Image-Space Techniques

Size: px
Start display at page:

Download "Image-Space Techniques"

Transcription

1 VR 05 Tutorial: Real-Time Collision Detection for Dynamic Virtual Environments Image-Space Techniques Bruno Heidelberger Computer Graphics Laboratory ETH Zurich, Switerland

2 Basic idea Exploit rasteriation of object primitives as intersection test Benefit from graphics hardware acceleration Image Plane (xy) Depth Buffer () 2

3 Early approaches [Shinya, Forgue 1991] Image-space collision detection for convex objects [Myskowski, Okunev, Kunii 1995] Collision detection for concave objects with limited depth complexity [Baciu, Wong 1997] Hardware-assisted collision detection for convex objects 3

4 More approaches [Lombardo, Cani, Neyret 1999] Intersection of tool with deformable tissue by rendering the interior of the tool [Vassilev, Spanlang, Chrysanthou 2001] Image-space collision detection applied to cloth simulation [Hoff, Zaferakis, Lin, Manocha 2001] Proximity tests and later penetration depth computation 4

5 Recent approaches [Knott, Pai 2003] Intersection of edges with surfaces [Govindaraju, Redon, Lin, Manocha 2003] Object and sub-object pruning based on occlusion queries [Heidelberger, Teschner, Gross 2004] Explicit intersection volume and self-collision detection based on LDIs 5

6 Layered depth images Compact, volumetric object representation [Shade et al. 1998] Layer 1 Layer 2 Layer 3 Layer = entry point = exit point Layered Depth Image 6

7 Algorithm Stage 1 Stage 2 Stage 3 Volume-of-interest LDI generation Collision query viewing direction a) LDI intersection b) Vertex-in-volume c) Self-collision 7

8 LDI generation Object is rendered once for each LDI layer Two separate depth test per fragment are required: Fragment has to be farther than the one in the previous layer Fragment has to be the nearest of all remaining fragments 5 6 VoI Ordered LDI Shadow mapping functionality is a second depth test [Everitt 2001] or multiple depth textures and fragment shaders 8

9 Unordered LDI Fragments 1,..., n are rendered in the same order in each rendering pass Employ the stencil buffer to generate the n-th value in the n-th pass 5 6 VoI Unordered LDI No depth test required, just stencil tests ~3x faster than ordered LDI approach! 9

10 Collision queries Explicit intersection volume + Vertex-in-volume test + 10

11 Self-collision query Check for incorrect ordering of front and back faces 1 2 VoI LDI Requires two passes (front- then back-faces) and sorting of depth values 11

12 Ongoing work Precision Image resolution, depth precision and render direction introduce errors Collision information Penetration depth and direction required for appropriate collision response GPU Bottleneck: framebuffer readback Integration with collision response, simulation, rendering etc. 12

13 Conclusion Image-space techniques exploit the rasteriation of objects for collision and selfcollision detection No pre-processing required Suitable for rigid and deformable objects Related image-based methods exist for collision culling, proximity tests and penetration depth computation 13

14 The End Thank you! 14

Detection of Collisions and Self-collisions Using Image-space Techniques

Detection of Collisions and Self-collisions Using Image-space Techniques Detection of Collisions and Self-collisions Using Image-space Techniques Bruno Heidelberger Matthias Teschner Markus Gross Computer Graphics Laboratory ETH Zurich Abstract. Image-space techniques have

More information

GPU-based Image-space Approach to Collision Detection among Closed Objects

GPU-based Image-space Approach to Collision Detection among Closed Objects GPU-based Image-space Approach to Collision Detection among Closed Objects Han-Young Jang jhymail@gmail.com TaekSang Jeong nanocreation@gmail.com Game Research Center College of Information and Communications

More information

DiFi: Distance Fields - Fast Computation Using Graphics Hardware

DiFi: Distance Fields - Fast Computation Using Graphics Hardware DiFi: Distance Fields - Fast Computation Using Graphics Hardware Avneesh Sud Dinesh Manocha UNC-Chapel Hill http://gamma.cs.unc.edu/difi Distance Fields Distance Function For a site a scalar function f:r

More information

ACCELERATING ROUTE PLANNING AND COLLISION DETECTION FOR COMPUTER GENERATED FORCES USING GPUS

ACCELERATING ROUTE PLANNING AND COLLISION DETECTION FOR COMPUTER GENERATED FORCES USING GPUS ACCELERATING ROUTE PLANNING AND COLLISION DETECTION FOR COMPUTER GENERATED FORCES USING GPUS David Tuft, Russell Gayle, Brian Salomon, Naga Govindaraju, Ming Lin, and Dinesh Manocha University of North

