Role of the free surface in particle deposition during evaporation of colloidal sessile drops

Size: px
Start display at page:

Download "Role of the free surface in particle deposition during evaporation of colloidal sessile drops"

Transcription

1 Role of the free surface in particle deposition during evaporation of colloidal sessile drops Hassan Masoud and James D. Felske Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, New York 14260, USA Deposition patterns of particles suspended in evaporating colloidal drops are determined by the flow fields within the drops. Using analytically determined velocities, particle motions are then tracked in a Lagrangian sense. It is found that the majority of particles intersect the free surface as it recedes. Such capture of particles by the free surface is found to be the major mechanism in establishing the deposition pattern. Patterns are calculated for wetting and non-wetting drops whose contact lines are either pinned or freely moving during evaporation. The distribution of evaporative flux which drives the flows is taken to be that engendered by gas-phase diffusion. The theoretical results are found to agree favorably with available experimental data. I. INTRODUCTION Recently, the problem of sessile drop evaporation has found prominence in relation to the deposition of particles that occurs during the drying of colloidal drops. The topic is of high current interest because of the use of evaporating drops in depositing molecules (e.g. DNA or proteins) onto substrates in high through-put genomic or proteomic assays, colloidal particles into ordered structures for potential use directly, or for the templating of ordered structures. In addition, a particular deposition pattern the ring and phenomena related to it have important implications for: drug discovery [1], and the manufacture of novel electronic and optical materials [2,3], including thin films and 1

2 coatings [4-7]. Apart from ring patterns, applications include: buckling instability and skin formation by deposition from polymer solutions [8-10], and evaporation of liquid drops on cool or hot surfaces [11]. The deposition pattern produced depends upon the flow within the drop. In the absence of a surface tension gradient at the free surface, the flow pattern is driven by the combination of the evaporative flux distribution, the shape of the free surface, and the behavior of the contact line. For instance, flow can be towards, away or both towards and away from the contact line under different combinations of these factors. Thermal boundary conditions and surfactant concentration at the free surface are equally important when Marangoni flow is present. Several studies, including our previous analytical analyses [12,13], have been conducted focusing on the flow inside an evaporating sessile droplet without Marangoni flow. In addition, Deegan et al. [14], Popov [15], Fischer [16], Hu and Larson [17] and Widjaja and Harris [18] have investigated the particle deposition during sessile drop evaporation. Deegan [14] and Popov [15] neglected the vertical velocity component and instead considered the behavior of the vertically averaged radial velocity at small contact angles. In their analyses 100 % of the solute particles were swept radially to the contact line of the drop. Fischer [16] obtained the fluid velocity in the limit of the lubrication theory. Neglecting particle diffusion, he calculated the particle concentration distribution due solely to convective mass transfer. Hu and Larson [17] simulated Brownian dynamics to predict deposition. They determined the deposition distribution by freezing the location of any particle that came into contact with the substrate. Widjaja and Harris [18] calculated particle deposition profiles from an Eulerian point of view. They found 2

3 that the deposition pattern is influenced by both the convective and diffusive mass transfer of particles in the bulk liquid as well as by the deposition rate along the substrate. In the present study, deposition patterns resulting from the flow within evaporating colloidal drops are investigated from the Lagrangian point of view when convection is the primary mode of particle transfer. It is shown that the free surface of the drop plays a major role in defining the distribution pattern. Patterns are calculated for wetting and non-wetting drops whose contact lines are either pinned or freely moving during evaporation. II. MODELING AND ASSUMPTIONS The droplets considered in the present study are initially ~1mm from the axis of symmetry to the contact line ( R ). For water drops of this size evaporating under room conditions, the characteristic velocity in the drop is ~ 1 m/ s with a corresponding Reynolds number of 3 ~ 10 [19]. For millimeter size water drops the Bond and capillary numbers are, respectively, Bo ~ 0.04 and Ca ~ Hence, surface tension is the dominant influence on the droplet s shape, and the droplet becomes a spherical cap. The droplets are assumed to contain dilute suspensions of non-volatile molecular or colloidal solutes which are initially uniformly dispersed in the fluid. The solutes are assumed to move at the same velocity as the solvent but, unlike the solvent, they do not evaporate. Particle motion is tracked in a Lagrangian sense. When they are deposited, it is assumed that the deposits do not interfere with the geometry of the drop or the flow field within it. Therefore, in the absence of a surface tension gradient at the free surface, the 3

4 analytical solutions previously derived [12,13] for the velocity distributions are employed. Particle diffusion is neglected with respect to convective transport since, as pointed out by Hu and Larson [17], it takes much longer for a micron size particle to diffuse across the height of a mm-size drop than it takes for the radial flow to carry the particle to the free surface. Also, the particles are considered to be simple spheres which do not interact with one another. Particles may experience the following phenomena: capture by the substrate, capture by the free surface, and transport by the bulk fluid. Regarding capture by the substrate, it is noted that the fluid velocity approaches zero as the substrate is neared. Therefore, without enhancement of diffusion or attractive forces, particles in solution will not be captured by the substrate. On the other hand, it will be seen that capture by the free surface occurs for the majority of particles. Once captured, a particle moves with the velocity of the surface wherein the tangential component carries it towards the contact line. It is assumed that in nearing the contact line, when a particle reaches 2 2 ( rparticle / R 1) ( z particle / R 1) 0.01 it remains fixed at that position. Those particles in the bulk fluid which approach the contact line are treated in the same manner. The deposition thickness is computed at the end of evaporation. Two different models of contact line motion are considered. The first, based on the experimental observation of Hu and Larson [17], takes the droplet contact line to be pinned until the contact angle is reduced to a critical value after which the contact line 4

5 freely recedes. The second model allows the contact line to always freely move (never pinned). FIG. 1: Initial distribution of particles in the drop ( A indicated zone near the contact line stay there. / N 4 10 ). Particles entering the * 4 cs total In comparing particle tracking results for drops of different sizes (contact angles) the area initially allotted to a particle should be the same. Computationally this requires a common value of the ratio of the dimensionless cross sectional area ( A A / R total number of particles ( N total * 2 cs cs ) to the ). In Fig. 1 the uniform initial spacing corresponding to A / N 4 10 is shown for contact angle of 60. This value was used in all of the * 4 cs total present results. That this value was small enough to yield behavior independent of its value was verified in a number of cases by computing for A / N 10. * 4 cs total For a pinned contact line, the rate of change of the contact angle is known as a function of time. In these cases, the simulations were performed by incrementing the contact angle rather than the time. For an unpinned d contact line, the rate of change of the radius is known as a function of time. In this case, simulations incremented this radius rather than time. 5

