Data Association for Semantic World Modeling from Partial Views

Size: px
Start display at page:

Download "Data Association for Semantic World Modeling from Partial Views"

Transcription

1 Data Association for Semantic World Modeling from Partial Views Lawson L.S. Wong, Leslie Pack Kaelbling, Tomás Lozano-Pérez CSAIL, MIT, Cambridge, MA { lsw, lpk, tlp }@csail.mit.edu Abstract Autonomous mobile-manipulation robots need to sense and interact with objects to accomplish high-level tasks such as preparing meals and searching for objects. To achieve such tasks, robots need semantic world models, defined as object-based representations of the world involving task-level attributes. In this work, we address the problem of estimating world models from semantic perception modules that provide noisy observations of attributes. Because attribute detections are sparse, ambiguous, and are aggregated across different viewpoints, it is unclear which attribute measurements are produced by the same object, so data association issues are prevalent. We present novel clustering-based approaches to this problem, which are more efficient and require less severe approximations compared to existing tracking-based approaches. These approaches are applied to data containing object type-and-pose detections from multiple viewpoints, and demonstrate comparable quality using a fraction of the computation time. 1 Introduction Much of the everyday human physical environment is made up of coherent physical objects. Environmental dynamics are well described in terms of the effects of actions on those objects. Perceptual systems are able to report detections of objects with type, location, color, and other properties. Humans naturally designate both goals and prior information in terms of objects. Thus, it is appropriate for robots to construct mental models of their environment that are structured around objects, their properties, and their relations to one another. In this work, we define a semantic world model to be a set of objects with associated attributes and relations. To illustrate this concept concretely, consider the following tasks, along with objects and attributes that are potentially relevant: Cooking eggs on a pan: Objects Eggs, pan, stove, etc. Attributes CookedTime, StoveSetting, EggPositionRelativeToPan Finding chairs for guests: Objects Furniture, people Attributes IsChair, Sittable, Movable, Location, SittingOn(Person, Furniture) Rearranging objects on a table: Objects Items on table Attributes Shape, Type, RelativePositionAndOrientation, GraspPoints A common theme underlying these tasks, and many others, is that successful planning and execution hinges on good world-state estimation and monitoring. Dynamic attributes listed above also highlight why object-based representations are uniquely suitable for dynamic tasks: transition 1

2 (a) Single viewpoint (b) Aggregation of object detections from multiple viewpoints Figure 1: (a) Given a tabletop scene (top), we want to estimate the types and poses of objects in the scene using a black-box object detector. From a single RGB-D image, however, objects may be occluded or erroneously classified. In the rendered image (middle; detections superimposed in red), three objects are missing due to occlusion, and the bottom two objects have been misidentified. The semantic attributes that result in our representation are very sparse (bottom; dot location is measured 2-D pose, color represents type). (b) Aggregation of measurements from many different viewpoints (top) is therefore needed to construct good estimates. However, this introduces data association issues of the type addressed in this work, especially when multiple instances of the same object type are present. From all the object detection data, as shown (bottom) by dots (each dot is one detection), our goal is to estimate the object types and poses in the scene (shown as thick ellipses centered around location estimate; color represents type, ellipse size reflects uncertainty). The estimate above identifies all types correctly with minimal error in pose. dynamics tends to operate on the level of objects. For example, it is much more natural to express and reason about eggs that are being cooked, as opposed to points in a point cloud or cells in an occupancy grid that are cooked. Although we focus on the static case in this paper, our ultimate goal is to provide a framework for estimating and monitoring large semantic world models involving objects and attributes that change over time as a result of physical processes as well as actions by the robot and other agents. In this work, we address the problem of constructing world models from semantic perception modules that provide noisy observations of attributes. For concreteness, Figure 1 depicts an application of our methods; here the world model consists of objects types and poses, and attribute measurements are outputs from a black-box object detector running continuously on sensed RGB-D images. Due to noise, occlusion, and sensors limited field of view, observations from multiple viewpoints will typically be necessary to produce a confident world model. Because attribute detections are sparse, noisy, and inherently ambiguous, where it is unclear which attribute measurements were produced by the same object across different views, data association issues become critical. This is the greatest challenge; if the measurement-object correspondences were known, the resulting object-attribute posterior distributions would be efficiently computable. We begin by stating a formal model for a simplified 1-D version of the world-model estimation problem in Section 3, and then review a classic solution approach based on tracking in Section 4. The main contribution of this work is the development of several novel clustering-based data association approaches, described in Sections 5 and 6. Application of the semantic world-modeling framework to object type-and-pose estimation is then demonstrated in Section 7, where we present experimental results using data collected with a Kinect sensor on a mobile robot. 2

3 2 Related Work Our work lies in the intersection of semantic perception, world modeling, and data association, which we will first review before placing our contributions in context. 2.1 Semantic World Modeling Understanding the mobile robot s spatial environment, by deriving a world model from its sensors, has long been a problem of interest to the robotics community (Crowley, 1985). Early work typically focused on using ultrasonic range sensors, tracking low-level planar and corner features as landmarks in a map (Cox and Leonard, 1994). The resulting geometric maps were useful for mobile robot navigation, but objects were not a primary concern in these representations and tasks. For mobile-manipulation robots that operate on objects, the world model must contain information about objects in the world. With the advent of more effective visual sensors, image features, and object detectors, world models are now capable of supporting richer representations of objects. The important role of objects in spatial representations was explored by Ranganathan and Dellaert (2007), where places were modeled using objects as the basic unit of representation. However, like much of the related work in semantic mapping (Vasudevan et al., 2007; Zender et al., 2008; Nüchter and Hertzberg, 2008; Pronobis and Jensfelt, 2012), the ultimate goal is place modeling and recognition, which is most useful for navigation. Instead, we want to infer the precise object states themselves, which are needed for mobile-manipulation tasks. To measure object states, we rely on attribute detectors, particularly ones operating on 3-D visual data. Object recognition and pose estimation has received widespread attention from the computer vision and robotics communities. With the recent advances in RGB-D cameras, several systems have been developed to detect object types/instances and their 6-D poses from 3-D point clouds (Rusu et al., 2010; Glover et al., 2011; Lai et al., 2012; Aldoma et al., 2013; Marton et al., 2014). We will use one such detector (Glover and Popovic, 2013) as our black-box attribute detector, but we emphasize that our methods are agnostic to the detector used. A basic world model could simply use a detector s output on a single image as a representation of the world. However, this suffers from many sources of error: sensor measurement noise, object occlusion, and modeling and approximation errors in the detection algorithms. As motivated in the previous section, aggregating measurements across different viewpoints can help reduce estimation error. For example, Hager and Wegbreit (2011) demonstrate the utility of considering a prior 3-D scene model and its potential evolution over scenes. Using this observation as a premise, active perception approaches (e.g., Eidenberger and Scharinger (2010); Velez et al. (2012); Atanasov et al. (2013)) seek the next best view (camera pose) where previously-occluded objects may be visible, typically by formulating the problem as a partially-observable Markov decision process. Because the focus is on planning instead of estimation, this line of work is complementary to the world modeling problem, which considers estimation using measurements from an uncontrolled, arbitrary collection of camera poses. The primary challenge in aggregating object detections across multiple views of the world is identity management, induced by the fact that measurements often cannot uniquely mapped to an underlying object in the world. Blodow et al. (2010) formulated object identity resolution as an inference problem in a Markov logic network, but acknowledge the complexity of their approach. Most similar to our approach is the work of Elfring et al. (2013), which highlighted the data association issues in semantic world modeling, and applied a classic multiple hypothesis tracking 3

4 (MHT) approach to the problem. The limitations of MHTs will be discussed in the next subsection, in the context of other data association methods, and revisited in Section 4. Recently, besides estimating object states in the world via object attribute detections, there has been interest in world modeling involving object information, but without explicit recognition. As mentioned above, this is often the case for semantic mapping. Anati et al. (2012) showed that object-based robot localization is still possible even if soft heatmaps of local image features are used instead of explicit object poses. Mason and Marthi (2012) argue that, for long-term and large-scale mapping, modeling and recognizing all objects is impractical. The recent success of dense 3-D reconstruction (Newcombe et al., 2011) has also led to dense surface maps being a viable representation of space. Discussion of which representation is the best for world modeling is beyond the scope of this paper, and depends on the considered domain/task. Moreover, we emphasize that object type-and-pose estimation was only chosen as a concrete and familiar proofof-concept application. Most of the presented related work is specific to this application, whereas our framework is applicable to other semantic attributes and tasks. 2.2 Data Association The data association problem was historically motivated by target tracking; Bar-Shalom and Fortmann (1988) provide a comprehensive overview of the foundations, as well as coverage of greedy nearest-neighbor methods and an approximate Bayesian filter, the joint probabilistic data association filter (JPDAF). Apart from being a suboptimal approximation, the JPDAF is also limited by its assumption of a fixed number of tracked targets (objects), which is not valid for our problem. A more principled approach when the number of tracks is unknown is multiple hypothesis tracking (MHT) (Reid, 1979). In principle, MHT considers the tree of all possible association hypotheses, branching on the possible tracks that each measurement can correspond to. However, due to the number of measurements involved, maintaining the entire tree (and hence the exact posterior distribution) is exponentially expensive and intractable for any non-trivial branching factor. As a result, practical implementations of MHTs must use one of many proposed heuristics (e.g., Kurien (1990); Cox and Hingorani (1996)), typically pruning away all but the few mostlikely branches in the association tree. Aggressive pruning potentially removes correct associations that happen to appear unlikely at the moment. Although this problem is somewhat mitigated by postponing ambiguous associations through delayed filtering, the window for resolving issues is short because of computational limitations. The MHT pruning heuristics were necessitated by the combinatorial complexity of MHT, which in turn is due to the enumeration of all possible association histories. Instead of attempting to evaluate every point in this large space, most of which contains little probability mass, efficient sampling techniques have been proposed that try to only explore high-probability regions. Markovchain Monte Carlo (MCMC) methods for sampling association matchings and tracks have been explored by Dellaert et al. (2003) for structure-from-motion and by Pasula et al. (1999) for traffic surveillance. More recently, Oh et al. (2009) generalized the latter work by considering a wider class of transition moves during sampling, and provided theoretical bounds on the mixing (convergence) time of their sampling algorithm, MCMCDA. Because only a small space of likely associations is frequently sampled, and all measurement associations are repeatedly considered (unlike MHT with pruning), MCMCDA empirically outperforms MHT both in efficiency and accuracy, especially in environments with heavy detection noise. Apart from the advantages of MCMC sampling methods, Dellaert (2001) also recognized the 4