More information

Object-Space Interference Detection on Programmable Graphics Hardware

Object-Space Interference Detection on Programmable Graphics Hardware C o m p u t e r G r a p h i c s T e c h n i c a l R e p o r t s CG-2004-2 Object-Space Interference Detection on Programmable Graphics Hardware Alexander Greß Computer Graphics, Universität Bonn. gress@cs.uni-bonn.de

More information

Fast Proximity Computation among Deformable Models Using Discrete Voronoi Diagrams

Fast Proximity Computation among Deformable Models Using Discrete Voronoi Diagrams Fast Proximity Computation among Deformable Models Using Discrete Voronoi Diagrams Avneesh Sud Naga Govindaraju Russell Gayle Ilknur Kabul Dinesh Manocha Dept of Computer Science, University of North Carolina

More information

Ray Casting on Programmable Graphics Hardware. Martin Kraus PURPL group, Purdue University

Ray Casting on Programmable Graphics Hardware. Martin Kraus PURPL group, Purdue University Ray Casting on Programmable Graphics Hardware Martin Kraus PURPL group, Purdue University Overview Parallel volume rendering with a single GPU Implementing ray casting for a GPU Basics Optimizations Published

More information

Fast GPU Garment Simulation and Collision Detection

Fast GPU Garment Simulation and Collision Detection Fast GPU Garment Simulation and Collision Detection Tzvetomir I. Vassilev Dept. of IIT, University of Ruse 8 Studentska St Bulgaria 7017, Ruse tvassilev@uni-ruse.bg Bernhard Spanlang EventLab, Universitat

More information

Page 1. Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms

Page 1. Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms Visible Surface Determination Visibility Culling Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms Divide-and-conquer strategy:

More information

Rendering Techniques for Hardware-Accelerated Imaged-Based CSG

Rendering Techniques for Hardware-Accelerated Imaged-Based CSG Rendering Techniques for Hardware-Accelerated Imaged-Based CSG Florian Kirsch and Jürgen Döllner HASSO- PLATTNER- INSTITUT for Software Systems Engineering at the University of Potsdam Overview 1. Overview

More information

DiFi: Fast Distance Field Computation using Graphics Hardware

DiFi: Fast Distance Field Computation using Graphics Hardware DiFi: Fast Distance Field Computation using Graphics Hardware Avneesh Sud Dinesh Manocha Department of Computer Science Univeristy of North Carolina Chapel Hill, NC 27599-3175 {sud,dm}@cs.unc.edu http://gamma.cs.unc.edu/difi

More information

Many rendering scenarios, such as battle scenes or urban environments, require rendering of large numbers of autonomous characters.

Many rendering scenarios, such as battle scenes or urban environments, require rendering of large numbers of autonomous characters. 1 2 Many rendering scenarios, such as battle scenes or urban environments, require rendering of large numbers of autonomous characters. Crowd rendering in large environments presents a number of challenges,

More information

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane Rendering Pipeline Rendering Converting a 3D scene to a 2D image Rendering Light Camera 3D Model View Plane Rendering Converting a 3D scene to a 2D image Basic rendering tasks: Modeling: creating the world

More information

CS452/552; EE465/505. Clipping & Scan Conversion

CS452/552; EE465/505. Clipping & Scan Conversion CS452/552; EE465/505 Clipping & Scan Conversion 3-31 15 Outline! From Geometry to Pixels: Overview Clipping (continued) Scan conversion Read: Angel, Chapter 8, 8.1-8.9 Project#1 due: this week Lab4 due:

More information

CS 498 VR. Lecture 18-4/4/18. go.illinois.edu/vrlect18

CS 498 VR. Lecture 18-4/4/18. go.illinois.edu/vrlect18 CS 498 VR Lecture 18-4/4/18 go.illinois.edu/vrlect18 Review and Supplement for last lecture 1. What is aliasing? What is Screen Door Effect? 2. How image-order rendering works? 3. If there are several

More information

DEFERRED RENDERING STEFAN MÜLLER ARISONA, ETH ZURICH SMA/

DEFERRED RENDERING STEFAN MÜLLER ARISONA, ETH ZURICH SMA/ DEFERRED RENDERING STEFAN MÜLLER ARISONA, ETH ZURICH SMA/2013-11-04 DEFERRED RENDERING? CONTENTS 1. The traditional approach: Forward rendering 2. Deferred rendering (DR) overview 3. Example uses of DR:

More information

Real - Time Rendering. Pipeline optimization. Michal Červeňanský Juraj Starinský

Real - Time Rendering. Pipeline optimization. Michal Červeňanský Juraj Starinský Real - Time Rendering Pipeline optimization Michal Červeňanský Juraj Starinský Motivation Resolution 1600x1200, at 60 fps Hw power not enough Acceleration is still necessary 3.3.2010 2 Overview Application