6 III. RESULTS AND DISCUSSION Figure 2 shows the deposition patterns corresponding to the first model of contact line behavior. This model pins the contact line until the contact angle is reduced to a critical value. When this value is reached, the drop becomes unpinned and the contact radius freely recedes (at fixed contact angle) for the remainder of evaporation. All patterns predicted by this model are ring-like. It is seen that as the initial contact angle increases, the fraction of particles deposited at the contact line (and consequently the thickness of the deposit) increases. This behavior follows from first noting that surface and bulk flows are both toward the contact line when it is pinned. Therefore, since drops having larger initial contact angles provide more time for particle motion, a larger fraction of the particles will finally deposit at the contact line. FIG. 2: Fraction of particles deposited corresponding to different initial contact angles ( 30, 60, 90 and 120 ). First model: contact line pinned until contact angle reaches 3 and subsequently recedes at this angle. 6

7 FIG. 3: For (a) (c), the initial contact angle is 40 ; (a) and (b) show particle depositions corresponding, respectively to viscous and inviscid flow; (c) compares the fraction of particles captured by the free surface as a function of time (equivalently, () t ) in viscous and inviscid flows. (d) Fraction of c particles captured by the free surface in viscous flow for different initial contact angles (30, 60, 90 and 120 ). In all figures the droplet contact line is pinned until the contact angle is reduced to 3 whereupon the contact radius recedes at constant contact angle. Figure 3 compares deposition behavior computed for flows considered to be either viscous or inviscid. From previous analyses [12,13] it was demonstrated that inviscid and viscous flows are similar near the free surface but are somewhat different near substrate (due to the no slip condition in viscous flow). Because of the differences in the near substrate flow behavior, it might be surmised that viscous and inviscid flows will produce distinctly different deposition patterns. This, however, is not the case, as it can be seen from Fig.3 (a) and (b). The deposition patterns are actually quite similar and both agree well with the experimental data of Hu and Larson [17] (Fig. 4). The reason why inviscid and viscous depositions agree so well is that it is not the near substrate flow behavior which controls deposition but rather the flow behavior near the free surface. This stems 7

8 from the behavior illustrated in Fig. 3(d) which shows that the majority of particles are captured by the free surface during the time the contact line is pinned. Of those particles captured by the free surface, most are carried down to the contact line by the tangential fluid velocity on the free surface. Figure 3(c) also illustrates this behavior. Therefore, since the number of particles captured by the free surface is about the same for viscous and inviscid flows, and since near the free surface the flow fields are similar in both cases, then deposition patterns will be similar whether the flow is treated as viscous or inviscid. FIG. 4: Fraction of particles deposited as a function of radial position for two initial contact angles ( 30 and 60 ). Second model: contact line unpinned during evaporation. Figure 4 illustrates particle deposition using the second model of contact line behavior free to move (unpinned) during evaporation. In this case the fractional deposition is slightly decreasing from the axis out to the initial droplet radius. Rings are not produced when contact lines are not pinned. IV. CONCLUSION The present results provide additional understanding of the nature of particle deposition during the drying of colloidal drops. It was shown that the droplet free surface plays a major role in defining the particle distribution pattern. The mechanism of particle capturing by the free surface was found to dominate the transport of particles to the 8

9 substrate. This behavior and the resulting deposition patterns were explored using analytical solutions for the velocity field along with a simple, yet accurate, tracking of particle positions. The shape of the deposition pattern was found to depend on the model used for pinning of the contact line. Finally, deposition patterns were found to be similar for viscous and inviscid models of the flow. This shows that near-substrate transport plays only a minor role in particle deposition. It is therefore possible to employ the more readily calculated inviscid solution in order to obtain reliable, semi-quantitative results. ACKNOWLEDGMENT The importance of this problem was brought to our attention by Prof. R. C. Wetherhold. [1] D. M. Zhang, Y. Xie, M. F. Mrozek, C. Ortiz, V. J. Davisson, and D. Ben-Amotz, Analytical Chemistry 75, (2003). [2] T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, and R. H. Friend, Thin Solid Films 438, (2003). [3] D. J. Norris, E. G. Arlinghaus, L. L. Meng, R. Heiny, and L. E. Scriven, Advanced Materials 16, (2004). [4] J. N. Cawse, D. Olson, B. J. Chisholm, M. Brennan, T. Sun, W. Flanagan, J. Akhave, A. Mehrabi, and D. Saunders, Progress in Organic Coatings 47, (2003). [5] M. Kimura, M. J. Misner, T. Xu, S. H. Kim, and T. P. Russell, Langmuir 19, (2003). 9

10 [6] N. Chakrapani, B. Q. Wei, A. Carrillo, P. M. Ajayan, and R. S. Kane, Proceedings of the National Academy of Sciences of the United States of America 101, (2004). [7] B. J. de Gans, P. C. Duineveld, and U. S. Schubert, Advanced Materials 16, (2004). [8] L. Pauchard and C. Allain, Physical Review E 68, (2003). [9] L. Pauchard and C. Allain, Comptes Rendus Physique 4, (2003). [10] L. Pauchard and C. Allain, Europhysics Letters 62, (2003). [11] O. E. Ruiz and W. Z. Black, Journal of Heat Transfer-Transactions of the Asme 124, (2002). [12] H. Masoud and J. D. Felske, Physical Review E 79, (2009). [13] H. Masoud and J. D. Felske, Physics of Fluids 21, (2009). [14] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Physical Review E 62, (2000). [15] Y. O. Popov, Physical Review E 71, (2005). [16] B. J. Fischer, Langmuir 18, (2002). [17] H. Hu and R. G. Larson, Journal of Physical Chemistry B 110, (2006). [18] E. Widjaja and M. Harris, AIChE Journal 54, (2008). [19] H. Hu and R. G. Larson, Langmuir 21, (2005). 10