5 utility of considering attributes in data association problems. When occlusion and clutter are present, correspondences are frequently ambiguous, and incorporating more information can help separate the targets of correspondence. Dellaert (2001) specifically considered this idea in the context of the structure-from-motion problem, proposing that image feature appearances should be considered in addition to their measured locations, in order to better distinguish different features between images. Our approach shares many resemblances to this line of work due to the use of attributes and sampling-based inference. 2.3 Contributions In the context of previous work, we view our approach as building on the semantic world modeling problem formulation of Elfring et al. (2013) and the data association techniques of Oh et al. (2009). As argued above and by Oh et al. (2009), MHT has various drawbacks, which are directly inherited by the approach of Elfring et al. (2013). However, instead of directly applying MCMCDA to world modeling, we will introduce more domain assumptions to make inference more efficient. Unlike target tracking, for which most data association algorithms are designed, semantic world modeling has three distinguishing domain characteristics: Objects can have attributes besides location, and hence are distinguishable from each other in general (which likely makes data association easier). Some data association methods can be readily generalized to this case (as was done by Elfring et al. (2013)), but it excludes some from consideration, such as the probability hypothesis density (PHD) filter by Mahler (2007). Only a small region of the world is visible from any viewpoint. Most data association methods operate in regimes where all targets are sensed (possibly with noise/failure) at each time point. Most object states do not change over short periods of time. In light of the final point, we study the semantic world modeling problem under the stringent assumption that the world is static, i.e., object states do not change. 1 This does not trivialize the data association problem, since it is still necessary to determine measurement-to-object correspondences (and is exacerbated by the limited field of view). However, target-tracking algorithms no longer seem most appropriate, since time is no longer an essential dimension. Instead, the problem becomes more akin to clustering, where objects are represented by points in the joint attribute (product) space, and measurements form clusters around these points. A useful model for performing clustering with an unbounded number of clusters is the Dirichlet process mixture model (DPMM) (Antoniak, 1974; Neal, 2000), a Bayesian nonparametric approach that can be viewed as an elegant extension to finite mixture models. We apply this method to world modeling in Section 5 and derive a Gibbs sampling algorithm to perform inference. The sampling candidate proposals in this algorithm can be viewed as a subset of those considered by Oh et al. (2009). However, clustering ignores a crucial assumption in data association; more details will be given in Section 6, where we also introduce modifications and approximations to address this issue. 1 Over long periods of time, this assumption is clearly unrealistic, but is beyond the scope of this paper. A naïve solution is to refresh the world model using a short window of measurements prior to each query, assuming that the world has not changed during that window. 5

6 3 The 1-D Colored-Lights Domain For clarity of explanation we begin by introducing a model of minimal complexity, involving objects with 1-D locations and a single attribute (color). Despite this simplification, the fundamental issues in data association are captured in the model described in this section. Generalizing to higher dimensions and more attributes is relatively straightforward; in Section 7, we generalize to 3-D locations and use object types as an attribute in our semantic world modeling application. The world consists of an unknown number (K) of stationary lights. Each light is characterized by its color c k and its location l k R, both of which do not change over time. A finite universe of colors of size C is assumed. A robot moves along this 1-D world, occasionally gathering partial views of the world with known fields of view [a v, b v ] R. Within each view, M v lights of various colors and locations are observed, denoted by o v m [C] {1,..., C} and x v m R respectively. These (o v m, x v m) pairs may be noisy (in both color and location) or spurious (false positive FP) measurements of the true lights. Also, a light may sometimes fail to be perceived (false negative FN). Given these measurements, the goal is to determine the posterior distribution over configurations (number, colors, and locations) of lights in the explored region of the world. We assume the following form of noise models. For color observations, for each color c, there is a known discrete distribution φ c C (estimable from perception apparatus statistics) specifying the probability of color observations: { φ c P(no observation for light with color c), i = 0 i = (1) P(color i observed for light with color c), i [C] A similar distribution φ 0 specifies the probability of observing each color given that the observation was a false positive. False positives are assumed to occur in a proportion p FP of object detections. Each view may have multiple detections and hence multiple false positives. For location observations, if the observation corresponds to an actual light, then the observed location is assumed to be Gaussian-distributed, centered on the actual location. The variance is not assumed known and will be estimated for each light from measurement data. For false positives, the location is assumed to be uniformly distributed over the field of view (Unif[a v, b v ]). Next, we present the core problem of this domain. Given sets of color-location detections from a sequence of views, {{(o v m, x v m)} M v m=1 }V v=1, we want to infer the posterior distribution on the configuration of lights {(c k, l k )} K k=1, where K is unknown as well. If we knew, for each light, which subset of the measurements were generated from that light, then we would get K decoupled estimation problems (assuming lights are independent from each other). With suitable priors, these single-light estimation problems admit efficient solutions; details can be found in the Appendix. The issue is that these associations are unknown. Therefore, we must reason over the space of possible data associations. For each observation, let zm v be the index of the light that the observation corresponds to (ranging in [K] for a configuration with K lights), or 0 if the observation is a false positive. zm v is the latent association for measurement (o v m, x v m). Let z v be the concatenated length- M v vector of all zm v variables in view v, and let {z v } be the collection of all correspondence vectors from the V views. We then aggregate estimates over all latent associations (some indices have been dropped to reduce clutter, if clear from context; please refer to the previous paragraph for indices): ( P {(c, l)} {{(o, x)}} ) = ( P {(c, l)} {z v } {z v }, {{(o, x)}} ) ( P {z v } {{(o, x)}} ) (2) 6

7 The first term is given by the decoupled estimation problems mentioned above, and results in a closed-form posterior distribution given in the Appendix. The desired posterior distribution on the left is therefore, in exact form, a mixture over the closed-form posteriors. The problem is that the number of mixture components is exponential in M v and V, one for each full association {z v }, so maintaining the full posterior distribution is intractable. Finding tractable approximations to this light-configuration posterior distribution is the subject of Sections A Tracking-Based Approach If we consider the lights to be stationary targets and the views to be a temporal sequence, a target-tracking approach can be used. Tracking simultaneously solves the data association (measurement correspondence) and target parameter estimation (light colors and locations) problems. As discussed in Section 2, a wide variety of tracking algorithms exist, and in particular multiple hypothesis tracking (MHT) (Reid, 1979) has already been adopted by Elfring et al. (2013) on the problem of semantic world modeling. We provide a gist of the MHT approach and discuss a problematic issue below; readers are referred to Elfring et al. (2013) for details. The MHT algorithm maintains, at every timestep (view) v, a distribution over all possible associations of measurements to targets up to v. At each view, MHT therefore needs to propagate each previous hypothesis forward with each possible association in view v. One way to consider this is as a tree, where nodes of depth v are associations up to view v, and a distribution is maintained on the leaves. Each view introduces a new layer of nodes, where the branching factor is the number of valid associations in that view. Without loss of generality, assume that the views are in chronological order. The distribution over associations up to view v is: ( ( ( P {z} v ) {{(o, x)}} v = P ( P {(o v, x v )} z v, {z} <v, {{(o, x)}} <v ) P ) z v {z} <v, {{(o, x)}} v P {z} <v ) {{(o, x)}} <v (3) ( ) ( z v {z} <v, {{(o, x)}} <v P {z} <v ) {{(o, x)}} <v where superscript v indicates variables at view v only, v for everything up to view v, and < v for everything up to the previous view (excluding v). The first term is the likelihood of the current view s observations, the second is the prior on the current view s correspondences given previously identified targets, and the final term is the filter s distribution from the previous views. The likelihood term for view v follows mostly from the derivation in the Appendix. The observations are independent given the view s correspondence vector z v, and the likelihood is a product of M v of the following terms: ( P o v m, x v m ) φ 0 zm v = k, {z} <v, {{(o, x)}} <v o b = v ( a, k = 0 v ) ( P {{o}} <v P {{x}} ), <v k 0 (4) where the z = k subscript refers to observations (from previous time steps in this case) that have been assigned to the same light, as indicated by the correspondence vectors {z} <v. Observations corresponding to other lights are ignored because lights are assumed to be independent. The two probability terms can be found from the posterior predictive distribution (Equations 25, 29 respectively). For new targets (where k does not index an existing target), the conditioning set of previous observations will be empty, but can be likewise handled by the predictive distributions. The false positive probability (k = 0) follows from the observation model (Equation 1). 7 o v m z=k x v m z=k

8 The prior on the current view s correspondences, the second term in Equation 3, is due to Reid (1979). Assume we know which of the existing targets are within the current field of view based on the hypothesis on previous views (this can be found by gating). Denote the indices of these targets as the size-k v set {k} v. Another plausible assumption used in the tracking literature, due to sensor characteristics, is that in a single view, each target can generate at most one non-spurious measurement. We will refer to this as the one-measurement-per-object (OMPO) assumption. We now define validity of correspondence vectors z v. Recall that in this length-m v vector, the m th entry z v m is the (positive integer) target index to which (o v m, x v m) correspond, or 0 for a false positive. First, an entry in z v must either be 0, a target index in {k} v, or a new (non-existing) index; otherwise, it corresponds to an out-of-range target. Second, by the OMPO assumption, no entry may be repeated in z v, apart from 0 for false positives. A correspondence z v is valid if and only if it satisfies both conditions. The following quantities can be found directly from z v : n 0 Number of false positives (0 entries) (5) n Number of new targets (non-existing indices) δ k I { Target k is detected ( m. z v m = k) }, k {k} v n 1 Number of matched targets = M v n 0 n = k δ k (by OMPO) where I { } is the indicator function. Then we can split P ( z v {z} <v, {{(o, x)}} <v ) by conditioning on the above quantities, which are deterministic functions of z v : 2 P ( z v) = P ( z v, n 0, n, n 1, {δ k } ) = P ( z v n 0, n, n 1, {δ k } ) P ( n 0, n, n 1, {δ k } ) (6) By the assumed model characteristics, the second term is: P ( n 0, n, n 1, {δ k } ) = Binomial ( n 0 ; M v ) (, p FP P n ; M v) P ( {δ k } ) (7) P ( {δ k } ) = [ pd (k) ] δ k [ 1 pd (k) ] 1 δ k (8) k {k} v where p D (k) is the (target-specific) detection probability defined in Equation 26 in the Appendix. The number of new targets n is typically Poisson-distributed. Determining the correspondence given the quantities above involves assigning z v m indices to the three groups of entries (of sizes n 0, n, and n 1 ) and matching a size-n 1 subset of {k} v (as indicated by {δ k }) to the indices in the final group. A common assumption is that all assignments and matches of indices are equally likely, so the first term in Equation 6 is the reciprocal of the number of valid correspondence vectors (given n 0, n, n 1, and {δ k }), given by: ( n valid n0, n, n 1, {δ k } ) ( ) M v = n 0, n, n 1 n 1! = M v! n 0!n! Combining Equations 4 9 gives the necessary expressions used in the MHT filter (Equation 3). 2 The probabilities implicitly depend on previous correspondences {z} <v and observations {{(o, x)}} <v, as shown in the second term of Equation 3, via the targets in view {k} v and their detection probabilities in Equation 8. (9) 8