More information

Exact distance computation for deformable objects

Exact distance computation for deformable objects Exact distance computation for deformable objects Marc Gissler University of Freiburg, Germany Matthias Teschner University of Freiburg, Germany Udo Frese University of Bremen, Germany Abstract We present

More information

Applications of Explicit Early-Z Culling

Applications of Explicit Early-Z Culling Applications of Explicit Early-Z Culling Jason L. Mitchell ATI Research Pedro V. Sander ATI Research Introduction In past years, in the SIGGRAPH Real-Time Shading course, we have covered the details of

More information

Rasterization Overview

Rasterization Overview Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

Kinetic BV Hierarchies and Collision Detection

Kinetic BV Hierarchies and Collision Detection Kinetic BV Hierarchies and Collision Detection Gabriel Zachmann Clausthal University, Germany zach@tu-clausthal.de Bonn, 25. January 2008 Bounding Volume Hierarchies BVHs are standard DS for collision

More information

TSBK03 Screen-Space Ambient Occlusion

TSBK03 Screen-Space Ambient Occlusion TSBK03 Screen-Space Ambient Occlusion Joakim Gebart, Jimmy Liikala December 15, 2013 Contents 1 Abstract 1 2 History 2 2.1 Crysis method..................................... 2 3 Chosen method 2 3.1 Algorithm

More information

Kinetic Bounding Volume Hierarchies for Deformable Objects

Kinetic Bounding Volume Hierarchies for Deformable Objects Kinetic Bounding Volume Hierarchies for Deformable Objects René Weller Clausthal University of Technology, Germany weller@in.tu-clausthal.de VRCIA 06, June 2006, Hong Kong Motivation Bounding volume hierarchies

More information

CS4620/5620: Lecture 14 Pipeline

CS4620/5620: Lecture 14 Pipeline CS4620/5620: Lecture 14 Pipeline 1 Rasterizing triangles Summary 1! evaluation of linear functions on pixel grid 2! functions defined by parameter values at vertices 3! using extra parameters to determine

More information

Rendering Objects. Need to transform all geometry then

Rendering Objects. Need to transform all geometry then Intro to OpenGL Rendering Objects Object has internal geometry (Model) Object relative to other objects (World) Object relative to camera (View) Object relative to screen (Projection) Need to transform

More information

Interactive Haptic Rendering of High-Resolution Deformable Objects

Interactive Haptic Rendering of High-Resolution Deformable Objects Interactive Haptic Rendering of High-Resolution Deformable Objects Nico Galoppo 1, Serhat Tekin 1, Miguel A. Otaduy 2, Markus Gross 2, and Ming C. Lin 1 1 Department of Computer Science, University of

More information

Consistent Penetration Depth Estimation for Deformable Collision Response

Consistent Penetration Depth Estimation for Deformable Collision Response Consistent Penetration Depth Estimation for Deformable Collision Response Bruno Heidelberger Matthias Teschner Richard Keiser Matthias Müller Markus Gross Computer Graphics Laboratory ETH Zurich, Switzerland

More information

Z-Buffer hold pixel's distance from camera. Z buffer

Z-Buffer hold pixel's distance from camera. Z buffer Z-Buffer hold pixel's distance from camera Z buffer Frustrum Culling and Z-buffering insufficient Given a large enough set of polygons, no matter how fast the graphics card, sending it too many hidden

More information

Next-Generation Graphics on Larrabee. Tim Foley Intel Corp

Next-Generation Graphics on Larrabee. Tim Foley Intel Corp Next-Generation Graphics on Larrabee Tim Foley Intel Corp Motivation The killer app for GPGPU is graphics We ve seen Abstract models for parallel programming How those models map efficiently to Larrabee

More information

Fast 3D Geometric Proximity Queries between Rigid and Deformable Models Using Graphics Hardware Acceleration

Fast 3D Geometric Proximity Queries between Rigid and Deformable Models Using Graphics Hardware Acceleration Fast 3D Geometric Proximity Queries between Rigid and Deformable Models Using Graphics Hardware Acceleration Kenneth E. Hoff III, Andrew Zaferakis, Ming Lin, Dinesh Manocha University of North Carolina

More information

Computer Graphics Shadow Algorithms

Computer Graphics Shadow Algorithms Computer Graphics Shadow Algorithms Computer Graphics Computer Science Department University of Freiburg WS 11 Outline introduction projection shadows shadow maps shadow volumes conclusion Motivation shadows

More information

Collision Detection II. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill

Collision Detection II. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill Collision Detection II These slides are mainly from Ming Lin s course notes at UNC Chapel Hill http://www.cs.unc.edu/~lin/comp259-s06/ Some Possible Approaches Geometric methods Algebraic techniques Hierarchical

