Transformations III. Week 3, Mon Jan 18

Size: px
Start display at page:

Download "Transformations III. Week 3, Mon Jan 18"

Transcription

1 Universit of British Columbia CPSC 34 Computer Graphics Jan-Apr 2 Tamara Munzner Transformations III Week 3, Mon Jan 8

2 News CS dept announcements Undergraduate Summer Research Award USRA) applications due Feb 26 see Guiliana for more details 2

3 Department of Computer Science Undergraduate Events Events this week Drop-in Resume/Cover Letter Editing Date: Tues., Jan 9 Time: 2:3 2 pm Location: Rm 255, ICICS/CS Bldg. Interview Skills Workshop Date: Thurs., Jan 2 Time: 2:3 2 pm Location: DMP 2 Registration: dianejoh@cs.ubc.ca Project Management Workshop Speaker: David Hunter e-vp, SAP) Date: Thurs., Jan 2 Time: 5:3 7 pm Location: DMP CSSS Laser Tag Date: Sun., Jan 24 Time: 7 9 pm Location: Planet Braid St., New Westminster Event net week Public Speaking Date: Mon., Jan 25 Time: 5 6 pm Location: DMP 3

4 Assignments 4

5 project Assignments out toda, due 5pm sharp Fri Jan 29 projects will go out before we ve covered all the material so ou can think about it before diving in build iguana out of cubes and 44 matrices think cartoon, not beaut template code gives ou program shell, Makefile written homework out toda, due 5pm sharp Wed Feb 6 theoretical side of material 5

6 Demo animal out of boes and matrices 6

7 Real Iguanas green-iguana--iguana-iguana-.jpg 7

8 Armadillos 8

9 Armadillos 9

10 Monkes

11 Monkes

12 Giraffes 2

13 Giraffes 3

14 Project Advice do not model everthing first and onl then worr about animating interleave modelling, animation for each bod part: add it, then jumpcut animate, then smooth animate discover if on wrong track sooner dependencies: can t get anim credit if no model use bod as scene graph root check from all camera angles 4

15 Project Advice finish all required parts before going for etra credit plaing with lighting or viewing ok to use glrotate, gltranslate, glscale ok to use glutsolidcube, or build our own where to put origin? our choice center of object, range -.5 to +.5 corner of object, range to 5

16 visual debugging Project Advice color cube faces differentl colored lines sticking out of glutsolidcube faces make our cubes wireframe to see inside thinking about transformations move phsical objects around pla with demos Brown scenegraph applets 6

17 Project Advice smooth transition change happens graduall over X frames ke click triggers animation one wa: redraw happens X times linear interpolation: each time, param += new-old)/3 or redraw happens over X seconds even better, but not required 7

18 transitions Project Advice safe to linearl interpolate parameters for glrotate/gltranslate/glscale do not interpolate individual elements of 44 matri 8

19 Stle ou can lose up to 5 for poor stle most critical: reasonable structure es: parametrized functions no: cut-and-paste with slight changes reasonable names variables, functions) adequate commenting rule of thumb: what if ou had to fi a bug two ears from now? global variables are indeed acceptable 9

20 Version Control bad idea: just keep changing same file save off versions often after got one thing to work, before ou tr starting something else just before ou do something drastic how? not good: commenting out big blocks of code a little better: save off file under new name p.almostworks.cpp, p.fiedbug.cpp much better: use version control software strongl recommended 2

21 Version Control Software eas to browse previous work eas to revert if needed for maimum benefit, use meaningful comments to describe what ou did started on tail, fied head breakoff bug, leg code compiles but doesn t run useful when ou re working alone critical when ou re working together man choices: RCS, CVS, svn/subversion all are installed on lab machines svn tutorial is part of net week s lab 2

22 Graphical File Comparison installed on lab machines fdiff4 side b side comparison) wdiff in-place, with crossouts) Windows: windiff Macs: FileMerge in /Developer/Applications/Utilities 22

23 Readings for Transformations I-IV FCG Chap 6 Transformation Matrices ecept 6..6, 6.3. FCG Sect 3.3 Scene Graphs RB Chap Viewing Viewing and Modeling Transforms until Viewing Transformations Eamples of Composing Several Transformations through Building an Articulated Robot Arm RB Appendi Homogeneous Coordinates and Transformation Matrices until Perspective Projection RB Chap Displa Lists 23

24 24 Review: Shear, Reflection shear along ais push points to right in proportion to height reflect across ais mirror + = sh + =

25 25 Review: 2D Transformations = + + = + b a b a ) ) ) ) = cos sin sin cos = b a scaling matri rotation matri = d c b a translation multiplication matri?? vector addition matri multiplication matri multiplication ), b a,), )

26 Review: Linear Transformations linear transformations are combinations of shear scale rotate reflect a c b d properties of linear transformations satisifes Ts+t) = s T) + t T) origin maps to origin lines map to lines parallel lines remain parallel ratios are preserved closed under composition = = = a c + + b d 26

