, 2007 Page 1 Page 2 Page 3 Page 4 TOTAL (10 pts.) (30 pts.) (30 pts.) (30 pts.) (100 pts.) Below you will find 10 problems, each worth

More information

GEOMETRY IN THREE DIMENSIONS

GEOMETRY IN THREE DIMENSIONS 1 CHAPTER 5. GEOMETRY IN THREE DIMENSIONS 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW GEOMETRY IN THREE DIMENSIONS Contents 1 Geometry in R 3 2 1.1 Lines...............................................

More information

Study on mathematical model of the shoulder shaper

Study on mathematical model of the shoulder shaper ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 2 (2006) No. 2, pp. 129-133 Study on mathematical model of the shoulder shaper Zhijun Chu, Yijie Zhou, Heping Cai Southern Yangtze

More information

MEI Casio Tasks for A2 Core

MEI Casio Tasks for A2 Core Task 1: Functions The Modulus Function The modulus function, abs(x), is found using OPTN > NUMERIC > Abs 2. Add the graph y = x, Y1=Abs(x): iyqfl 3. Add the graph y = ax+b, Y2=Abs(Ax+B): iyqaff+agl 4.

More information

COMPUTER AIDED ENGINEERING DESIGN (BFF2612)

COMPUTER AIDED ENGINEERING DESIGN (BFF2612) COMPUTER AIDED ENGINEERING DESIGN (BFF2612) BASIC MATHEMATICAL CONCEPTS IN CAED by Dr. Mohd Nizar Mhd Razali Faculty of Manufacturing Engineering mnizar@ump.edu.my COORDINATE SYSTEM y+ y+ z+ z+ x+ RIGHT

More information

Regents Physics Lab #30R. Due Date. Refraction of Light

Regents Physics Lab #30R. Due Date. Refraction of Light Name Date Regents Physics Lab #0R Period Mrs. Nadworny Research Problem Materials Refraction of Light Due Date When a ray of light passes obliquely (at an angle) from air to glass, it is refracted. The

More information

Figure 27a3See Answer T5. A convex lens used as a magnifying glass.

Figure 27a3See Answer T5. A convex lens used as a magnifying glass. F1 Figure 27a (in Answer T5) shows a diagram similar to that required, but with different dimensions. The object is between the first focus and the lens. The image is erect and virtual. The lateral magnification

More information

Chapter 9. Linear algebra applications in geometry

Chapter 9. Linear algebra applications in geometry Chapter 9. Linear algebra applications in geometry C.O.S. Sorzano Biomedical Engineering August 25, 2013 9. Linear algebra applications in geometry August 25, 2013 1 / 73 Outline 9 Linear algebra applications

More information

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k I.f Tangent Planes and Normal Lines Again we begin by: Recall: (1) Given two vectors A = a 1 i + a 2 j + a 3 k, B = b 1 i + b 2 j + b 3 k then A B is a vector perpendicular to both A and B. Then length

More information

AQA GCSE Further Maths Topic Areas

AQA GCSE Further Maths Topic Areas AQA GCSE Further Maths Topic Areas This document covers all the specific areas of the AQA GCSE Further Maths course, your job is to review all the topic areas, answering the questions if you feel you need

More information

Chapter 10 Homework: Parametric Equations and Polar Coordinates

Chapter 10 Homework: Parametric Equations and Polar Coordinates Chapter 1 Homework: Parametric Equations and Polar Coordinates Name Homework 1.2 1. Consider the parametric equations x = t and y = 3 t. a. Construct a table of values for t =, 1, 2, 3, and 4 b. Plot the

More information

Mathematics of Rainbows

Mathematics of Rainbows Mathematics of Rainbows MATH 171 Freshman Seminar for Mathematics Majors J. Robert Buchanan Department of Mathematics 2010 What is a Rainbow? A rainbow is created by water, sunlight, and the principles

More information

X-ray Diffraction from Materials

X-ray Diffraction from Materials X-ray Diffraction from Materials 2008 Spring Semester Lecturer; Yang Mo Koo Monday and Wednesday 14:45~16:00 8. Experimental X-ray Diffraction Procedures 8.1 Diffraction Experiments using Films 8.1.1 Laue

More information

MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 October/November 2016 MARK SCHEME Maximum Mark: 100. Published

MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 October/November 2016 MARK SCHEME Maximum Mark: 100. Published Cambridge International Examinations Cambridge Ordinary Level MATHEMATICS (SYLLABUS D) 404/ Paper October/November 06 MARK SCHEME Maximum Mark: 00 Published This mark scheme is published as an aid to teachers

More information

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA:

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA: MA 114 Exam 3 Spring 217 Exam 3 Name: Section and/or TA: Last Four Digits of Student ID: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test.

More information

From Pop-Up Cards to Coffee-Cup Caustics: The Knight's Visor

From Pop-Up Cards to Coffee-Cup Caustics: The Knight's Visor Smith ScholarWorks Computer Science: Faculty Publications Computer Science 6-6-22 From Pop-Up Cards to Coffee-Cup Caustics: The Knight's Visor Stephanie Jakus Joseph O'Rourke Smith College, jorourke@smith.edu

More information

MEI GeoGebra Tasks for A2 Core

MEI GeoGebra Tasks for A2 Core Task 1: Functions The Modulus Function 1. Plot the graph of y = x : use y = x or y = abs(x) 2. Plot the graph of y = ax+b : use y = ax + b or y = abs(ax+b) If prompted click Create Sliders. What combination

More information

Introduction to Transformations. In Geometry

Introduction to Transformations. In Geometry + Introduction to Transformations In Geometry + What is a transformation? A transformation is a copy of a geometric figure, where the copy holds certain properties. Example: copy/paste a picture on your

More information

SPHERICAL PROJECTIONS (II) Schedule Updates and Reminders: Bring tracing paper &needles for Lab 5

SPHERICAL PROJECTIONS (II) Schedule Updates and Reminders: Bring tracing paper &needles for Lab 5 GG303 ecture 9 9/4/01 1 SPHERICA PRJECTINS (II) Schedule Updates and Reminders: Bring tracing paper &needles for ab 5 I ain Topics A Angles between lines and planes B Determination of fold axes C Equal-

More information

Birkdale High School - Higher Scheme of Work

Birkdale High School - Higher Scheme of Work Birkdale High School - Higher Scheme of Work Module 1 - Integers and Decimals Understand and order integers (assumed) Use brackets and hierarchy of operations (BODMAS) Add, subtract, multiply and divide

More information