More information

Fast continuous collision detection among deformable Models using graphics processors CS-525 Presentation Presented by Harish

Fast continuous collision detection among deformable Models using graphics processors CS-525 Presentation Presented by Harish Fast continuous collision detection among deformable Models using graphics processors CS-525 Presentation Presented by Harish Abstract: We present an interactive algorithm to perform continuous collision

More information

Chapter 1 Introduction

Chapter 1 Introduction Graphics & Visualization Chapter 1 Introduction Graphics & Visualization: Principles & Algorithms Brief History Milestones in the history of computer graphics: 2 Brief History (2) CPU Vs GPU 3 Applications

More information

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments?

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments? Homework 1: Questions/Comments? Implicit Surfaces,, & Volumetric Data Structures Loop Subdivision Shirley, Fundamentals of Computer Graphics Loop Subdivision SIGGRAPH 2000 course notes Subdivision for

More information

Order Independent Transparency with Dual Depth Peeling. Louis Bavoil, Kevin Myers

Order Independent Transparency with Dual Depth Peeling. Louis Bavoil, Kevin Myers Order Independent Transparency with Dual Depth Peeling Louis Bavoil, Kevin Myers Document Change History Version Date Responsible Reason for Change 1.0 February 9 2008 Louis Bavoil Initial release Abstract

More information

CSE 167: Introduction to Computer Graphics Lecture #18: More Effects. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #18: More Effects. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 CSE 167: Introduction to Computer Graphics Lecture #18: More Effects Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements TA evaluations CAPE Final project blog

More information

Direct Rendering of Trimmed NURBS Surfaces

Direct Rendering of Trimmed NURBS Surfaces Direct Rendering of Trimmed NURBS Surfaces Hardware Graphics Pipeline 2/ 81 Hardware Graphics Pipeline GPU Video Memory CPU Vertex Processor Raster Unit Fragment Processor Render Target Screen Extended

More information

L10 Layered Depth Normal Images. Introduction Related Work Structured Point Representation Boolean Operations Conclusion

L10 Layered Depth Normal Images. Introduction Related Work Structured Point Representation Boolean Operations Conclusion L10 Layered Depth Normal Images Introduction Related Work Structured Point Representation Boolean Operations Conclusion 1 Introduction Purpose: using the computational power on GPU to speed up solid modeling

More information

Advanced Rendering Techniques

Advanced Rendering Techniques Advanced Rendering Techniques Lecture Rendering Pipeline (Part I) Professor Leandro Augusto Frata Fernandes laffernandes@ic.uff.br Lecture notes available in http://www.ic.uff.br/~laffernandes/teaching/0./topicos_rendering

More information

An Efficient Approach for Emphasizing Regions of Interest in Ray-Casting based Volume Rendering

An Efficient Approach for Emphasizing Regions of Interest in Ray-Casting based Volume Rendering An Efficient Approach for Emphasizing Regions of Interest in Ray-Casting based Volume Rendering T. Ropinski, F. Steinicke, K. Hinrichs Institut für Informatik, Westfälische Wilhelms-Universität Münster

More information

Enhancing Traditional Rasterization Graphics with Ray Tracing. October 2015

Enhancing Traditional Rasterization Graphics with Ray Tracing. October 2015 Enhancing Traditional Rasterization Graphics with Ray Tracing October 2015 James Rumble Developer Technology Engineer, PowerVR Graphics Overview Ray Tracing Fundamentals PowerVR Ray Tracing Pipeline Using

More information

The Application Stage. The Game Loop, Resource Management and Renderer Design

The Application Stage. The Game Loop, Resource Management and Renderer Design 1 The Application Stage The Game Loop, Resource Management and Renderer Design Application Stage Responsibilities 2 Set up the rendering pipeline Resource Management 3D meshes Textures etc. Prepare data

More information

Interactive Visibility Ordering and Transparency Computations among Geometric Primitives in Complex Environments

Interactive Visibility Ordering and Transparency Computations among Geometric Primitives in Complex Environments Interactive Visibility Ordering and Transparency Computations among Geometric Primitives in Complex Environments Naga K. Govindaraju Michael Henson Ming C. Lin Dinesh Manocha University of North Carolina

More information

Hierarchy Accelerated Stochastic Collision Detection

Hierarchy Accelerated Stochastic Collision Detection Hierarchy Accelerated Stochastic Collision Detection S. Kimmerle 1 M. Nesme 2 F. Faure 2 1 WSI/GRIS, Universität Tübingen, Germany 2 GRAVIR, INRIA Rhône-Alpes, Grenoble, France Email: kimmerle@gris.uni-tuebingen.de