9 The expression for n valid, which is related to the branching factor in the tree of associations that the MHT considers, highlights the complexity of this approach. To obtain the total number of valid associations, we need to also consider all possible settings of n 0, n, n 1, and {δ k }: n total = M v n 0 =0 (M v n 0 ) n =0 ( ) K v ( n valid n0, n, n 1, {δ k } ) (10) n 1 Even with 4 measurements and 3 within-range targets, the branching factor is 304, so considering all hypotheses over many views is clearly intractable. Many hypothesis-pruning strategies have been devised (e.g., Kurien (1990); Cox and Hingorani (1996)), the simplest of which include keeping the best hypotheses or hypotheses with probability above a certain threshold. More complex strategies to combine similar tracks and reduce the branching factor have also been considered. In the experiments of Section 7 we simply keep hypotheses with probability above a threshold of As we will demonstrate in the experiments, an MHT filter using this aggressive pruning strategy can potentially cause irreversible association errors and make incorrect conclusions. 5 A Clustering-Based Approach If we consider all the measurements together and disregard their temporal relationship (static world assumption), we expect the measurements to form clusters in the product space of colors and locations ([T ] R), allowing us to derive estimates of the number of lights and their parameters. In probabilistic terms, the measurements are generated by a mixture model, where each mixture component is parameterized by the unknown parameters of a light. Since the number of lights in the world is unknown, we also do not want to limit the number of mixture components a priori. As mentioned in Section 2, the Dirichlet process mixture model (DPMM) supports an unbounded number of mixture components. The Dirichlet process (DP) acts as a prior on distributions over the cluster parameter space. Teh (2010) provides a good review of DPs and its application to mixture models. From a generative perspective, a random distribution G over cluster parameters is first drawn from the DP; G is discrete with probability one (but possibly with unbounded support). For each measurement, a (possibly-repeated) set of cluster parameters is drawn from G, and data is then drawn according to the corresponding observation model given by the parameters. Although the model can potentially be infinite, the number of clusters is finite in practice, as they will be bounded by the total number of measurements (typically significantly fewer if the data exhibits clustering behavior). The flexibility of the DPMM clustering model lies in its ability to discover the appropriate number of clusters from the data. We now derive the DPMM model specifics and inference procedure for the colored-lights domain. A few more assumptions need to be made and parameters defined. Our model assumes that the cluster parameter distribution G is drawn from a DP prior DP(α, H), where H is the base distribution and α is the concentration hyperparameter (controlling the similarity of G and H, and also indirectly the number of clusters). H acts as a template for the DP, and is hence also a distribution over the space of cluster parameters. We set it to be the product distribution of π, the prior on colors c, and a normal-gamma distribution over the location l and its observation precision τ (see the Appendix for details on this latter distribution, as well as an interpretation of the subscripted hyperparameters): H(c, l, τ) π c NormalGamma (l, τ ; λ 0, ν 0, α 0, β 0 ) (11) 9

10 To accommodate false positives, which occur with probability p FP, we scale G from the DP prior by a factor of (1 p FP ) for true positives, and let the remaining probability mass correspond to a parameter-less cluster to which all false positives are assigned. To illustrate the analogy of the DPMM to finite mixture models, we express the DP prior in an equivalent form based on the stick-breaking construction (Sethuraman, 1994). The idea is that the sizes of clusters are determined by a random process that first selects some proportion β 1 of the unit interval ( breaks the stick ), where β 1 Beta (1, α), and defines that to be the size of the first cluster (as a proportion). Smaller α tends to result in larger sticks earlier in the process, hence fewer clusters are preferred. This process is then recursively applied ad infinitum to the remaining length-(1 β 1 ) stick, resulting in a countably infinite subdivision of the interval. A corresponding infinite sequence of cluster parameters {(c k, l k, τ k )} is drawn from the base distribution H and associated with each stick. The stick-breaking process is typically denoted by: {β k } Griffiths-Engen-McCloskey(α) ; {(c k, l k, τ k )} H (12) By defining G(c, l, τ) k=1 β k I [(c, l, τ) = (c k, l k, τ k )], i.e., the sum of stick weights with corresponding parameters equal to (c, l, τ), G is a distribution over the cluster parameters and is distributed as DP(α, H). Different draws in the stick-breaking process may lead to G having support on different numbers of cluster parameter atoms, whereas a finite mixture model can be viewed as the case where G has a fixed number of atoms in its support. Once {β k } and {(c k, l k, τ k )} are drawn from the DP prior, the rest of the generative process is: { p FP, k = 0 θ k = Cluster proportions (with FPs) (1 p FP ) β k, k 0 zm v θ ; m [M v ], v [V ] Cluster assignment (for each obs.) (13) { o v φ 0, zm v = 0 m φ cz, zm v Color observation 0 { x v Unif[a v, b v ], zm v = 0 m N ( l z, τz 1 ) Location observation, z v m 0 Despite being a nice theoretical tool, an infinite collection of sticks cannot be directly handled computationally. The most straightforward way to perform inference in a DPMM is by Gibbs sampling. In particular, we derive a collapsed Gibbs sampler for the cluster correspondence variables {{zm}} v and integrate out the other latent variables, (c, l, τ) and θ. In Gibbs sampling, we iteratively sample from the conditional distribution of each zm, v given all other correspondence variables (which we will denote by {{z}} vm ). By Bayes rule: ( ) P zm v = k {{z}} vm, {{(o, x)}} (14) ( P o v m, x v ) ( m zm v = k, {{z}} vm, {{(o, x)}} vm P zm v ) = k {{z}} vm, {{(o, x)}} vm ( ) ( P o v m, x v m {{(o, x)}} vm P zm v ) = k {{z}} vm z=k In the final line, the first term can be found from the posterior predictive distributions described in the Appendix (Equations 25 and 29), in a similar fashion to that in the MHT (Equation 4). 10

11 Input: Observations {{(o v m, x v m)} M v Number of samples S Output: Samples of cluster assignments {{{z v (s) m } M v m=1} V v=1} S s=1 m=1 }V v=1 1: Init. K := 0; zm v (0) := 0 for all m [M v ], v [V ] 2: for s := 1 to S; v := 1 to V ; m := 1 to M v do 3: Find cluster predictive distributions and sizes using most-recent samples {{zm v (s 1) }} vm 4: Compute sampling distribution (Equation 14) by multiplying Equation 4 and Equation 15 for each k {0} [K + 1], then normalizing from sampling distribution 6: if zm v (s) = K + 1 then 7: K := K + 1 8: Remove cluster with index zm v (s 1) if it has no other assigned observations 5: Sample z v (s) m (a) Collapsed Gibbs sampling for DPMM Input: Observations {{(o v m, x v m)} M v m=1 }V v=1 Cluster penalty parameter λ Output: Cluster assignments {{{zm} v M m=1} v V v=1} 1: Init. K := 1; zm v := 1 for all m [M v ], v [V ] 2: repeat 3: for v := 1 to V ; m := 1 to M v do 4: d v m(k) := log P (o v m, x v m {{(o, x)}} z=k ) for each k [K] (using Equation 4) 5: if min k d v m(k) > λ then 6: zm v := K + 1; K := K + 1 7: else 8: zm v := arg min k d v m(k) 9: until convergence 10: Sort clusters by size {zm v = k}, remove smallest clusters containing a total of a p FP -proportion of all observations, and set associated zm v = 0 (b) Hard-clustering algorithm for DPMM, inspired by DP-means (Kulis and Jordan, 2012) Figure 2: Two algorithms for performing inference in DPMMs, one by sampling, the other by hard clustering. This allows us to collapse the latent cluster parameters (c, l, τ). Note that the observations being conditioned on exclude (o v m, x v m) and depend on the current correspondence variable samples (to determine which observations belong to cluster k). The second term, the distribution of zm v given all other cluster assignments, is given by the Chinese restaurant process (CRP), which is obtained by integrating out the DP prior on θ. Together with our prior on false positives: ( P zm v = k ) N (1 p FP ) vm k, k [K] (k exists) {{z}} vm α+n vm = α (1 p FP ), k = K + 1 (k new) α+n vm p FP, k = 0 where N vm k is the number of observations currently assigned to cluster k (excluding (o v m, x v m)), N vm = K k=1 N vm k is the total number of non-false-positive observations across all views, and K is the number of instantiated clusters. This expression illustrates the role of the concentration parameter α from a sampling perspective: larger α leads to more frequent creation of new clusters. By combining Equations 14 and 15, we can sample from the conditional distribution of individual correspondences zm. v Although the model supports an infinite number of clusters, the modified CRP expression (Equation 15) shows that we only need to compute K + 2 values for one sampling step, where K is the number of existing clusters with N vm > 0, which is finite, since clusters without data are removed. One sampling sweep over all correspondence variables {{zm}} v constitutes one sample from the DPMM. Given the correspondence sample, finding the posterior configuration is simple. Each non-empty cluster corresponds to a light. For each cluster, applying Equations 24 and 27 from the Appendix to the cluster s associated data provides the posterior distributions on the light s color and location (with observation model precision) respectively. The posterior marginal distribution on the light s location is a t-distribution with parameters given in Equation 28. Although Gibbs sampling is a conceptually simple inference method for recovering the posterior 11 (15)

12 (a) Single viewpoint (b) DPMM sample clustering (c) DPMM-FullView sample Figure 3: A real-world example demonstrating issues with the DPMM approach from Section 5. (a) A scene containing many instances of the same object type, viewed from above. The relative proximity of similar objects make them easily confusable for data association. (b) The DPMM approach performs particularly poorly in this scenario because it ignores false-negative information and the one-measurement-per-object constraint. One sample from the posterior distribution is shown by the thick ellipses, centered around the mean cluster locations, with sizes depicting posterior variance and colors depicting object type (red = red soup can, black = orange baking-soda box); the small dots show raw measurements. Ignoring FNs causes spurious clusters (e.g., left-most thin green circle) to be more likely, since they are not discounted by absences in other views. Ignoring the OMPO assumption causes measurements from similar nearby objects to be aggregated into a single cluster, even if they were observed together in a single view, as was the case for the four soup cans in the middle. (c) By taking into account view-level information and constraints, the DPMM-FullView method described in Section 6.1 recovers the correct interpretation of the scene. distribution in the DPMM, it is relatively inefficient because it requires a substantial number of samples to reach convergence. Kulis and Jordan (2012) recently proposed an elegant hardclustering method, DP-means, that produces a single clustering assignment. The algorithm is derived from analyzing the small-variance asymptotics of the DPMM Gibbs sampler, and bears great resemblance to k-means. Like k-means, data points are assigned to their closest cluster centers, with the exception that points farther than λ away from all existing clusters are instead assigned to instantiate a new cluster. The process is repeated until convergence, which is guaranteed. The original presentation involved only Gaussian-distributed cluster means. Figure 2(b) shows our extension to the algorithm, which handles the discrete color parameter and also false positives. Although this method produces a single assignment instead of a distribution, we will use it in the next section to initialize algorithms that handle more data association constraints. 6 Incorporating View-Level Information and Constraints The DPMM-based solution to the colored-lights problem is a straightforward application of the DPMM, but ignores two fundamental pieces of information: Visible region information and false negatives (FN): The DPMM does not consider the field of view [a v, b v ], and hence neither which clusters are visible when a measurement is made. Clusters that are frequently visible but only sporadically detected suggest that there may in fact be no light there, that the detections were errors. Because the DPMM does not consider this, it may posit a cluster for a spurious measurement when its absence in other views would have suggested otherwise. It may also assign a measurement to a cluster that should not be visible from the current view, although this case is less likely to occur. One-measurement-per-object (OMPO) assumption: When two lights of the same color are placed close to each other, they are easily confusable. The only way to distinguish between them is if both are consistently detected together. Then, by the OMPO assumption, the two detections cannot be assigned to the same light, so the second detection must come from a 12