Modeling the Drying of Ink-Jet-Printed Structures and Experimental Verification

Modeling the Drying of Ink-Jet-Printed Structures and Experimental Verification 582 Langmuir 2008, 24, 582-589 Modeling the Drying of Ink-Jet-Printed Structures and Experimental Verification D. B. van Dam Philips Research, High Tech Campus 4 (WAG01), 5656 AE EindhoVen, The Netherlands

More information

Simulations of Meniscus Motion and Evaporation for Convective Deposition Manufacturing

Simulations of Meniscus Motion and Evaporation for Convective Deposition Manufacturing Excerpt from the Proceedings of the COMSOL Conference 2010 Boston Simulations of Meniscus Motion and Evaporation for Convective Deposition Manufacturing Junfeng Xiao 1* and Daniel Attinger 1 1 Department

More information

WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHERICAL NANOPARTICLES

WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHERICAL NANOPARTICLES November 20, 2018 WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHERICAL NANOPARTICLES Bishal Bhattarai and Nikolai V. Priezjev Department of Mechanical and Materials Engineering

More information

Preliminary Spray Cooling Simulations Using a Full-Cone Water Spray

Preliminary Spray Cooling Simulations Using a Full-Cone Water Spray 39th Dayton-Cincinnati Aerospace Sciences Symposium Preliminary Spray Cooling Simulations Using a Full-Cone Water Spray Murat Dinc Prof. Donald D. Gray (advisor), Prof. John M. Kuhlman, Nicholas L. Hillen,

More information

Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique

Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique C.W. Hirt and J.E. Richardson, Flow Science, Inc., 1257 40th, Los Alamos, NM 87544 and Ken S. Chen, Sandia

More information

Streamlining Aircraft Icing Simulations. D. Snyder, M. Elmore

Streamlining Aircraft Icing Simulations. D. Snyder, M. Elmore Streamlining Aircraft Icing Simulations D. Snyder, M. Elmore Industry Analysis Needs / Trends Fidelity Aircraft Ice Protection Systems-Level Modeling Optimization Background Ice accretion can critically

More information

Modeling Evaporating Liquid Spray

Modeling Evaporating Liquid Spray Tutorial 17. Modeling Evaporating Liquid Spray Introduction In this tutorial, the air-blast atomizer model in ANSYS FLUENT is used to predict the behavior of an evaporating methanol spray. Initially, the

More information

High-fidelity CFD modeling of particle-to-fluid heat transfer in packed bed reactors

High-fidelity CFD modeling of particle-to-fluid heat transfer in packed bed reactors High-fidelity CFD modeling of particle-to-fluid heat transfer in packed bed reactors Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, 6-20 September 2007 High-fidelity CFD

More information

Simulation of Droplet Impingement on a Solid Surface by the Level Set Method

Simulation of Droplet Impingement on a Solid Surface by the Level Set Method Simulation of Droplet Impingement on a Solid Surface by the Level Set Method Junling Hu *1, Ruoxu Jia 1, Kai-tak Wan 2, Xingguo Xiong 3 1 Department of Mechanical Engineering, University of Bridgeport,

More information

Porous Reactor with Injection Needle

Porous Reactor with Injection Needle Porous Reactor with Injection Needle Introduction This model treats the flow field and species distribution in an experimental reactor for studies of heterogeneous catalysis. The model exemplifies the

More information

CFD MODELING FOR PNEUMATIC CONVEYING

CFD MODELING FOR PNEUMATIC CONVEYING CFD MODELING FOR PNEUMATIC CONVEYING Arvind Kumar 1, D.R. Kaushal 2, Navneet Kumar 3 1 Associate Professor YMCAUST, Faridabad 2 Associate Professor, IIT, Delhi 3 Research Scholar IIT, Delhi e-mail: arvindeem@yahoo.co.in

More information

Modeling Evaporating Liquid Spray

Modeling Evaporating Liquid Spray Tutorial 16. Modeling Evaporating Liquid Spray Introduction In this tutorial, FLUENT s air-blast atomizer model is used to predict the behavior of an evaporating methanol spray. Initially, the air flow

More information

McNair Scholars Research Journal

McNair Scholars Research Journal McNair Scholars Research Journal Volume 2 Article 1 2015 Benchmarking of Computational Models against Experimental Data for Velocity Profile Effects on CFD Analysis of Adiabatic Film-Cooling Effectiveness

More information

Visualization of liquid droplets on a transparent horizontal surface

Visualization of liquid droplets on a transparent horizontal surface Visualization of liquid droplets on a transparent horizontal surface Ilia N. Pavlov1,*, Irina L. Raskovskaya1, Bronyus S. Rinkevichyus1, Alexander V. Tolkachev1 1 V.A. Fabrikant Physics Department of National

More information

SIMULATION OF THE SPRAY COATING PROCESS USING A PNEUMATIC ATOMIZER

SIMULATION OF THE SPRAY COATING PROCESS USING A PNEUMATIC ATOMIZER ILASS-Europe 22 Zaragoza 9 11 September 22 SIMULATION OF THE SPRAY COATING PROCESS USING A PNEUMATIC ATOMIZER Q. Ye, J. Domnick, E. Khalifa Fraunhofer-Institute for Manufacturing Engineering and Automation

More information

Paper to be Submitted for Presentation in ECS2005 The European Coating Symposium 2005 A Novel Predictive Model for Tri-Helical Gravure Roll Coating

Paper to be Submitted for Presentation in ECS2005 The European Coating Symposium 2005 A Novel Predictive Model for Tri-Helical Gravure Roll Coating Paper to be Submitted for Presentation in ECS2005 The European Coating Symposium 2005 A Novel Predictive Model for Tri-Helical Gravure Roll Coating R W Hewson, N Kapur and P H Gaskell School of Mechanical

More information

This tutorial illustrates how to set up and solve a problem involving solidification. This tutorial will demonstrate how to do the following:

This tutorial illustrates how to set up and solve a problem involving solidification. This tutorial will demonstrate how to do the following: Tutorial 22. Modeling Solidification Introduction This tutorial illustrates how to set up and solve a problem involving solidification. This tutorial will demonstrate how to do the following: Define a