More information

Collision Detection. Motivation - Dynamic Simulation ETH Zurich. Motivation - Path Planning ETH Zurich. Motivation - Biomedical Simulation ETH Zurich

Collision Detection. Motivation - Dynamic Simulation ETH Zurich. Motivation - Path Planning ETH Zurich. Motivation - Biomedical Simulation ETH Zurich Collision Detection Motivation - Dynamic Simulation Collision detection is an essential part of physically realistic dynamic simulations. For each time step: compute dynamics detect collisions resolve

More information

Fast Line-of-Sight Computations in Complex Environments

Fast Line-of-Sight Computations in Complex Environments Fast Line-of-Sight Computations in Complex Environments David Tuft Brian Salomon Sean Hanlon Dinesh Manocha Dept. of Computer Science Univ. of North Carolina at Chapel Hill Chapel Hill, NC 27599-3175 USA

More information

Graphics Performance Optimisation. John Spitzer Director of European Developer Technology

Graphics Performance Optimisation. John Spitzer Director of European Developer Technology Graphics Performance Optimisation John Spitzer Director of European Developer Technology Overview Understand the stages of the graphics pipeline Cherchez la bottleneck Once found, either eliminate or balance

More information

Graphics Processing Unit Architecture (GPU Arch)

Graphics Processing Unit Architecture (GPU Arch) Graphics Processing Unit Architecture (GPU Arch) With a focus on NVIDIA GeForce 6800 GPU 1 What is a GPU From Wikipedia : A specialized processor efficient at manipulating and displaying computer graphics

More information

Class of Algorithms. Visible Surface Determination. Back Face Culling Test. Back Face Culling: Object Space v. Back Face Culling: Object Space.

Class of Algorithms. Visible Surface Determination. Back Face Culling Test. Back Face Culling: Object Space v. Back Face Culling: Object Space. Utah School of Computing Spring 13 Class of Algorithms Lecture Set Visible Surface Determination CS56 Computer Graphics From Rich Riesenfeld Spring 13 Object (Model) Space Algorithms Work in the model

More information

Lecture 2. Shaders, GLSL and GPGPU

Lecture 2. Shaders, GLSL and GPGPU Lecture 2 Shaders, GLSL and GPGPU Is it interesting to do GPU computing with graphics APIs today? Lecture overview Why care about shaders for computing? Shaders for graphics GLSL Computing with shaders

More information

GPU Computation Strategies & Tricks. Ian Buck NVIDIA

GPU Computation Strategies & Tricks. Ian Buck NVIDIA GPU Computation Strategies & Tricks Ian Buck NVIDIA Recent Trends 2 Compute is Cheap parallelism to keep 100s of ALUs per chip busy shading is highly parallel millions of fragments per frame 0.5mm 64-bit

More information

TDA362/DIT223 Computer Graphics EXAM (Same exam for both CTH- and GU students)

TDA362/DIT223 Computer Graphics EXAM (Same exam for both CTH- and GU students) TDA362/DIT223 Computer Graphics EXAM (Same exam for both CTH- and GU students) Saturday, January 13 th, 2018, 08:30-12:30 Examiner Ulf Assarsson, tel. 031-772 1775 Permitted Technical Aids None, except

More information

GPU-Accelerated Deep Shadow Maps for Direct Volume Rendering

GPU-Accelerated Deep Shadow Maps for Direct Volume Rendering Graphics Hardware (2006) M. Olano, P. Slusallek (Editors) GPU-Accelerated Deep Shadow Maps for Direct Volume Rendering Markus Hadwiger Andrea Kratz Christian Sigg Katja Bühler VRVis Research Center ETH

More information

Organization. Motion Planning. Organization. Motion Planning & Physically-based Modeling Using GPUs

Organization. Motion Planning. Organization. Motion Planning & Physically-based Modeling Using GPUs Motion Planning & Physically-based Modeling Using GPUs Ming C. Lin University of North Carolina at Chapel Hill http://gamma.cs.unc.edu/voronoi/planner http://gamma.cs.unc.edu/pivot http://gamma.cs.unc.edu/pd

More information

GUERRILLA DEVELOP CONFERENCE JULY 07 BRIGHTON

GUERRILLA DEVELOP CONFERENCE JULY 07 BRIGHTON Deferred Rendering in Killzone 2 Michal Valient Senior Programmer, Guerrilla Talk Outline Forward & Deferred Rendering Overview G-Buffer Layout Shader Creation Deferred Rendering in Detail Rendering Passes

More information

X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1

X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1 X. GPU Programming 320491: Advanced Graphics - Chapter X 1 X.1 GPU Architecture 320491: Advanced Graphics - Chapter X 2 GPU Graphics Processing Unit Parallelized SIMD Architecture 112 processing cores