13 second light, or be an FP. With sufficient views, two clusters emerge. Because the DPMM ignores the OMPO assumption, it may associate both detections to the same cluster. In fact, the DPMM generally prefers larger clusters (instead of two small ones) due to the rich gets richer phenomenon in the Chinese restaurant process (Equation 15). Figure 3 illustrates a real-world example of both issues. The above issues are consequences of the DPMM s conditional independence assumptions. To see this, consider the concrete example depicted in Figure 4, where we wish to sample cluster assignments for an entire view s M v = 4 measurements. The DPMM Gibbs sampler samples the cluster assignment for each measurement individually, as shown in Figure 4(b). This causes the two right-most measurements to be assigned to the same cluster, a violation of the OMPO assumption. The assumption states that at most one measurement in a single view can be assigned to each cluster; this view-level constraint cannot be incorporated on the level of individual measurements. Likewise, a false negative only arises if none of the measurements in a view are assigned to a cluster within the field of view. To handle these constraints we must couple the measurements and sample their assignments jointly. 6.1 DPMM-FullView More formally, instead of sampling a view v s correspondence variables {zm} v M v m=1 one by one, we consider sampling from the conditional distribution of the joint correspondence vector z v : ( ) ( P z v {z} v, {{(o, x)}} P {(o v, x v ) ( ) )} z v, {z} v, {{(o, x)}} v P z v {z} v (16) Like the previous two sections, the first term is an observation likelihood term that factors into a product of M v terms, each of which is similar to Equation 4. The second term is the DP conditional distribution on z v, and can be found by repeated application of the CRP (Equation 15): P DPMM (z ) ( ) ( v {z} v = P zm v v z v M v 1,..., z1, v {z} v... P z2 v [ p n 0 FP (1 p FP) (n 1+n ) α n {m} N v 1 zm v = ) z1, v {z} v P ] ( z v 1 {z} v ) (17) (n1 +n ) 1 m =0 α + N v + m (18) where n 0, n, n 1 are the previously-defined functions of z v (Equation 5), and {m} 1 is the set of indices that are matched to existing targets (i.e., n 1 = {m} 1 ). To see the derivation, consider the known values of n 0, n, n 1 given z v. This means that there must be n 0 entries in z v with value 0, n entries with a new positive value, and n 1 entries with an existing positive value. These three types of entries correspond exactly to the cases for the CRP, hence in Equation 17, n 0 of the terms must be p FP, and so on. N v is the total number of non-view-v, non-fp observations, and Nz v m v is the number of observations assigned to the cluster with index equal to the value of zm, v excluding view v. The latter type of counts are used in the CRP case when the assignment zm v corresponds to an existing cluster index k. In general, N vm k N v k (former from CRP, latter discussed above), so the expression in Equation 18 does not hold in general. However, because of the OMPO assumption, no other observation in view v could be assigned to cluster k, so in fact N vm k = N v k, and Equation 18 holds in our case. Equation 16 is essentially the product of M v conditional distributions used in the DPMM, and does not yet achieve our goal of incorporating FNs and the OMPO assumption. To use FNs 13

14 and field-of-view information, we take inspiration from the MHT formulation, and first suppose we knew which K v of the existing K lights are within the field of view, i.e., {k} v from Section 4. This, together with z v, allows us to determine the detection indicator variables {δ k } (Equation 5) and their probabilities (Equation 8). For the OMPO constraint, we simply assign zero probability to violating correspondences. We combine the additional information with the DPMM-based conditional distribution above (Equation 18) in a conceptually simple fashion: ( ) P FullView z v z v, {k} v P DPMM (z ) ( ) [ ] v z v P {δ k } I z v satisfies OMPO (19) The final term evaluates to 1 if the joint correspondence satisfies the OMPO assumption, and 0 otherwise. Hence by construction the correspondence variables sampled from this conditional distribution will incorporate the FN information and OMPO constraint. To use P FullView as the prior over z v in Equation 16, we must remove the assumption that we know {k} v. The correct Bayesian approach is to integrate over the posterior distribution of the lights locations, which are independent t-distributions, given by Equation 28 in the Appendix. Although this is intractable, it can be approximated by sampling the lights locations, which is simple for t-distributions, then averaging the subsequent probabilities from Equation 19. In practice, we found that using the posterior mean location was sufficient, i.e., including light k if ν k [a v, b v ]. Although P FullView combines all the desired information, the inherent difficulty is hidden in the sign. The distribution first needs to be normalized before we can sample from it, which is inefficient now because the support of the distribution is the set of correspondence vectors satisfying the OMPO assumption. The OMPO constraint fully couples the measurements cluster assignments, and all assignments must be considered jointly, as depicted in Figure 4(d). We have essentially reverted to the high branching factor of the MHT! In the Figure 4 example, P FullView must be evaluated for 304 different values of z v, compared to the 4 5 = 20 required for the DPMM. 6.2 DPMM-Factored A closer look at the nature of the OMPO violation suggests a potential approximation to P FullView. In Figure 4(c), the violation is caused by only the two right-most measurements; the two measurements on the left are not easily confusable with the others and hence are easy to handle from a data association perspective. This suggests coupling only those measurements that cause OMPO violations, and assume that violations involving other measurements are unlikely. Taking this a step further, we can even consider the other measurements independently, as in the DPMM, essentially splitting the view into three independently-considered components, as depicted in Figure 4(e). More generally, suppose we can partition each view s set of measurements into violating subsets, where all OMPO violations are contained within a single subset, with high probability. That is, a good partition has the property that any two measurements belonging to different subsets will have low probability of being assigned to the same cluster (and hence causing an OMPO violation). Let P v denote such a partition on the measurement indices in view v, and let {z v p } p P v denote the restrictions of z v to each subset p P v (i.e., z v p represents the collection of correspondence variables {zm} v m p ). Then we can approximately split the OMPO constraint over the partition: [ ] I z v satisfies OMPO [ ] I z v p satisfies OMPO p P v (20) 14

15 + + + FP New FP New FP New FP New FP New (a) Input view (b) DPMM FP New FP New (c) OMPO Violation (d) DPMM-FullView + + FP New FP New FP New (e) DPMM-Factored Figure 4: A concrete example for illustrating concepts in Section 6. (a) Each thick outer box depicts measurements in the same single view (inner box), and the clusters that each measurement can be assigned to (row below inner box). The view we consider has 4 measurements of lights locations and colors. The 3 existing clusters within the field of view are shown as colored circles (these were determined from other views). Measurements can also be assigned to the two clusters to the left and right, for false positives and new clusters respectively. The task is to assign one of the 5 clusters in the bottom row to each measurement in the inner box. (b) The DPMM samples cluster assignments for each measurement independently. (c) This causes potential violations of the one-measurement-per-object (OMPO) assumption, where each cluster generates at most one observation within each view. (d) One solution is to consider all measurement assignments in the view jointly. However, as explained in Section 6.1, this is inefficient. (e) A more efficient approximation is derived in Section 6.2 by jointly considering only measurements that are OMPO-violating. Measurements that are unlikely to cause constraint violation, such as the two left ones in the example, are considered independently. This provides a trade-off between DPMM and DPMM-FullView. Returning to Figure 4(c), the most-refined partition contains three subsets, where the sole nonsingleton contains the two right-most OMPO-violating measurements. To make inference more efficient, we use the partition P v to split P FullView. Ultimately, we want to express the right-hand side of Equation 19 as a product of independent factors, each corresponding to one subset of measurements in the partition. Because the terms are independent, sampling over the conditional distribution can be performed by sampling each factor and combining the results. Each factor is normalized over its significantly-smaller set of valid correspondence vectors, thereby improving on the bottleneck step in Gibbs sampling for DPMM-FullView. We now consider how to factor the other two terms in P FullView (Equation 19). P DPMM (z v z v ) is already a product over the conditional distributions of the correspondence variables, which is clear from Equation 17. By collecting terms according to the partition P v, we can write: ( ) P DPMM z v z v = ( ) z v p z vp (21) p P v P DPMM The remaining term, P ({δ k }), is also a product of distributions, but over the set of lights {k} v that 15

16 Input: Observations {{(o v m, x v m)} M v Fields of view {[a v, b v ]} Number of samples S Output: Samples of cluster assignments {{{z v (s) m } M v m=1} V v=1} S s=1 m=1 }V v=1 1: Init. K := 0; zm v (0) := 0 for all m [M v ], v [V ] 2: for s := 1 to S; v := 1 to V do 3: Find cluster post./pred. distributions and sizes using most-recent samples {z (s 1) } v 4: Find {k} v, the lights within field of view: include light k iff. mean location ν k [a v, b v ] 5: for each valid correspondence vector z v (from total given by Equation 10) do 6: Compute sampling probability P ( z v {z (s 1) } v, {{(o, x)}}, {k} v) (unnormalized; using Equations 8, 16 19) 7: Sample z v (s) from normalized distribution 8: K := K + n (z v (s) ) 9: Remove clusters with no observations (a) Collapsed Gibbs sampling for DPMM-FullView Input: Observations, fields of view, num. samples Cluster penalty parameter λ Output: Samples of cluster assignments }} from DP-means (Figure 2(b)) 2: for v := 1 to V do 3: P v := Partition induced by transitive closure of R v, where (i, j) R v iff. z v (0) i = z v (0) j 0 1: Init. K, {{z v (0) m 4: for s := 1 to S; v := 1 to V do 5: Find cluster post./pred. distributions and sizes using most-recent samples {z (s 1) } v 6: for each subset of indices p P v do 7: Find assigned lights {k} v p : k {k} v p iff. min i p ν k x v i < min j / p ν k x v j 8: Sample z v (s) p by performing steps 5 7 of DPMM-FullView (Figure 5(a)), using {k} v p and {(o v m, x v m)} m p 9: z v (s) := Concatenation of { z v (s) p }p P v 10: Update clusters (DPMM-FullView steps 8 9) 11: Agglomerate elements in partitions with OMPO violations (steps 2 3) (b) Partitioning and sampling for DPMM-Factored Figure 5: Two modifications to the DPMM Gibbs sampling algorithm (Figure 2(a)), by incorporating view-level information and constraints (DPMM-FullView), and using an efficient factored approximation (DPMM-Factored). are within the field of view. Unfortunately, this cannot be immediately written as a product over the partition. We therefore make a further approximation by assigning each light to some p P v. In particular, for each light, the closest measurement (from the light s posterior mean location) was determined, and the light was assigned to the partition subset containing the measurement. Another way to view this scheme is that the partition P v induces a partition over Voronoi cells in the space of location measurements (bounded by the field of view), and lights are assigned to partition elements according to the cells that their posterior mean locations are situated in. Putting everything together, we arrive at the following factored approximation: ( ) P Factored z v z v, {k} v ( ) ( ) [ ] z v p z vp P {δ k } p I z v p satisfies OMPO (22) p P v P DPMM where {δ k } p denotes the restriction of {δ k } to the lights assigned to subset p according to the scheme described above. This form makes clear that each factor can be normalized and sampled independently. With a good partition, the large joint computation in DPMM-FullView is broken into several smaller ones within each element of P v. For the concrete example in Figure 4, the sampling process is depicted in Figure 4(e), where the partition is such that only the OMPOviolating measurement pair is considered jointly. This results in computing = 32 values, which is slightly greater than DPMM (20) but significantly fewer than DPMM-FullView (304). One issues remains: Where does the partition come from? This is crucial for all factored approximations: the aggressiveness of partitioning determines the trade-off between approximation error and efficiency. On one extreme, the DPMM model is similar to a fully-factored model (but does not take into account false negatives); on the other extreme, DPMM-FullView is equivalent to 16