More information

Self-Assembly of Spherical Particles on an Evaporating Sessile Droplet

Self-Assembly of Spherical Particles on an Evaporating Sessile Droplet Langmuir 2006, 22, 4547-4551 4547 Self-Assembly of Spherical Particles on an Evaporating Sessile Droplet Michael Schnall-Levin, Eric Lauga, and Michael P. Brenner* DiVision of Engineering and Applied Sciences,

More information

Electronic Supporting Information. Upgrading well plates using open-microfluidic patterning

Electronic Supporting Information. Upgrading well plates using open-microfluidic patterning Electronic Supplementary Material (ESI for Lab on a Chip. This journal is The Royal Society of Chemistry 2017 Electronic Supporting Information Upgrading well plates using open-microfluidic patterning

More information

Tutorial: Modeling Liquid Reactions in CIJR Using the Eulerian PDF transport (DQMOM-IEM) Model

Tutorial: Modeling Liquid Reactions in CIJR Using the Eulerian PDF transport (DQMOM-IEM) Model Tutorial: Modeling Liquid Reactions in CIJR Using the Eulerian PDF transport (DQMOM-IEM) Model Introduction The purpose of this tutorial is to demonstrate setup and solution procedure of liquid chemical

More information

Multiphase Interactions: Which, When, Why, How? Ravindra Aglave, Ph.D Director, Chemical Process Industry

Multiphase Interactions: Which, When, Why, How? Ravindra Aglave, Ph.D Director, Chemical Process Industry Multiphase Interactions: Which, When, Why, How? Ravindra Aglave, Ph.D Director, Chemical Process Industry Outline Classification of Multiphase Flows Examples: Free Surface Flow using Volume of Fluid Examples:

More information

Using the Eulerian Multiphase Model for Granular Flow

Using the Eulerian Multiphase Model for Granular Flow Tutorial 21. Using the Eulerian Multiphase Model for Granular Flow Introduction Mixing tanks are used to maintain solid particles or droplets of heavy fluids in suspension. Mixing may be required to enhance

More information

FEMLAB Exercise 1 for ChE366

FEMLAB Exercise 1 for ChE366 FEMLAB Exercise 1 for ChE366 Problem statement Consider a spherical particle of radius r s moving with constant velocity U in an infinitely long cylinder of radius R that contains a Newtonian fluid. Let

More information

Transfer and pouring processes of casting by smoothed particle. hydrodynamic method

Transfer and pouring processes of casting by smoothed particle. hydrodynamic method Transfer and pouring processes of casting by smoothed particle hydrodynamic method M. Kazama¹, K. Ogasawara¹, *T. Suwa¹, H. Ito 2, and Y. Maeda 2 1 Application development div., Next generation technical

More information

FOUR WHAT S NEW IN THIS VERSION? 4.1 FLOW-3D Usability CHAPTER

FOUR WHAT S NEW IN THIS VERSION? 4.1 FLOW-3D Usability CHAPTER CHAPTER FOUR WHAT S NEW IN THIS VERSION? FLOW-3D v11.2.0 continues to streamline engineers simulation workflows by enabling them to more quickly set up simulations, avoid common errors, identify and enter

More information

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow Homogenization and numerical Upscaling Unsaturated flow and two-phase flow Insa Neuweiler Institute of Hydromechanics, University of Stuttgart Outline Block 1: Introduction and Repetition Homogenization

More information

Phase-field simulation of two-phase micro-flows in a Hele-Shaw cell

Phase-field simulation of two-phase micro-flows in a Hele-Shaw cell Computational Methods in Multiphase Flow III 7 Phase-field simulation of two-phase micro-flows in a Hele-Shaw cell Y. Sun & C. Beckermann Department of Mechanical and Industrial Engineering, University

More information

Driven Cavity Example

Driven Cavity Example BMAppendixI.qxd 11/14/12 6:55 PM Page I-1 I CFD Driven Cavity Example I.1 Problem One of the classic benchmarks in CFD is the driven cavity problem. Consider steady, incompressible, viscous flow in a square

More information

Hydrodynamic Instability and Particle Image Velocimetry

Hydrodynamic Instability and Particle Image Velocimetry Hydrodynamic Instability and Particle Image Velocimetry Instabilities in lid-driven cavities First important investigations of hydrodynamic instabilities were published by v. Helmholtz (1868), Lord Rayleigh

More information

A 3D VOF model in cylindrical coordinates

A 3D VOF model in cylindrical coordinates A 3D VOF model in cylindrical coordinates Marmar Mehrabadi and Markus Bussmann Department of Mechanical and Industrial Engineering, University of Toronto Recently, volume of fluid (VOF) methods have improved

More information

NOVEL ACOUSTIC-WAVE MICROMIXER

NOVEL ACOUSTIC-WAVE MICROMIXER NOVEL ACOUSTIC-WAVE MICROMIXER Vibhu Vivek, Yi Zeng and Eun Sok Kim* Department of Electrical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822 *Present Address: Department of EE-Electrophysics,

More information

Microwell Mixing with Surface Tension

Microwell Mixing with Surface Tension Microwell Mixing with Surface Tension Nick Cox Supervised by Professor Bruce Finlayson University of Washington Department of Chemical Engineering June 6, 2007 Abstract For many applications in the pharmaceutical

More information

Impact of STAR-CCM+ v7.0 in the Automotive Industry Frederick J. Ross, CD-adapco Director, Ground Transportation

Impact of STAR-CCM+ v7.0 in the Automotive Industry Frederick J. Ross, CD-adapco Director, Ground Transportation Impact of STAR-CCM+ v7.0 in the Automotive Industry Frederick J. Ross, CD-adapco Director, Ground Transportation Vehicle Simulation Components Vehicle Aerodynamics Design Studies Aeroacoustics Water/Dirt

More information

NUMERICAL SIMULATION OF FALLING FILM THICKNESS FLOWING OVER HORIZONTAL TUBES

NUMERICAL SIMULATION OF FALLING FILM THICKNESS FLOWING OVER HORIZONTAL TUBES NUMERICAL SIMULATION OF FALLING FILM THICKNESS FLOWING OVER HORIZONTAL TUBES Ibnu Anas Hassan, Azmahani Sadikin and Norasikin Mat Isa Department of Plant and Automotive Engineering, Universiti Tun Hussein