More information

CC Shadow Volumes. Abstract. Introduction

CC Shadow Volumes. Abstract. Introduction CC Shadow Volumes Brandon Lloyd Jeremy Wendt Naga Govindaraju Dinesh Manocha Department of Computer Science University of North Carolina at Chapel Hill http://gamma.cs.unc.edu/ccsv Figure 1: These images

More information

2.11 Particle Systems

2.11 Particle Systems 2.11 Particle Systems 320491: Advanced Graphics - Chapter 2 152 Particle Systems Lagrangian method not mesh-based set of particles to model time-dependent phenomena such as snow fire smoke 320491: Advanced

More information

Hardware-driven Visibility Culling Jeong Hyun Kim

Hardware-driven Visibility Culling Jeong Hyun Kim Hardware-driven Visibility Culling Jeong Hyun Kim KAIST (Korea Advanced Institute of Science and Technology) Contents Introduction Background Clipping Culling Z-max (Z-min) Filter Programmable culling

More information

COMP371 COMPUTER GRAPHICS

COMP371 COMPUTER GRAPHICS COMP371 COMPUTER GRAPHICS LECTURE 14 RASTERIZATION 1 Lecture Overview Review of last class Line Scan conversion Polygon Scan conversion Antialiasing 2 Rasterization The raster display is a matrix of picture

More information

Visibility and Occlusion Culling

Visibility and Occlusion Culling Visibility and Occlusion Culling CS535 Fall 2014 Daniel G. Aliaga Department of Computer Science Purdue University [some slides based on those of Benjamin Mora] Why? To avoid processing geometry that does

More information

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lecture 4 Tamar Shinar Computer Science & Engineering UC Riverside Shadows Shadows for each pixel do compute viewing ray if ( ray hits an object with t in [0, inf] ) then compute

More information

Getting fancy with texture mapping (Part 2) CS559 Spring Apr 2017

Getting fancy with texture mapping (Part 2) CS559 Spring Apr 2017 Getting fancy with texture mapping (Part 2) CS559 Spring 2017 6 Apr 2017 Review Skyboxes as backdrops Credits : Flipmode 3D Review Reflection maps Credits : NVidia Review Decal textures Credits : andreucabre.com

More information

Two Converging Trends in Computing. Streaming Geometric Computations on the GPU. What is a Stream? Streaming Model

Two Converging Trends in Computing. Streaming Geometric Computations on the GPU. What is a Stream? Streaming Model Streaming Geometric Computations on the GPU Shankar Krishnan AT&T Labs - Research Two Converging Trends in Computing The accelerated development of graphics cards developing faster than CPUs GPUs are cheap

More information

Lecture 9: Deferred Shading. Visual Computing Systems CMU , Fall 2013

Lecture 9: Deferred Shading. Visual Computing Systems CMU , Fall 2013 Lecture 9: Deferred Shading Visual Computing Systems The course so far The real-time graphics pipeline abstraction Principle graphics abstractions Algorithms and modern high performance implementations

More information

Acknowledgement: Images and many slides from presentations by Mark J. Kilgard and other Nvidia folks, from slides on developer.nvidia.

Acknowledgement: Images and many slides from presentations by Mark J. Kilgard and other Nvidia folks, from slides on developer.nvidia. Shadows Acknowledgement: Images and many slides from presentations by Mark J. Kilgard and other Nvidia folks, from slides on developer.nvidia.com Practical & Robust Stenciled Shadow Volumes for Hardware-Accelerated

More information

System for Collision Detection Between Deformable Models Built on Axis Aligned Bounding Boxes and GPU Based Culling

System for Collision Detection Between Deformable Models Built on Axis Aligned Bounding Boxes and GPU Based Culling Brigham Young University BYU ScholarsArchive All Theses and Dissertations 27-1-12 System for Collision Detection Between Deformable Models Built on Axis Aligned Bounding Boxes and GPU Based Culling David

More information

Hidden surface removal. Computer Graphics

Hidden surface removal. Computer Graphics Lecture Hidden Surface Removal and Rasterization Taku Komura Hidden surface removal Drawing polygonal faces on screen consumes CPU cycles Illumination We cannot see every surface in scene We don t want

More information

Standards for WebVR. Neil Trevett. Khronos President Vice President Mobile Content,

Standards for WebVR. Neil Trevett. Khronos President Vice President Mobile Content, Standards for WebVR Neil Trevett Khronos President Vice President Mobile Content, NVIDIA ntrevett@nvidia.com, @neilt3d October 2016 Copyright Khronos Group 2016 - Page 1 Khronos Open Standards Software