17 View 22 View 28 Clusters (a) Iteration 0 (b) Iteration 2 (c) Iteration 4 Figure 6: An illustration of the DPMM-Factored method being applied on the real-world example from Figure 3. The top two rows show two views (of 28) taken for the scene, with different partitions of measurements (surrounding boxes) assigned by DPMM-FullView over several iterations. The final row depicts the inferred clusters/objects and their attributes (in thick ellipses) after aggregating correspondences from the 28 views. (a) The correspondences are initialized by DP-means, which assumes that measurements are independent, hence partitions consist of singletons only. The resulting clusters suffer from the same issues depicted in Figure 3, as expected. In particular, the red measurements in the middle are frequently aggregated into two large clusters, which is incorrect. (b) In view 22, an OMPO violation is detected because the four red measurements in the middle are all previously assigned to one of the large clusters. These singleton partition elements are agglomerated to respect the assumption that OMPO violations are contained within a single subset, and are sampled together to ensure their joint correspondence does not violate the OMPO assumption. This modification significantly improves the cluster estimates, with only one error remaining. The other two red measurements on the right, and the three in view 28, are not coupled at this point because they respect the OMPO assumption so far. (c) The two measurements in the top right now form an OMPO violation. This shows that measurements that were previously not in violation could later become OMPO-violating, because the clusters, and therefore the probability of being assigned to them, change between iterations. The partition is updated again to couple the OMPO-violating measurements and results in the correct clustering. (The large partition element in view 22 does not contain the bottom right measurement, which is a singleton in the partition.) a one-set partition. The example in Figure 4(c) once again provides an answer: violating subsets can be found by examining clusters in the DPMM samples. Specifically, if measurements tend to be assigned to the same cluster across samples, then clearly they are strong violators and should be considered jointly. We therefore group measurements together if the proportion of samples in which they are assigned to the same cluster exceeds some threshold value. This proportion allows one to select an appropriate trade-off level. For further efficiency in determining the partition, we also considered using the DP-means hard-clustering algorithm described at the end of Section 5. The observations were first used to quickly generate a deterministic clustering, after which the cluster assignments were examined. If two measurements within the same view were assigned to the same non-false-positive cluster, they were marked as coupled together. The partitions used by DPMM-Factored were then determined by taking the transitive closure of the coupling relation in each view. Formal details on finding this partition and determining the subsequent assigned lights can be found in Figure 5(b). Returning to the real-world example from Figure 3, the steps taken by DPMM-Factored are 17

18 partially illustrated in Figure 6. Initially, DP-means is used to cluster the measurements, and considers correspondences independently, which is equivalent to using a partition of singletons (boxes around each measurement in iteration 0). Like the DPMM sample shown in Figure 3(b), measurements in the middle from similar nearby objects are aggregated into two large clusters. The partition is updated by examining the current correspondences in each view and grouping together measurements (in the same view) that are assigned to the same cluster, i.e., violating the OMPO assumption. This results in the large box for view 22 in iteration 2. Concretely, this means that during sampling, the correspondences for the four measurements are considered jointly, as a single product term in Equation 22, such that an OMPO violation will not exist for this subset of four measurements only. This partition expansion is considered for each view, and as a result splits the large cluster into four separate ones. However, this creates a new OMPO violation, so partition expansion is performed again, resulting in an even larger partition for iteration 4. This finally resolves all OMPO violations and identifies objects in the scene correctly. This example also illustrates the computational advantages of using DPMM-Factored, as opposed to DPMM-FullView and MHT. Although multiple iterations are needed to converge to a partition that resolves all OMPO violations, these iterations are fast if the initial partition is aggressively fine (e.g., the all-singleton partition induced by DP-means). Our partition expansion scheme couples measurements together where necessary but no further, unlike MHT, which tends to couple more measurements even with aggressive gating, and DPMM-FullView, which couples together all measurements in a single view. For example, the four measurements on the left (black/green) tend to be sampled jointly by other approaches, but DPMM-Factored detects that they are sufficiently well-separated empirically (OMPO violations are rare) and leaves them to be sampled independently. Another example is illustrated in the final iteration for view 22, where the six measurements on the right (red) are split into a subset of five measurements, and a singleton (bottom right); other methods would consider all six together. Because the number of valid correspondence vectors to consider is combinatorial in the number of measurements (Equation 9), finer partitions directly imply more efficient inference (at the potential expense of accuracy). Using Equation 10, the total number of associations that potentially need to be considered with six measurements is n total (M v = 6, K v = 6) = 58576, whereas the number for the DPMM-Factored partition is n total (M v = 5, K v = 5) + n total (M v = 1, K v = 1) = 5755, an order of magnitude less. In practice, when gating is applied for the situation shown, MHT typically evaluates correspondences, whereas DPMM-Factored only considers Application to Object Type-and-Pose Estimation As mentioned in Section 3, the colored-lights domain is representative of the semantic world-model estimation problem by considering lights as objects, and colors/locations as discrete/continuous attributes respectively. Other attributes are straightforward to incorporate as long as their predictive distributions are simple to compute. To see this, recall that in our various approaches to compute or sample from the distribution of measurement associations (Equations 3, 14, and 16), attribute measurements only appear in predictive likelihood terms (e.g., Equation 4). These predictive terms assess how well each measurement (o, x) fits with an object, whose attributes have a posterior distribution determined by all the other measurements {{(o, x)}} z=k currently associated with the object. Such computations are necessary for each measurement, so simplicity in calculating the predictive likelihood is crucial. However, the measured attribute values do not appear elsewhere; 18

19 in particular, the correspondence priors described in Sections 4 6 do not depend on the observed values, and can be applied as described for arbitrary numbers and types of attributes. Object attributes such as type and pose will produce predictive distributions similar in form to that for color and location in the colored-lights domain (see the Appendix for the forms). More generally, discrete attributes will have terms resembling color, and continuous attributes with Gaussian-like noise will have terms resembling location. If attributes are independent, we can take the product of their observation models to determine the joint posterior or predictive distributions, such as the product in Equation 4. Dependent attributes will need to be jointly considered as a single unit. For example, for pose estimates with non-diagonal error covariances, the normal-gamma prior needs to be replaced with a normal-wishart prior. For simplicity, we assume that the error covariance is axis-aligned and use an independent normal-gamma prior for each dimension. This is partially justified by the empirical observation that our measurements do not align significantly in any particular direction (see the small dots in Figure 7, depicting individual measurements). We applied our discussed approaches to object type-and-pose estimation on tabletop scenes, illustrated in Figure 1. We recognize that estimating object types and poses from separate object detections in the fashion proposed below is unlikely the most effective use of visual data, and that much information (e.g., image features, contextual cues, similarities between consecutive frames) are discarded in the process. However, we are ultimately interested in situations where only blackbox attribute detectors are accessible. Object type-and-pose estimation was chosen as an exemplary problem because it is simple to understand and has immediate application. Estimating object types and poses is similar to the colored-lights problem, where type is a discrete attribute equivalent in form to color, and pose is a 3-D version of location with Gaussian-like observation noise. For our experiments, we placed a uniform prior on the type attribute, with the P(correct detection) = 0.6, P(false negative) = 0.1, and the rest of the probability mass spread uniformly across other types. In the notation of Equation 1, for type i we assume that: φ i i = 0.6 φ i 0 = 0.1 φ i j i = 1 φi i φi 0 C 1 (23) For pose, we assumed that objects are resting stably and upright above a surface, so only the (x, y, θ) positions of their reference points were considered. Further, as mentioned above, we assumed the observation noise is independent in each dimension, and placed a normal-gamma distribution on each, with the same hyperparameters as specified in the Appendix (α 0 = 10, β 0 = ). The observation likelihood of each measurement is similar in form to Equation 4, except with two additional terms in the product that resemble location for the two extra attribute dimensions. Detections of object type and pose came from 3-D point-cloud data obtained from a Kinect sensor mounted on a mobile robot. The object detector starts by clustering the points above a resting surface, such as a table or a shelf. It assumes that objects are separated on the surface, so that each point cloud corresponds to at most one object. For each cluster, it tries fitting point-cloud object models to the observed points, by optimizing a fitness function with respect to the object pose (x, y, θ). The z-position of the object is constrained so that the bottom of the object touches the resting surface. The optimizer tries alignments starting from several different model resting orientations based on the convex hull of the object model. The fitness function is computed as a weighted linear combination of least-squares range-image errors and point-cloud nearest-neighbor distances (approximated with a distance transform of the model point cloud). The detection pipeline is related to the system described by Glover and Popovic (2013). 19