More information

Photoresist with Ultrasonic Atomization Allows for High-Aspect-Ratio Photolithography under Atmospheric Conditions

Photoresist with Ultrasonic Atomization Allows for High-Aspect-Ratio Photolithography under Atmospheric Conditions Photoresist with Ultrasonic Atomization Allows for High-Aspect-Ratio Photolithography under Atmospheric Conditions 1 CONTRIBUTING AUTHORS Robb Engle, Vice President of Engineering, Sono-Tek Corporation

More information

Acknowledgements. Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn. SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar

Acknowledgements. Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn. SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar Philipp Hahn Acknowledgements Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar 2 Outline Motivation Lumped Mass Model Model properties Simulation

More information

BURN-IN OVEN MODELING USING COMPUTATIONAL FLUID DYNAMICS (CFD)

BURN-IN OVEN MODELING USING COMPUTATIONAL FLUID DYNAMICS (CFD) BURN-IN OVEN MODELING USING COMPUTATIONAL FLUID DYNAMICS (CFD) Jefferson S. Talledo ATD-P Technology Business Group Intel Technology Philippines, Inc., Gateway Business Park, Gen. Trias, Cavite jefferson.s.talledo@intel.com

More information

Axisymmetric Viscous Flow Modeling for Meridional Flow Calculation in Aerodynamic Design of Half-Ducted Blade Rows

Axisymmetric Viscous Flow Modeling for Meridional Flow Calculation in Aerodynamic Design of Half-Ducted Blade Rows Memoirs of the Faculty of Engineering, Kyushu University, Vol.67, No.4, December 2007 Axisymmetric Viscous Flow Modeling for Meridional Flow alculation in Aerodynamic Design of Half-Ducted Blade Rows by

More information

Faculty of Mechanical and Manufacturing Engineering, University Tun Hussein Onn Malaysia (UTHM), Parit Raja, Batu Pahat, Johor, Malaysia

Faculty of Mechanical and Manufacturing Engineering, University Tun Hussein Onn Malaysia (UTHM), Parit Raja, Batu Pahat, Johor, Malaysia Applied Mechanics and Materials Vol. 393 (2013) pp 305-310 (2013) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amm.393.305 The Implementation of Cell-Centred Finite Volume Method

More information

Dispersion of rod-like particles in a turbulent free jet

Dispersion of rod-like particles in a turbulent free jet Test case Dispersion of rod-like particles in a turbulent free jet 1. MOTIVATION: Turbulent particle dispersion is a fundamental issue in a number of industrial and environmental applications. An important

More information

Optimizing Bio-Inspired Flow Channel Design on Bipolar Plates of PEM Fuel Cells

Optimizing Bio-Inspired Flow Channel Design on Bipolar Plates of PEM Fuel Cells Excerpt from the Proceedings of the COMSOL Conference 2010 Boston Optimizing Bio-Inspired Flow Channel Design on Bipolar Plates of PEM Fuel Cells James A. Peitzmeier *1, Steven Kapturowski 2 and Xia Wang

More information

KEY STAR TECHNOLOGIES: DISPERSED MULTIPHASE FLOW AND LIQUID FILM MODELLING DAVID GOSMAN EXEC VP TECHNOLOGY, CD-adapco

KEY STAR TECHNOLOGIES: DISPERSED MULTIPHASE FLOW AND LIQUID FILM MODELLING DAVID GOSMAN EXEC VP TECHNOLOGY, CD-adapco KEY STAR TECHNOLOGIES: DISPERSED MULTIPHASE FLOW AND LIQUID FILM MODELLING DAVID GOSMAN EXEC VP TECHNOLOGY, CD-adapco INTRODUCTION KEY METHODOLOGIES AVAILABLE IN STAR-CCM+ AND STAR-CD 1. Lagrangian modelling

More information

EFFECT OF SURFACE TEXTURING ON HYDRODYNAMIC PERFORMANCE OF JOURNAL BEARINGS

EFFECT OF SURFACE TEXTURING ON HYDRODYNAMIC PERFORMANCE OF JOURNAL BEARINGS EFFECT OF SURFACE TEXTURING ON HYDRODYNAMIC PERFORMANCE OF JOURNAL BEARINGS Shahab Hamdavi, H. H. Ya and T. V. V. L. N. Rao Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Malaysia

More information

Comparison of a two-dimensional viscid and inviscid model for rotating stall analysis

Comparison of a two-dimensional viscid and inviscid model for rotating stall analysis Comparison of a two-dimensional viscid and inviscid model for rotating stall analysis S. LJEVAR, H.C. DE LANGE, A.A. VAN STEENHOVEN Department of Mechanical Engineering Eindhoven University of Technology

More information

Fiber Orientation (3D) Solver Verification and Validation

Fiber Orientation (3D) Solver Verification and Validation AUTODESK MOLDFLOW INSIGHT 2 VALIDATION REPORT Fiber Orientation (3D) Solver Verification and Validation Executive Summary The fiber orientation at the injection locations was modified to a prescribed orientation

More information

Figure 2: Water Into Kerosene, Volume Fraction (Left) And Total Density Of Mixture (Right)

Figure 2: Water Into Kerosene, Volume Fraction (Left) And Total Density Of Mixture (Right) Jared Bottlinger MAE598 Project 3 11/16/17 Task 1 a) Figure 1: Volume Fraction Of Water At 0.4s Task 1 b) Figure 2: Water Into Kerosene, Volume Fraction (Left) And Total Density Of Mixture (Right) Task

More information

The Transient Modeling of Bubble Pinch-Off Using an ALE Moving Mesh

The Transient Modeling of Bubble Pinch-Off Using an ALE Moving Mesh Excerpt from the Proceedings of the COMSOL Conference 2010 Boston The Transient Modeling of Bubble Pinch-Off Using an ALE Moving Mesh Christopher J. Forster, Marc K. Smith * School of Mechanical Engineering,

More information

Numerical Simulations of Granular Materials Flow around Obstacles: The role of the interstitial gas