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

Goal. Interactive Walkthroughs using Multiple GPUs. Boeing 777. DoubleEagle Tanker Model

Goal. Interactive Walkthroughs using Multiple GPUs. Boeing 777. DoubleEagle Tanker Model Goal Interactive Walkthroughs using Multiple GPUs Dinesh Manocha University of North Carolina- Chapel Hill http://www.cs.unc.edu/~walk SIGGRAPH COURSE #11, 2003 Interactive Walkthrough of complex 3D environments

More information

Scanline Rendering 2 1/42

Scanline Rendering 2 1/42 Scanline Rendering 2 1/42 Review 1. Set up a Camera the viewing frustum has near and far clipping planes 2. Create some Geometry made out of triangles 3. Place the geometry in the scene using Transforms

More information

CS130 : Computer Graphics. Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics. Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Tamar Shinar Computer Science & Engineering UC Riverside Raster Devices and Images Raster Devices Hearn, Baker, Carithers Raster Display Transmissive vs. Emissive Display anode

More information

Screen Space Ambient Occlusion TSBK03: Advanced Game Programming

Screen Space Ambient Occlusion TSBK03: Advanced Game Programming Screen Space Ambient Occlusion TSBK03: Advanced Game Programming August Nam-Ki Ek, Oscar Johnson and Ramin Assadi March 5, 2015 This project report discusses our approach of implementing Screen Space Ambient

More information

Clipping. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Clipping. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Clipping 1 Objectives Clipping lines First of implementation algorithms Clipping polygons (next lecture) Focus on pipeline plus a few classic algorithms 2 Clipping 2D against clipping window 3D against

More information

Real-Time Rendering (Echtzeitgraphik) Dr. Michael Wimmer

Real-Time Rendering (Echtzeitgraphik) Dr. Michael Wimmer Real-Time Rendering (Echtzeitgraphik) Dr. Michael Wimmer wimmer@cg.tuwien.ac.at Visibility Overview Basics about visibility Basics about occlusion culling View-frustum culling / backface culling Occlusion

More information

Real-Time Voxelization for Global Illumination

Real-Time Voxelization for Global Illumination Lecture 26: Real-Time Voxelization for Global Illumination Visual Computing Systems Voxelization to regular grid Input: scene triangles Output: surface information at each voxel in 3D grid - Simple case:

More information

Parallelizing Graphics Pipeline Execution (+ Basics of Characterizing a Rendering Workload)

Parallelizing Graphics Pipeline Execution (+ Basics of Characterizing a Rendering Workload) Lecture 2: Parallelizing Graphics Pipeline Execution (+ Basics of Characterizing a Rendering Workload) Visual Computing Systems Analyzing a 3D Graphics Workload Where is most of the work done? Memory Vertex

More information

CS GAME PROGRAMMING Question bank

CS GAME PROGRAMMING Question bank CS6006 - GAME PROGRAMMING Question bank Part A Unit I 1. List the different types of coordinate systems. 2. What is ray tracing? Mention some applications of ray tracing. 3. Discuss the stages involved

More information

3D Reconstruction with Tango. Ivan Dryanovski, Google Inc.

3D Reconstruction with Tango. Ivan Dryanovski, Google Inc. 3D Reconstruction with Tango Ivan Dryanovski, Google Inc. Contents Problem statement and motivation The Tango SDK 3D reconstruction - data structures & algorithms Applications Developer tools Problem formulation

More information

Clipping. CSC 7443: Scientific Information Visualization

Clipping. CSC 7443: Scientific Information Visualization Clipping Clipping to See Inside Obscuring critical information contained in a volume data Contour displays show only exterior visible surfaces Isosurfaces can hide other isosurfaces Other displays can

More information

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1 Markus Hadwiger, KAUST Reading Assignment #2 (until Feb. 17) Read (required): GLSL book, chapter 4 (The OpenGL Programmable

More information

Sphere Trees Generation As Needed In Real Time To Speed Up Collision Detection

Sphere Trees Generation As Needed In Real Time To Speed Up Collision Detection Sphere Trees Generation As Needed In Real Time To Speed Up Collision Detection Marta Franquesa Niubó Departament de Llenguatges i Sistemes Informàtics Universitat Politècnica de Catalunya Email: marta@lsi.upc.edu

More information

Mali Demos: Behind the Pixels. Stacy Smith

Mali Demos: Behind the Pixels. Stacy Smith Mali Demos: Behind the Pixels Stacy Smith Mali Graphics: Behind the demos Mali Demo Team: Doug Day Stacy Smith (Me) Sylwester Bala Roberto Lopez Mendez PHOTOGRAPH UNAVAILABLE These days I spend more time

More information

Spring 2009 Prof. Hyesoon Kim

Spring 2009 Prof. Hyesoon Kim Spring 2009 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