20 For our scenarios, objects of 4 distinct types, possibly with multiple instances of the same type, were placed on a table. A robot moved around the table in a circular fashion, obtaining views in the process; see Figures 9 and 10 for RGB images of example views (although only depth data is used to detect objects). When a view is captured, the object detection system described above is given the Kinect point cloud as input, as outputs a list of object types and (x, y, θ) poses, one for each segmented cluster in the point cloud. Figure 8 visualizes the detections (superimposed in red using the known shape models) for several views; common detection errors are also illustrated. We constructed 12 scenes of varying object and occlusion density to test our approaches; results for 5 representative scenarios are described in the next section. 7.1 Qualitative Results Qualitative results for 5 representative scenarios are shown in Figure 7. Images from above are for comparison convenience only; the camera s viewing height is much closer to the table height, as shown in Figures 9 and 10, so in each view only a subset of objects is detectable. We compare three approaches: multiple hypothesis tracking (MHT from Section 4; a re-implementation of the approach by Elfring et al. (2013)), generic DPMM clustering (DPMM from Section 5), and the factored approximation to DPMM-FullView (DPMM-Factored from Section 6.2). In Figure 7, the most likely hypothesis is shown for MHT, and the maximum a posteriori (MAP) sample (out of 100) is shown for the clustering-based approaches. All approaches work well for scenario 1, where objects are spaced far apart. As objects of similar type are placed near each other, DPMM tends to combine clusters since it ignores the OMPO assumption. This is most apparent in scenario 4 (also illustrated in Figures 3 and 6), where four soup cans (red) were combined into a single large cluster. By reconsidering the OMPO assumption, DPMM-Factored performs significantly better and is on par qualitatively with the MHT, except for an extra cluster (bottom left, green) in scenario 2. In more detail, for scenario 2, the measurements corresponding to the white L-shaped object are dispersed, causing the shown extra-cluster error to be likely. Examining more samples reveals that a significant proportion (31%) do not have the extra cluster; they just happen not to be MAP samples. This means that the estimator has significant uncertainty as to whether or not the extra object exists. Although in this case the DPMM-Factored MAP sample is wrong, it highlights a feature of our approach. Consider a task, e.g., grasping, that requires an accurate estimate of this object s neighborhood. Given the high uncertainty in the samples, the robot should decide to gather more observations of the region instead of operating based on the incorrect MAP sample. In contrast, the MHT is over 90% certain of its estimate because most other possibilities have been pruned. Although MHT would have been less certain as well if all hypotheses were retained during filtering, the necessary aggressive pruning tends to make MHT overconfident in its estimates. Scenario 5, shown in Figure 9, highlights another difference between the tracking filter and batch approaches. There is significant occlusion early in the sequence, which throws off MHT, causing it to make incorrect associations which result in poor pose estimates. Here two closely-arranged boxes are placed near a shelf, such that from most views at most one of the two boxes can be seen. Only in the final views of the sequence can both be seen (final image in Figure 9). Due to the proximity of the boxes, and the fact that at most one was visible in the early views, MHT eventually pruned all the then-unlikely hypotheses positing that measurements came from two objects. When finally both are seen together, although a hypothesis with two orange boxes resurfaces, it is too late: the remaining association hypotheses already associate all previous measurements of the 20

21 (a) Scene from above (b) MHT (c) DPMM (d) DPMM-Factored Figure 7: Qualitative results for 3 world-model estimation approaches in 5 scenarios. The bird s-eye view of the scenes is for comparison convenience only; the actual viewing height is much closer to the table. The most likely hypothesis is shown for MHT, and the maximum a posteriori sample is shown for the clustering-based approaches. Each small colored dot is a semantic (object type-and-pose) detection. Each target/cluster is depicted by an ellipse, centered at the posterior mean location. Ellipse axis lengths are proportional to the standard deviation in their respective dimensions. Ellipses are color-coded by the most likely posterior object type: red = red soup can, black = orange baking-soda box, green = white L-shaped block, blue = blue rectangular cup. Line thickness is proportional to cluster size. See text in Section 7 for qualitative comparisons. (a) Scenario 2 (b) Scenario 3 (c) Scenario 4 Figure 8: Examples of object detections in several views (superimposed in red using the known shape model of the detected type). The top row shows cases where the detections are relatively accurate, whereas the bottom row shows cases where most detections are missing or wrong. Missing objects are typically due to occlusion by other objects. When only a small part of an object is visible, it is often not segmented properly, which then affects the fitted poses. 21

22 Figure 9: Examples of views from scenario 5. In all views except the final one, only one of the two orange bakingsoda boxes was detected. This causes MHT to incorrectly infer that all measurements came from a single object (and prune other possibilities), whereas batch approaches such as clustering can revisit previous associations and correct them using new information, such as the final view where both boxes are finally detected. Figure 10: Examples of views from scenario 3. Objects were placed relatively close together, resulting in significant occlusion, causing the object detector to frequently miss detections or produce errors. boxes to the same target, in turn giving an inaccurate location estimate. In contrast, DPMMFactored re-examines previous associations (in the next sampling iteration) after the two boxes are seen together, and can correct such errors. One way to consider this difference is that the clustering-based methods repeatedly revisits all association decisions, whereas MHT prunes away most association hypotheses, and once having done so it cannot revisit a wrong decision. 7.2 Quantitative Comparisons Quantitative metrics are given in Table 1, averaged over the association hypotheses for MHT, and over 100 samples for DPMM, DPMM-FullView, and DPMM-Factored (after discarding burn-in). We also compare against our version of the hard-clustering algorithm DP-means, for several different penalty parameter (λ) settings; recall that larger λ tends to lead to more, tighter clusters (see Figure 2(b), line 5 to see its role as a threshold for cluster membership). Finally, we consider a baseline approach, Raw, that does not perform any data association. It uses the object types and poses perceived in each view directly as a separate prediction of the objects present within the visible field of view. The metrics in the table are evaluated for each view s prediction, and the Raw table rows show the average value over all views. The need for aggregating measurements across views is exemplified by Raw s tendency to miss objects or confuse their types within single views. Out of the 12 scenes attempted, scenario 3, shown in Figure 10, was the most challenging for Raw, because objects were placed close together. This caused segmentation errors frequently occur and resulted in clear errors and unidentifiable point cloud clusters. Significant occlusion also caused missed detections. As a result, using any single view s detections is unlikely to produce an accurate estimate of objects in the world. In the scenario s sequence of 21 views, although most objects are detected (sometimes incorrectly) fewer than 5 times, the combined information is sufficient for MHT, DPMM-FullView, and DPMM-Factored to achieve good qualitative and quantitative results. 22

Data Assocation for Semantic World Modeling from Partial Views

Data Assocation for Semantic World Modeling from Partial Views Data Assocation for Semantic World Modeling from Partial Views Lawson L.S. Wong, Leslie Pack Kaelbling, and Tomás Lozano-Pérez Abstract Autonomous mobile-manipulation robots need to sense and interact

More information

Computer Vision 2 Lecture 8

Computer Vision 2 Lecture 8 Computer Vision 2 Lecture 8 Multi-Object Tracking (30.05.2016) leibe@vision.rwth-aachen.de, stueckler@vision.rwth-aachen.de RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

More information

This chapter explains two techniques which are frequently used throughout

This chapter explains two techniques which are frequently used throughout Chapter 2 Basic Techniques This chapter explains two techniques which are frequently used throughout this thesis. First, we will introduce the concept of particle filters. A particle filter is a recursive

More information

Switching Hypothesized Measurements: A Dynamic Model with Applications to Occlusion Adaptive Joint Tracking

Switching Hypothesized Measurements: A Dynamic Model with Applications to Occlusion Adaptive Joint Tracking Switching Hypothesized Measurements: A Dynamic Model with Applications to Occlusion Adaptive Joint Tracking Yang Wang Tele Tan Institute for Infocomm Research, Singapore {ywang, telctan}@i2r.a-star.edu.sg

More information

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

Learning the State of the World: Object-based World Modeling for Mobile-Manipulation Robots

Learning the State of the World: Object-based World Modeling for Mobile-Manipulation Robots Learning the State of the World: Object-based World Modeling for Mobile-Manipulation Robots Lawson L.S. Wong 1 Introduction Mobile-manipulation robots performing service tasks in human-centric indoor environments

More information

Loop detection and extended target tracking using laser data

Loop detection and extended target tracking using laser data Licentiate seminar 1(39) Loop detection and extended target tracking using laser data Karl Granström Division of Automatic Control Department of Electrical Engineering Linköping University Linköping, Sweden

More information

Computer vision: models, learning and inference. Chapter 10 Graphical Models

Computer vision: models, learning and inference. Chapter 10 Graphical Models Computer vision: models, learning and inference Chapter 10 Graphical Models Independence Two variables x 1 and x 2 are independent if their joint probability distribution factorizes as Pr(x 1, x 2 )=Pr(x

More information

Random projection for non-gaussian mixture models

Random projection for non-gaussian mixture models Random projection for non-gaussian mixture models Győző Gidófalvi Department of Computer Science and Engineering University of California, San Diego La Jolla, CA 92037 gyozo@cs.ucsd.edu Abstract Recently,

More information

CHAPTER 6 PERCEPTUAL ORGANIZATION BASED ON TEMPORAL DYNAMICS

CHAPTER 6 PERCEPTUAL ORGANIZATION BASED ON TEMPORAL DYNAMICS CHAPTER 6 PERCEPTUAL ORGANIZATION BASED ON TEMPORAL DYNAMICS This chapter presents a computational model for perceptual organization. A figure-ground segregation network is proposed based on a novel boundary

More information

MA651 Topology. Lecture 4. Topological spaces 2

MA651 Topology. Lecture 4. Topological spaces 2 MA651 Topology. Lecture 4. Topological spaces 2 This text is based on the following books: Linear Algebra and Analysis by Marc Zamansky Topology by James Dugundgji Fundamental concepts of topology by Peter

More information

CS281 Section 9: Graph Models and Practical MCMC

CS281 Section 9: Graph Models and Practical MCMC CS281 Section 9: Graph Models and Practical MCMC Scott Linderman November 11, 213 Now that we have a few MCMC inference algorithms in our toolbox, let s try them out on some random graph models. Graphs

More information

Vision-Motion Planning with Uncertainty

Vision-Motion Planning with Uncertainty Vision-Motion Planning with Uncertainty Jun MIURA Yoshiaki SHIRAI Dept. of Mech. Eng. for Computer-Controlled Machinery, Osaka University, Suita, Osaka 565, Japan jun@ccm.osaka-u.ac.jp Abstract This paper

More information

Edge-exchangeable graphs and sparsity

Edge-exchangeable graphs and sparsity Edge-exchangeable graphs and sparsity Tamara Broderick Department of EECS Massachusetts Institute of Technology tbroderick@csail.mit.edu Diana Cai Department of Statistics University of Chicago dcai@uchicago.edu

More information

CS Introduction to Data Mining Instructor: Abdullah Mueen

CS Introduction to Data Mining Instructor: Abdullah Mueen CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 8: ADVANCED CLUSTERING (FUZZY AND CO -CLUSTERING) Review: Basic Cluster Analysis Methods (Chap. 10) Cluster Analysis: Basic Concepts

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Bayes Filter Implementations Discrete filters, Particle filters Piecewise Constant Representation of belief 2 Discrete Bayes Filter Algorithm 1. Algorithm Discrete_Bayes_filter(