Numerical Simulations of Granular Materials Flow around Obstacles: The role of the interstitial gas Numerical Simulations of Granular Materials Flow around Obstacles: The role of the interstitial gas Avi Levy, Dept. Mech. Eng., Ben Gurion University, Beer Sheva, Israel. Mohamed Sayed, CHC, National Research

More information

Essay 5 Tutorial for a Three-Dimensional Heat Conduction Problem Using ANSYS

Essay 5 Tutorial for a Three-Dimensional Heat Conduction Problem Using ANSYS Essay 5 Tutorial for a Three-Dimensional Heat Conduction Problem Using ANSYS 5.1 Introduction The problem selected to illustrate the use of ANSYS software for a three-dimensional steadystate heat conduction

More information

2.76 / Lecture 5: Large/micro scale

2.76 / Lecture 5: Large/micro scale 2.76 / 2.760 Lecture 5: Large/micro scale Constraints Micro-fabrication Micro-physics scaling Assignment Nano Micro Meso Macro Nano Nano Nano Micro Nano Meso Nano Macro Micro Nano Micro Micro Micro Meso

More information

Air Assisted Atomization in Spiral Type Nozzles

Air Assisted Atomization in Spiral Type Nozzles ILASS Americas, 25 th Annual Conference on Liquid Atomization and Spray Systems, Pittsburgh, PA, May 2013 Air Assisted Atomization in Spiral Type Nozzles W. Kalata *, K. J. Brown, and R. J. Schick Spray

More information

Inviscid Flows. Introduction. T. J. Craft George Begg Building, C41. The Euler Equations. 3rd Year Fluid Mechanics

Inviscid Flows. Introduction. T. J. Craft George Begg Building, C41. The Euler Equations. 3rd Year Fluid Mechanics Contents: Navier-Stokes equations Inviscid flows Boundary layers Transition, Reynolds averaging Mixing-length models of turbulence Turbulent kinetic energy equation One- and Two-equation models Flow management

More information

An Object-Oriented Serial and Parallel DSMC Simulation Package

An Object-Oriented Serial and Parallel DSMC Simulation Package An Object-Oriented Serial and Parallel DSMC Simulation Package Hongli Liu and Chunpei Cai Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico, 88, USA

More information

Essay 1: Dimensional Analysis of Models and Data Sets: Similarity Solutions

Essay 1: Dimensional Analysis of Models and Data Sets: Similarity Solutions Table of Contents Essay 1: Dimensional Analysis of Models and Data Sets: Similarity Solutions and Scaling Analysis 1 About dimensional analysis 4 1.1 Thegoalandtheplan... 4 1.2 Aboutthisessay... 5 2 Models

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean A Direct Simulation-Based Study of Radiance in a Dynamic Ocean Dick K.P. Yue Center for Ocean Engineering Massachusetts Institute of Technology Room 5-321, 77 Massachusetts Ave, Cambridge, MA 02139 phone:

More information

Applications of ICFD /SPH Solvers by LS-DYNA to Solve Water Splashing Impact to Automobile Body. Abstract

Applications of ICFD /SPH Solvers by LS-DYNA to Solve Water Splashing Impact to Automobile Body. Abstract Applications of ICFD /SPH Solvers by LS-DYNA to Solve Water Splashing Impact to Automobile Body George Wang (1 ), Kevin Gardner (3), Eric DeHoff (1), Facundo del Pin (2), Inaki Caldichoury (2), Edouard

More information

Measurement of liquid film thickness in a micro parallel channel with interferometer and laser focus displacement meter

Measurement of liquid film thickness in a micro parallel channel with interferometer and laser focus displacement meter Measurement of liquid film thickness in a micro parallel channel with interferometer and laser focus displacement meter Youngbae Han, Naoki Shikazono and Nobuhide Kasagi Department of Mechanical Engineering,

More information

MULTIPHASE FLOWS. Recent Advances & Applications Ian Hamill, ANSYS Europe Ltd., UK. ANSYS, Inc. Proprietary ANSYS, Inc.

MULTIPHASE FLOWS. Recent Advances & Applications Ian Hamill, ANSYS Europe Ltd., UK. ANSYS, Inc. Proprietary ANSYS, Inc. MULTIPHASE FLOWS Recent Advances & Applications Ian Hamill, ANSYS Europe Ltd., UK 2004 ANSYS, Inc. Presentation Outline Recent Advances CFX-5.7 / ANSYS CFX 10.0 Eulerian & Lagrangian Applications Fuel

More information

Multiphase Flow Developments in ANSYS CFX-12

Multiphase Flow Developments in ANSYS CFX-12 Multiphase Flow Developments in ANSYS CFX-12 Thomas Svensson Medeso 2008 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Outline Euler-Euler Wall Boiling Model Non-Drag Forces Euler-Lagrange

More information

Cloud Cavitating Flow around an Axisymmetric Projectile in the shallow water

Cloud Cavitating Flow around an Axisymmetric Projectile in the shallow water Cloud Cavitating Flow around an Axisymmetric Projectile in the shallow water 1,2 Chang Xu; 1,2 Yiwei Wang*; 1,2 Jian Huang; 1,2 Chenguang Huang 1 Key Laboratory for Mechanics in Fluid Solid Coupling Systems,

More information

Development and Validation of a Computational Fluid Dynamics (CFD) Solver for Droplet-Fibre Systems

Development and Validation of a Computational Fluid Dynamics (CFD) Solver for Droplet-Fibre Systems 19th International Congress on Modelling and Simulation, Perth, Australia, 12 16 December 2011 http://mssanz.org.au/modsim2011 Development and Validation of a Computational Fluid Dynamics (CFD) Solver

More information

Noncontact measurements of optical inhomogeneity stratified media parameters by location of laser radiation caustics

Noncontact measurements of optical inhomogeneity stratified media parameters by location of laser radiation caustics Noncontact measurements of optical inhomogeneity stratified media parameters by location of laser radiation caustics Anastasia V. Vedyashkina *, Bronyus S. Rinkevichyus, Irina L. Raskovskaya V.A. Fabrikant