Applications of Explicit Early-Z Z Culling. Jason Mitchell ATI Research

Applications of Explicit Early-Z Z Culling. Jason Mitchell ATI Research Applications of Explicit Early-Z Z Culling Jason Mitchell ATI Research Outline Architecture Hardware depth culling Applications Volume Ray Casting Skin Shading Fluid Flow Deferred Shading Early-Z In past

More information

Tutorial on GPU Programming #2. Joong-Youn Lee Supercomputing Center, KISTI

Tutorial on GPU Programming #2. Joong-Youn Lee Supercomputing Center, KISTI Tutorial on GPU Programming #2 Joong-Youn Lee Supercomputing Center, KISTI Contents Graphics Pipeline Vertex Programming Fragment Programming Introduction to Cg Language Graphics Pipeline The process to

More information

Overview. Pipeline implementation I. Overview. Required Tasks. Preliminaries Clipping. Hidden Surface removal

Overview. Pipeline implementation I. Overview. Required Tasks. Preliminaries Clipping. Hidden Surface removal Overview Pipeline implementation I Preliminaries Clipping Line clipping Hidden Surface removal Overview At end of the geometric pipeline, vertices have been assembled into primitives Must clip out primitives

More information

High-performance Penetration Depth Computation for Haptic Rendering

High-performance Penetration Depth Computation for Haptic Rendering High-performance Penetration Depth Computation for Haptic Rendering Young J. Kim http://graphics.ewha.ac.kr Ewha Womans University Issues of Interpenetration Position and orientation of the haptic probe,

More information

Real-Time Collision Detection for Dynamic Virtual Environments

Real-Time Collision Detection for Dynamic Virtual Environments Real-Time Collision Detection for Dynamic Virtual Environments Gabriel Zachmann, Matthias Teschner, Stefan Kimmerle, Bruno Heidelberger, Laks Raghupathi, Arnulph Fuhrmann To cite this version: Gabriel

More information

On-the-fly Vertex Reuse for Massively-Parallel Software Geometry Processing

On-the-fly Vertex Reuse for Massively-Parallel Software Geometry Processing 2018 On-the-fly for Massively-Parallel Software Geometry Processing Bernhard Kerbl Wolfgang Tatzgern Elena Ivanchenko Dieter Schmalstieg Markus Steinberger 5 4 3 4 2 5 6 7 6 3 1 2 0 1 0, 0,1,7, 7,1,2,

More information

PowerVR Performance Recommendations The Golden Rules. October 2015

PowerVR Performance Recommendations The Golden Rules. October 2015 PowerVR Performance Recommendations The Golden Rules October 2015 Paul Ly Developer Technology Engineer, PowerVR Graphics Understanding Your Bottlenecks Based on our experience 3 The Golden Rules 1. The

More information

Closest Point Query Among The Union Of Convex Polytopes Using Rasterization Hardware

Closest Point Query Among The Union Of Convex Polytopes Using Rasterization Hardware Closest Point Query Among The Union Of Convex Polytopes Using Rasterization Hardware Young J. Kim Kenneth Hoff Ming C. Lin and Dinesh Manocha Department of Computer Science University of North Carolina

More information

Overview. Collision Detection. A Simple Collision Detection Algorithm. Collision Detection in a Dynamic Environment. Query Types.

Overview. Collision Detection. A Simple Collision Detection Algorithm. Collision Detection in a Dynamic Environment. Query Types. Overview Collision Detection Alan Liu aliu@usuhs.mil The Surgical Simulation Laboratory National Capital Area Medical Simulation Center Uniformed Services University http://simcen.usuhs.mil/miccai2003

More information

Fall CSCI 420: Computer Graphics. 7.1 Rasterization. Hao Li.

Fall CSCI 420: Computer Graphics. 7.1 Rasterization. Hao Li. Fall 2015 CSCI 420: Computer Graphics 7.1 Rasterization Hao Li http://cs420.hao-li.com 1 Rendering Pipeline 2 Outline Scan Conversion for Lines Scan Conversion for Polygons Antialiasing 3 Rasterization

More information

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11 Pipeline Operations CS 4620 Lecture 11 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives to pixels RASTERIZATION

More information

References. Additional lecture notes for 2/18/02.

References. Additional lecture notes for 2/18/02. References Additional lecture notes for 2/18/02. I-COLLIDE: Interactive and Exact Collision Detection for Large-Scale Environments, by Cohen, Lin, Manocha & Ponamgi, Proc. of ACM Symposium on Interactive

More information

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL International Edition Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL Sixth Edition Edward Angel Dave Shreiner Interactive Computer Graphics: A Top-Down Approach with Shader-Based

More information