More information

Artificial Intelligence for Robotics: A Brief Summary

Artificial Intelligence for Robotics: A Brief Summary Artificial Intelligence for Robotics: A Brief Summary This document provides a summary of the course, Artificial Intelligence for Robotics, and highlights main concepts. Lesson 1: Localization (using Histogram

More information

Maintaining accurate multi-target tracking under frequent occlusion

Maintaining accurate multi-target tracking under frequent occlusion Maintaining accurate multi-target tracking under frequent occlusion Yizheng Cai Department of Computer Science University of British Columbia Vancouver, V6T 1Z4 Email:yizhengc@cs.ubc.ca Homepage: www.cs.ubc.ca/~yizhengc

More information

Multiple Pedestrian Tracking using Viterbi Data Association

Multiple Pedestrian Tracking using Viterbi Data Association Multiple Pedestrian Tracking using Viterbi Data Association Asma Azim and Olivier Aycard Abstract To address perception problems we must be able to track dynamic objects of the environment. An important

More information

Parallel Gibbs Sampling From Colored Fields to Thin Junction Trees

Parallel Gibbs Sampling From Colored Fields to Thin Junction Trees Parallel Gibbs Sampling From Colored Fields to Thin Junction Trees Joseph Gonzalez Yucheng Low Arthur Gretton Carlos Guestrin Draw Samples Sampling as an Inference Procedure Suppose we wanted to know the

More information

Clustering. SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic

Clustering. SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic Clustering SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic Clustering is one of the fundamental and ubiquitous tasks in exploratory data analysis a first intuition about the

More information

Extended target tracking using PHD filters

Extended target tracking using PHD filters Ulm University 2014 01 29 1(35) With applications to video data and laser range data Division of Automatic Control Department of Electrical Engineering Linöping university Linöping, Sweden Presentation

More information

Evaluating Classifiers

Evaluating Classifiers Evaluating Classifiers Charles Elkan elkan@cs.ucsd.edu January 18, 2011 In a real-world application of supervised learning, we have a training set of examples with labels, and a test set of examples with

More information

3 No-Wait Job Shops with Variable Processing Times

3 No-Wait Job Shops with Variable Processing Times 3 No-Wait Job Shops with Variable Processing Times In this chapter we assume that, on top of the classical no-wait job shop setting, we are given a set of processing times for each operation. We may select

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Overview of Part Two Probabilistic Graphical Models Part Two: Inference and Learning Christopher M. Bishop Exact inference and the junction tree MCMC Variational methods and EM Example General variational

More information

Tracking Multiple Moving Objects with a Mobile Robot

Tracking Multiple Moving Objects with a Mobile Robot Tracking Multiple Moving Objects with a Mobile Robot Dirk Schulz 1 Wolfram Burgard 2 Dieter Fox 3 Armin B. Cremers 1 1 University of Bonn, Computer Science Department, Germany 2 University of Freiburg,

More information

Multiple Constraint Satisfaction by Belief Propagation: An Example Using Sudoku

Multiple Constraint Satisfaction by Belief Propagation: An Example Using Sudoku Multiple Constraint Satisfaction by Belief Propagation: An Example Using Sudoku Todd K. Moon and Jacob H. Gunther Utah State University Abstract The popular Sudoku puzzle bears structural resemblance to

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Learning the Structure of Deep, Sparse Graphical Models

Learning the Structure of Deep, Sparse Graphical Models Learning the Structure of Deep, Sparse Graphical Models Hanna M. Wallach University of Massachusetts Amherst wallach@cs.umass.edu Joint work with Ryan Prescott Adams & Zoubin Ghahramani Deep Belief Networks

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2008 CS 551, Spring 2008 c 2008, Selim Aksoy (Bilkent University)

More information

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University NIPS 2008: E. Sudderth & M. Jordan, Shared Segmentation of Natural

More information

Fusion of Radar and EO-sensors for Surveillance

Fusion of Radar and EO-sensors for Surveillance of Radar and EO-sensors for Surveillance L.J.H.M. Kester, A. Theil TNO Physics and Electronics Laboratory P.O. Box 96864, 2509 JG The Hague, The Netherlands kester@fel.tno.nl, theil@fel.tno.nl Abstract

More information

9.1. K-means Clustering

9.1. K-means Clustering 424 9. MIXTURE MODELS AND EM Section 9.2 Section 9.3 Section 9.4 view of mixture distributions in which the discrete latent variables can be interpreted as defining assignments of data points to specific

More information

Evaluation of Moving Object Tracking Techniques for Video Surveillance Applications

Evaluation of Moving Object Tracking Techniques for Video Surveillance Applications International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Evaluation

More information

Spatial Latent Dirichlet Allocation

Spatial Latent Dirichlet Allocation Spatial Latent Dirichlet Allocation Xiaogang Wang and Eric Grimson Computer Science and Computer Science and Artificial Intelligence Lab Massachusetts Tnstitute of Technology, Cambridge, MA, 02139, USA

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Sebastian Thrun Wolfram Burgard Dieter Fox The MIT Press Cambridge, Massachusetts London, England Preface xvii Acknowledgments xix I Basics 1 1 Introduction 3 1.1 Uncertainty in

More information

Probabilistic Abstraction Lattices: A Computationally Efficient Model for Conditional Probability Estimation

Probabilistic Abstraction Lattices: A Computationally Efficient Model for Conditional Probability Estimation Probabilistic Abstraction Lattices: A Computationally Efficient Model for Conditional Probability Estimation Daniel Lowd January 14, 2004 1 Introduction Probabilistic models have shown increasing popularity

More information

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision Object Recognition Using Pictorial Structures Daniel Huttenlocher Computer Science Department Joint work with Pedro Felzenszwalb, MIT AI Lab In This Talk Object recognition in computer vision Brief definition

More information

Exploiting Depth Camera for 3D Spatial Relationship Interpretation

Exploiting Depth Camera for 3D Spatial Relationship Interpretation Exploiting Depth Camera for 3D Spatial Relationship Interpretation Jun Ye Kien A. Hua Data Systems Group, University of Central Florida Mar 1, 2013 Jun Ye and Kien A. Hua (UCF) 3D directional spatial relationships

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 5 Inference

More information

Ranking Clustered Data with Pairwise Comparisons

Ranking Clustered Data with Pairwise Comparisons Ranking Clustered Data with Pairwise Comparisons Alisa Maas ajmaas@cs.wisc.edu 1. INTRODUCTION 1.1 Background Machine learning often relies heavily on being able to rank the relative fitness of instances

More information

A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data

A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data Seyoung Kim, Padhraic Smyth, and Hal Stern Bren School of Information and Computer Sciences University of California,

More information

Generalized Inverse Reinforcement Learning

Generalized Inverse Reinforcement Learning Generalized Inverse Reinforcement Learning James MacGlashan Cogitai, Inc. james@cogitai.com Michael L. Littman mlittman@cs.brown.edu Nakul Gopalan ngopalan@cs.brown.edu Amy Greenwald amy@cs.brown.edu Abstract

More information

Chapter 3. Bootstrap. 3.1 Introduction. 3.2 The general idea

Chapter 3. Bootstrap. 3.1 Introduction. 3.2 The general idea Chapter 3 Bootstrap 3.1 Introduction The estimation of parameters in probability distributions is a basic problem in statistics that one tends to encounter already during the very first course on the subject.

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

THE classical approach to multiple target tracking (MTT) is

THE classical approach to multiple target tracking (MTT) is IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 5, MAY 2007 1589 A Bayesian Approach to Multiple Target Detection and Tracking Mark R. Morelande, Christopher M. Kreucher, and Keith Kastella Abstract

More information

Model-Based Clustering for Online Crisis Identification in Distributed Computing

Model-Based Clustering for Online Crisis Identification in Distributed Computing Model-Based Clustering for Crisis Identification in Distributed Computing Dawn Woodard Operations Research and Information Engineering Cornell University with Moises Goldszmidt Microsoft Research 1 Outline

More information

A CSP Search Algorithm with Reduced Branching Factor

A CSP Search Algorithm with Reduced Branching Factor A CSP Search Algorithm with Reduced Branching Factor Igor Razgon and Amnon Meisels Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, 84-105, Israel {irazgon,am}@cs.bgu.ac.il

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 17 EM CS/CNS/EE 155 Andreas Krause Announcements Project poster session on Thursday Dec 3, 4-6pm in Annenberg 2 nd floor atrium! Easels, poster boards and cookies

More information

Markov Network Structure Learning

Markov Network Structure Learning Markov Network Structure Learning Sargur Srihari srihari@cedar.buffalo.edu 1 Topics Structure Learning as model selection Structure Learning using Independence Tests Score based Learning: Hypothesis Spaces

More information

Segmentation and Tracking of Partial Planar Templates

Segmentation and Tracking of Partial Planar Templates Segmentation and Tracking of Partial Planar Templates Abdelsalam Masoud William Hoff Colorado School of Mines Colorado School of Mines Golden, CO 800 Golden, CO 800 amasoud@mines.edu whoff@mines.edu Abstract

More information

Regularization and model selection

Regularization and model selection CS229 Lecture notes Andrew Ng Part VI Regularization and model selection Suppose we are trying select among several different models for a learning problem. For instance, we might be using a polynomial

More information

6.001 Notes: Section 8.1

6.001 Notes: Section 8.1 6.001 Notes: Section 8.1 Slide 8.1.1 In this lecture we are going to introduce a new data type, specifically to deal with symbols. This may sound a bit odd, but if you step back, you may realize that everything

More information

Topological Classification of Data Sets without an Explicit Metric

Topological Classification of Data Sets without an Explicit Metric Topological Classification of Data Sets without an Explicit Metric Tim Harrington, Andrew Tausz and Guillaume Troianowski December 10, 2008 A contemporary problem in data analysis is understanding the

More information

Efficient Feature Learning Using Perturb-and-MAP

Efficient Feature Learning Using Perturb-and-MAP Efficient Feature Learning Using Perturb-and-MAP Ke Li, Kevin Swersky, Richard Zemel Dept. of Computer Science, University of Toronto {keli,kswersky,zemel}@cs.toronto.edu Abstract Perturb-and-MAP [1] is

More information

Expectation Propagation

Expectation Propagation Expectation Propagation Erik Sudderth 6.975 Week 11 Presentation November 20, 2002 Introduction Goal: Efficiently approximate intractable distributions Features of Expectation Propagation (EP): Deterministic,

More information

Probability Evaluation in MHT with a Product Set Representation of Hypotheses

Probability Evaluation in MHT with a Product Set Representation of Hypotheses Probability Evaluation in MHT with a Product Set Representation of Hypotheses Johannes Wintenby Ericsson Microwave Systems 431 84 Mölndal, Sweden johannes.wintenby@ericsson.com Abstract - Multiple Hypothesis

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)

More information

HOUGH TRANSFORM CS 6350 C V

HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM The problem: Given a set of points in 2-D, find if a sub-set of these points, fall on a LINE. Hough Transform One powerful global method for detecting edges