More information

WAVE PATTERNS, WAVE INDUCED FORCES AND MOMENTS FOR A GRAVITY BASED STRUCTURE PREDICTED USING CFD

WAVE PATTERNS, WAVE INDUCED FORCES AND MOMENTS FOR A GRAVITY BASED STRUCTURE PREDICTED USING CFD Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering OMAE2011 June 19-24, 2011, Rotterdam, The Netherlands OMAE2011-49593 WAVE PATTERNS, WAVE INDUCED FORCES

More information

Analysis of fluid-solid coupling vibration characteristics of probe based on ANSYS Workbench

Analysis of fluid-solid coupling vibration characteristics of probe based on ANSYS Workbench Analysis of fluid-solid coupling vibration characteristics of probe based on ANSYS Workbench He Wang 1, a, Changzheng Zhao 1, b and Hongzhi Chen 1, c 1 Shandong University of Science and Technology, Qingdao

More information

IDENTIFYING OPTICAL TRAP

IDENTIFYING OPTICAL TRAP IDENTIFYING OPTICAL TRAP Yulwon Cho, Yuxin Zheng 12/16/2011 1. BACKGROUND AND MOTIVATION Optical trapping (also called optical tweezer) is widely used in studying a variety of biological systems in recent

More information

Introduction to the FTA4000

Introduction to the FTA4000 Introduction to the FTA4000 This document will help you get started with your new FTA4000. The FTA4000 is optimized for contact angle measurements using very small droplets on small samples. It uses a

More information

On the numerical accuracy of particle dispersion simulation in operating theatres

On the numerical accuracy of particle dispersion simulation in operating theatres On the numerical accuracy of particle dispersion simulation in operating theatres Wiebe Zoon 1,*, Marcel Loomans 1 and Jan Hensen 1 1 Eindhoven University of Technology, Eindhoven, the Netherlands * Corresponding

More information

ONE DIMENSIONAL (1D) SIMULATION TOOL: GT-POWER

ONE DIMENSIONAL (1D) SIMULATION TOOL: GT-POWER CHAPTER 4 ONE DIMENSIONAL (1D) SIMULATION TOOL: GT-POWER 4.1 INTRODUCTION Combustion analysis and optimization of any reciprocating internal combustion engines is too complex and intricate activity. It

More information

Influence of geometric imperfections on tapered roller bearings life and performance

Influence of geometric imperfections on tapered roller bearings life and performance Influence of geometric imperfections on tapered roller bearings life and performance Rodríguez R a, Calvo S a, Nadal I b and Santo Domingo S c a Computational Simulation Centre, Instituto Tecnológico de

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics 23.1 The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization,

More information

HYDRODYNAMIC MODELLING STUDY OF A ROTATING LIQUID SHEET CONTACTOR

HYDRODYNAMIC MODELLING STUDY OF A ROTATING LIQUID SHEET CONTACTOR Eleventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 7-9 December 2015 HYDRODYNAMIC MODELLING STUDY OF A ROTATING LIQUID SHEET CONTACTOR Christopher

More information

MODELING PARTICLE DEPOSITION IN VENTILATION DUCTS

MODELING PARTICLE DEPOSITION IN VENTILATION DUCTS MODELING PARTICLE DEPOSITION IN VENTILATION DUCTS MR Sippola 1* and WW Nazaroff 1,2 1 Dept. of Civil and Environmental Engineering, University of California, Berkeley, CA, USA 2 Indoor Environment Dept.,

More information

High-performance, low-cost liquid micro-channel cooler

High-performance, low-cost liquid micro-channel cooler High-performance, low-cost liquid micro-channel cooler R.L. Webb Department of Mechanical Engineering, Penn State University, University Park, PA 1680 Keywords: micro-channel cooler, liquid cooling, CPU

More information

Calculate a solution using the pressure-based coupled solver.

Calculate a solution using the pressure-based coupled solver. Tutorial 19. Modeling Cavitation Introduction This tutorial examines the pressure-driven cavitating flow of water through a sharpedged orifice. This is a typical configuration in fuel injectors, and brings

More information

Phys102 Lecture 21/22 Light: Reflection and Refraction

Phys102 Lecture 21/22 Light: Reflection and Refraction Phys102 Lecture 21/22 Light: Reflection and Refraction Key Points The Ray Model of Light Reflection and Mirrors Refraction, Snell s Law Total internal Reflection References 23-1,2,3,4,5,6. The Ray Model

More information

Analysis and Prediction of Edge Effects in Laser Bending

Analysis and Prediction of Edge Effects in Laser Bending Analysis and Prediction of Edge Effects in Laser Bending Jiangcheng Bao and Y. Lawrence Yao* Department of Mechanical Engineering, Columbia University New York, NY 10027, USA *Corresponding author, Tel:

More information

Computational Modeling and Simulation of the Human Duodenum

Computational Modeling and Simulation of the Human Duodenum Computational Modeling and Simulation of the Human Duodenum Bostjan Hari 1, Serafim Bakalis 1, Peter Fryer 1 1 The University of Birmingham, School of Chemical Engineering, Edgbaston, Birmingham, United

More information

Chapter 13 RADIATION HEAT TRANSFER

Chapter 13 RADIATION HEAT TRANSFER Heat and Mass Transfer: Fundamentals & Applications Fourth Edition in SI Units Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 13 RADIATION HEAT TRANSFER PM Dr Mazlan Abdul Wahid Universiti

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

New Conjugate-Heat Transfer Solvers in the Compressible CESE Solver in LS-DYNA

New Conjugate-Heat Transfer Solvers in the Compressible CESE Solver in LS-DYNA New Conjugate-Heat Transfer Solvers in the Compressible CESE Solver in LS-DYNA Grant O. Cook, Jr. and Zeng-Chan Zhang Livermore Software Technology Corp., Livermore, CA 94551 Abstract Standard coupling

More information

Solved with COMSOL Multiphysics 4.0a. COPYRIGHT 2010 COMSOL AB.

Solved with COMSOL Multiphysics 4.0a. COPYRIGHT 2010 COMSOL AB. Journal Bearing Introduction Journal bearings are used to carry radial loads, for example, to support a rotating shaft. A simple journal bearing consists of two rigid cylinders. The outer cylinder (bearing)

More information

II. FINITE ELEMENT MODEL OF CYLINDRICAL ROLLER BEARING

II. FINITE ELEMENT MODEL OF CYLINDRICAL ROLLER BEARING RESEARCH INVENTY: International Journal of Engineering and Science ISSN: 2278-4721, Vol. 1, Issue 1 (Aug 2012), PP 8-13 www.researchinventy.com Study of Interval of Arc Modification Length of Cylindrical

More information

Healthy Buildings 2017 Europe July 2-5, 2017, Lublin, Poland

Healthy Buildings 2017 Europe July 2-5, 2017, Lublin, Poland Healthy Buildings 2017 Europe July 2-5, 2017, Lublin, Poland Paper ID 0122 ISBN: 978-83-7947-232-1 Numerical Investigation of Transport and Deposition of Liquid Aerosol Particles in Indoor Environments

More information

Geometric Acoustics in High-Speed Boundary Layers

Geometric Acoustics in High-Speed Boundary Layers Accepted for presentation at the 9th International Symposium on Shock Waves. Madison, WI. July -9,. Paper #8 Geometric Acoustics in High-Speed Boundary Layers N. J. Parziale, J. E. Shepherd, and H. G.

More information

Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching

Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching Paul Groenenboom ESI Group Delft, Netherlands Martin Siemann German Aerospace Center (DLR) Stuttgart, Germany

More information

Non-Newtonian Transitional Flow in an Eccentric Annulus

Non-Newtonian Transitional Flow in an Eccentric Annulus Tutorial 8. Non-Newtonian Transitional Flow in an Eccentric Annulus Introduction The purpose of this tutorial is to illustrate the setup and solution of a 3D, turbulent flow of a non-newtonian fluid. Turbulent

More information

I. INTRODUCTION. Figure XIII-1. Eroded Sand Screen

I. INTRODUCTION. Figure XIII-1. Eroded Sand Screen XIII-1 I. INTRODUCTION Introduction The effect of particle size on erosion has been investigated by researchers, but in most cases, erosion from relatively small particles has not been considered nearly

More information

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3 Chapter 20 Classic and Modern Optics Dr. Armen Kocharian Electromagnetic waves and matter: A Brief History of Light 1000 AD It was proposed that light consisted

More information

A Generalized Adaptive Collision Mesh for Multiple Injector Orifices

A Generalized Adaptive Collision Mesh for Multiple Injector Orifices A Generalized Adaptive Collision Mesh for Multiple Injector Orifices Shuhai Hou, Sasanka Are, David P. Schmidt University of Massachusetts-Amherst ABSTRACT An algorithm for creating a generalized adaptive

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean 1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. A Direct Simulation-Based Study of Radiance in a Dynamic Ocean LONG-TERM GOALS Dick K.P. Yue Center for Ocean Engineering

More information

LES Analysis on Shock-Vortex Ring Interaction

LES Analysis on Shock-Vortex Ring Interaction LES Analysis on Shock-Vortex Ring Interaction Yong Yang Jie Tang Chaoqun Liu Technical Report 2015-08 http://www.uta.edu/math/preprint/ LES Analysis on Shock-Vortex Ring Interaction Yong Yang 1, Jie Tang

More information

CFD for Microfluidics

CFD for Microfluidics CFD for Microfluidics Application Examples Fluent Ralf Kröger, rkr@fluent.de Fluent Deutschland GmbH 2006 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Content Examples on what we have simualted

More information

The viscous forces on the cylinder are proportional to the gradient of the velocity field at the

The viscous forces on the cylinder are proportional to the gradient of the velocity field at the Fluid Dynamics Models : Flow Past a Cylinder Flow Past a Cylinder Introduction The flow of fluid behind a blunt body such as an automobile is difficult to compute due to the unsteady flows. The wake behind

More information

SOLIDWORKS SIMULATION

SOLIDWORKS SIMULATION SOLIDWORKS SIMULATION Innovation is about taking chances, not taking risks Scootchi by Curventa Designworks LTD What if? is the question that fuels innovation. SolidWorks Simulation software takes the

More information

SIMULATION AND ANALYSIS OF CHIP BREAKAGE IN TURNING PROCESSES

SIMULATION AND ANALYSIS OF CHIP BREAKAGE IN TURNING PROCESSES SIMULATION AND ANALYSIS OF CHIP BREAKAGE IN TURNING PROCESSES Troy D. Marusich, Jeffrey D. Thiele and Christopher J. Brand 1 INTRODUCTION In order to improve metal cutting processes, i.e. lower part cost,

More information

Experimental and Numerical Study of Fire Suppression Performance of Ultral-Fine Water Mist in a Confined Space

Experimental and Numerical Study of Fire Suppression Performance of Ultral-Fine Water Mist in a Confined Space Available online at www.sciencedirect.com Procedia Engineering 52 ( 2013 ) 208 213 Experimental and Numerical Study of Fire Suppression Performance of Ultral-Fine Water Mist in a Confined Space LIANG Tian-shui

More information

Example 13 - Shock Tube

Example 13 - Shock Tube Example 13 - Shock Tube Summary This famous experiment is interesting for observing the shock-wave propagation. Moreover, this case uses the representation of perfect gas and compares the different formulations:

More information

Abstract. Die Geometry. Introduction. Mesh Partitioning Technique for Coextrusion Simulation

Abstract. Die Geometry. Introduction. Mesh Partitioning Technique for Coextrusion Simulation OPTIMIZATION OF A PROFILE COEXTRUSION DIE USING A THREE-DIMENSIONAL FLOW SIMULATION SOFTWARE Kim Ryckebosh 1 and Mahesh Gupta 2, 3 1. Deceuninck nv, BE-8830 Hooglede-Gits, Belgium 2. Michigan Technological

More information

CFD Simulation of a Dry Scroll Vacuum Pump Including Leakage Flows

CFD Simulation of a Dry Scroll Vacuum Pump Including Leakage Flows Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2016 CFD Simulation of a Dry Scroll Vacuum Pump Including Leakage Flows Jan Hesse CFX Berlin

More information

Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow

Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow Excerpt from the Proceedings of the COMSOL Conference 8 Boston Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow E. Kaufman

More information