More information

Algorithms for Integer Programming

Algorithms for Integer Programming Algorithms for Integer Programming Laura Galli November 9, 2016 Unlike linear programming problems, integer programming problems are very difficult to solve. In fact, no efficient general algorithm is

More information

CRF Based Point Cloud Segmentation Jonathan Nation

CRF Based Point Cloud Segmentation Jonathan Nation CRF Based Point Cloud Segmentation Jonathan Nation jsnation@stanford.edu 1. INTRODUCTION The goal of the project is to use the recently proposed fully connected conditional random field (CRF) model to

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

6. Relational Algebra (Part II)

6. Relational Algebra (Part II) 6. Relational Algebra (Part II) 6.1. Introduction In the previous chapter, we introduced relational algebra as a fundamental model of relational database manipulation. In particular, we defined and discussed

More information

Planning and Control: Markov Decision Processes

Planning and Control: Markov Decision Processes CSE-571 AI-based Mobile Robotics Planning and Control: Markov Decision Processes Planning Static vs. Dynamic Predictable vs. Unpredictable Fully vs. Partially Observable Perfect vs. Noisy Environment What

More information

Randomized Algorithms for Fast Bayesian Hierarchical Clustering

Randomized Algorithms for Fast Bayesian Hierarchical Clustering Randomized Algorithms for Fast Bayesian Hierarchical Clustering Katherine A. Heller and Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College ondon, ondon, WC1N 3AR, UK {heller,zoubin}@gatsby.ucl.ac.uk

More information

Framework for Design of Dynamic Programming Algorithms

Framework for Design of Dynamic Programming Algorithms CSE 441T/541T Advanced Algorithms September 22, 2010 Framework for Design of Dynamic Programming Algorithms Dynamic programming algorithms for combinatorial optimization generalize the strategy we studied

More information

Chapter 2 Basic Structure of High-Dimensional Spaces

Chapter 2 Basic Structure of High-Dimensional Spaces Chapter 2 Basic Structure of High-Dimensional Spaces Data is naturally represented geometrically by associating each record with a point in the space spanned by the attributes. This idea, although simple,

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Discrete Filters and Particle Filters Models Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras and Probabilistic Robotics Book SA-1 Probabilistic

More information

Today. Lecture 4: Last time. The EM algorithm. We examine clustering in a little more detail; we went over it a somewhat quickly last time

Today. Lecture 4: Last time. The EM algorithm. We examine clustering in a little more detail; we went over it a somewhat quickly last time Today Lecture 4: We examine clustering in a little more detail; we went over it a somewhat quickly last time The CAD data will return and give us an opportunity to work with curves (!) We then examine

More information

FMA901F: Machine Learning Lecture 6: Graphical Models. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 6: Graphical Models. Cristian Sminchisescu FMA901F: Machine Learning Lecture 6: Graphical Models Cristian Sminchisescu Graphical Models Provide a simple way to visualize the structure of a probabilistic model and can be used to design and motivate

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 2014-2015 Jakob Verbeek, November 28, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

Fitting D.A. Forsyth, CS 543

Fitting D.A. Forsyth, CS 543 Fitting D.A. Forsyth, CS 543 Fitting Choose a parametric object/some objects to represent a set of tokens Most interesting case is when criterion is not local can t tell whether a set of points lies on

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Overview of Part One Probabilistic Graphical Models Part One: Graphs and Markov Properties Christopher M. Bishop Graphs and probabilities Directed graphs Markov properties Undirected graphs Examples Microsoft

More information

Monte Carlo Localization using Dynamically Expanding Occupancy Grids. Karan M. Gupta

Monte Carlo Localization using Dynamically Expanding Occupancy Grids. Karan M. Gupta 1 Monte Carlo Localization using Dynamically Expanding Occupancy Grids Karan M. Gupta Agenda Introduction Occupancy Grids Sonar Sensor Model Dynamically Expanding Occupancy Grids Monte Carlo Localization

More information

Level-set MCMC Curve Sampling and Geometric Conditional Simulation

Level-set MCMC Curve Sampling and Geometric Conditional Simulation Level-set MCMC Curve Sampling and Geometric Conditional Simulation Ayres Fan John W. Fisher III Alan S. Willsky February 16, 2007 Outline 1. Overview 2. Curve evolution 3. Markov chain Monte Carlo 4. Curve

More information

A noninformative Bayesian approach to small area estimation

A noninformative Bayesian approach to small area estimation A noninformative Bayesian approach to small area estimation Glen Meeden School of Statistics University of Minnesota Minneapolis, MN 55455 glen@stat.umn.edu September 2001 Revised May 2002 Research supported

More information

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework IEEE SIGNAL PROCESSING LETTERS, VOL. XX, NO. XX, XXX 23 An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework Ji Won Yoon arxiv:37.99v [cs.lg] 3 Jul 23 Abstract In order to cluster

More information

Statistical Timing Analysis Using Bounds and Selective Enumeration

Statistical Timing Analysis Using Bounds and Selective Enumeration IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003 1243 Statistical Timing Analysis Using Bounds and Selective Enumeration Aseem Agarwal, Student

More information

Mixture Models and the EM Algorithm

Mixture Models and the EM Algorithm Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Finite Mixture Models Say we have a data set D = {x 1,..., x N } where x i is

More information

Expectation Maximization (EM) and Gaussian Mixture Models

Expectation Maximization (EM) and Gaussian Mixture Models Expectation Maximization (EM) and Gaussian Mixture Models Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 2 3 4 5 6 7 8 Unsupervised Learning Motivation

More information

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing Visual servoing vision allows a robotic system to obtain geometrical and qualitative information on the surrounding environment high level control motion planning (look-and-move visual grasping) low level

More information

DESIGN AND ANALYSIS OF ALGORITHMS. Unit 1 Chapter 4 ITERATIVE ALGORITHM DESIGN ISSUES

DESIGN AND ANALYSIS OF ALGORITHMS. Unit 1 Chapter 4 ITERATIVE ALGORITHM DESIGN ISSUES DESIGN AND ANALYSIS OF ALGORITHMS Unit 1 Chapter 4 ITERATIVE ALGORITHM DESIGN ISSUES http://milanvachhani.blogspot.in USE OF LOOPS As we break down algorithm into sub-algorithms, sooner or later we shall

More information

Joint design of data analysis algorithms and user interface for video applications

Joint design of data analysis algorithms and user interface for video applications Joint design of data analysis algorithms and user interface for video applications Nebojsa Jojic Microsoft Research Sumit Basu Microsoft Research Nemanja Petrovic University of Illinois Brendan Frey University

More information

CS 664 Segmentation. Daniel Huttenlocher

CS 664 Segmentation. Daniel Huttenlocher CS 664 Segmentation Daniel Huttenlocher Grouping Perceptual Organization Structural relationships between tokens Parallelism, symmetry, alignment Similarity of token properties Often strong psychophysical

More information

Topological Mapping. Discrete Bayes Filter

Topological Mapping. Discrete Bayes Filter Topological Mapping Discrete Bayes Filter Vision Based Localization Given a image(s) acquired by moving camera determine the robot s location and pose? Towards localization without odometry What can be

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms for Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms for Inference Fall 2014 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms for Inference Fall 2014 1 Course Overview This course is about performing inference in complex

More information

GiRaF: a toolbox for Gibbs Random Fields analysis

GiRaF: a toolbox for Gibbs Random Fields analysis GiRaF: a toolbox for Gibbs Random Fields analysis Julien Stoehr *1, Pierre Pudlo 2, and Nial Friel 1 1 University College Dublin 2 Aix-Marseille Université February 24, 2016 Abstract GiRaF package offers

More information

Joint Entity Resolution

Joint Entity Resolution Joint Entity Resolution Steven Euijong Whang, Hector Garcia-Molina Computer Science Department, Stanford University 353 Serra Mall, Stanford, CA 94305, USA {swhang, hector}@cs.stanford.edu No Institute

More information

THE preceding chapters were all devoted to the analysis of images and signals which

THE preceding chapters were all devoted to the analysis of images and signals which Chapter 5 Segmentation of Color, Texture, and Orientation Images THE preceding chapters were all devoted to the analysis of images and signals which take values in IR. It is often necessary, however, to

More information

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization Wolfram Burgard 1 Motivation Recall: Discrete filter Discretize the continuous state space High memory complexity

More information

3 SOLVING PROBLEMS BY SEARCHING

3 SOLVING PROBLEMS BY SEARCHING 48 3 SOLVING PROBLEMS BY SEARCHING A goal-based agent aims at solving problems by performing actions that lead to desirable states Let us first consider the uninformed situation in which the agent is not

More information

CHAPTER 5 PROPAGATION DELAY

CHAPTER 5 PROPAGATION DELAY 98 CHAPTER 5 PROPAGATION DELAY Underwater wireless sensor networks deployed of sensor nodes with sensing, forwarding and processing abilities that operate in underwater. In this environment brought challenges,

More information

Motivation. Technical Background

Motivation. Technical Background Handling Outliers through Agglomerative Clustering with Full Model Maximum Likelihood Estimation, with Application to Flow Cytometry Mark Gordon, Justin Li, Kevin Matzen, Bryce Wiedenbeck Motivation Clustering

More information

Unit 1 Chapter 4 ITERATIVE ALGORITHM DESIGN ISSUES

Unit 1 Chapter 4 ITERATIVE ALGORITHM DESIGN ISSUES DESIGN AND ANALYSIS OF ALGORITHMS Unit 1 Chapter 4 ITERATIVE ALGORITHM DESIGN ISSUES http://milanvachhani.blogspot.in USE OF LOOPS As we break down algorithm into sub-algorithms, sooner or later we shall

More information

Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis

Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis Xavier Le Faucheur a, Brani Vidakovic b and Allen Tannenbaum a a School of Electrical and Computer Engineering, b Department of Biomedical

More information

3 : Representation of Undirected GMs

3 : Representation of Undirected GMs 0-708: Probabilistic Graphical Models 0-708, Spring 202 3 : Representation of Undirected GMs Lecturer: Eric P. Xing Scribes: Nicole Rafidi, Kirstin Early Last Time In the last lecture, we discussed directed

More information

Clustering Relational Data using the Infinite Relational Model

Clustering Relational Data using the Infinite Relational Model Clustering Relational Data using the Infinite Relational Model Ana Daglis Supervised by: Matthew Ludkin September 4, 2015 Ana Daglis Clustering Data using the Infinite Relational Model September 4, 2015

More information

You ve already read basics of simulation now I will be taking up method of simulation, that is Random Number Generation

You ve already read basics of simulation now I will be taking up method of simulation, that is Random Number Generation Unit 5 SIMULATION THEORY Lesson 39 Learning objective: To learn random number generation. Methods of simulation. Monte Carlo method of simulation You ve already read basics of simulation now I will be

More information