27 Review: Homogeneous Coordinates w w w w homogeneous,, w) w= / w cartesian w, w point in 2D cartesian + weight w = point P in 3D homog. coords multiples of,,w) form 3D line L all homogeneous points on L represent same 2D cartesian point homogenize to convert homog. 3D point to cartesian 2D point: divide b w to get /w, /w, ) projects line to point onto w= plane like normalizing, one dimension up ) 27

28 28 Review: Homogeneous Coordinates 2D transformation matrices are now 33: = ) cos ) sin ) sin ) cos Rotation = b a Scale = T T Translation + + = + + = b a b a b a use rightmost column

29 29 Review: Affine Transformations affine transforms are combinations of linear transformations translations properties of affine transformations origin does not necessaril map to origin lines map to lines parallel lines remain parallel ratios are preserved closed under composition = w f e d c b a w

30 3 Review: 3D Transformations = z c b a z translatea,b,c) translatea,b,c) = cos sin sin cos z z ), Rotate = z c b a z scalea,b,c) scalea,b,c) cos sin sin cos ), Rotate cos sin sin cos ), Rotate z h hz h hz hz hz shear shearh h,hz hz,h h,hz hz,hz hz,hz hz)

31 Review: Composing Transformations Ta Tb = Tb Ta, but Ra Rb = Rb Ra and Ta Rb = Rb Ta translations commute rotations around same ais commute rotations around different aes do not commute rotations and translations do not commute 3

32 Review: Composing Transformations p= TRp which direction to read? right to left interpret operations wrt fied coordinates moving object left to right OpenGL pipeline ordering interpret operations wrt local coordinates changing coordinate sstem OpenGL updates current matri with postmultipl gltranslatef2,3,); glrotatef-9,,,); glvertef,,); specif vector last, in final coordinate sstem first matri to affect it is specified second-to-last 32

33 More: Composing Transformations p= TRp which direction to read? right to left interpret operations wrt fied coordinates moving object draw thing rotate thing b -9 degrees wrt origin translate it -2, -3) over 33

34 More: Composing Transformations p= TRp which direction to read? left to right interpret operations wrt local coordinates changing coordinate sstem translate coordinate sstem 2, 3) over rotate coordinate sstem 9 degrees wrt origin draw object in current coordinate sstem in OpenGL, cannot move object once it is drawn 34

35 General Transform Composition transformation of geometr into coordinate sstem where operation becomes simpler tpicall translate to origin perform operation transform geometr back to original coordinate sstem 35

36 Rotation About an Arbitrar Ais ais defined b two points translate point to the origin rotate to align ais with z-ais or or ) perform rotation undo aligning rotations undo translation 36

37 Arbitrar Rotation Y B A X Z C arbitrar rotation: change of basis given two orthonormal coordinate sstems XYZ and ABC A s location in the XYZ coordinate sstem is a, a, a z, ),...

38 Y B Arbitrar Rotation b, b, b z, ) B Y a, a, a z, ) A A X Z C arbitrar rotation: change of basis given two orthonormal coordinate sstems XYZ and ABC A s location in the XYZ coordinate sstem is a, a, a z, ),... Z C X c, c, c z, )

39 Y B Arbitrar Rotation b, b, b z, ) B Y a, a, a z, ) A A X Z C arbitrar rotation: change of basis given two orthonormal coordinate sstems XYZ and ABC A s location in the XYZ coordinate sstem is a, a, a z, ),... transformation from one to the other is matri R whose columns are A,B,C: a b c a RX) = b c = a a z b z c z,a,a z,) = A Z C X c, c, c z, )

40 Transformation Hierarchies 4

41 Transformation Hierarchies scene ma have a hierarch of coordinate sstems stores matri at each level with incremental transform from parent s coordinate sstem scene graph road stripe stripe2... car car2... w w2 w3 w4 4

42 Transformation Hierarch Eample world torso LUleg RUleg LUarm RUarm head LLleg RLleg LLarm RLarm Lfoot Rfoot Lhand Rhand trans.3,,) rotz, ) 42

43 Transformation Hierarch Eample 2 draw same 3D data with different transformations: instancing 43

44 Transformation Hierarchies Demo transforms appl to graph nodes beneath cs.brown..brown.edu/eploratories/freesoftware/catalogs/ scenegraphs.html 44

45 Transformation Hierarchies Demo transforms appl to graph nodes beneath cs.brown..brown.edu/eploratories/freesoftware/catalogs/ scenegraphs.html 45

46 Matri Stacks challenge of avoiding unnecessar computation using inverse to return to origin computing incremental T -> T 2 Object coordinates T ) T 2 ) T 3 ) World coordinates 46

47 Matri Stacks glpushmatri) D = C scale2,2,2) trans,,) glpopmatri) C D DrawSquare) C C C C glpushmatri) B A B A B A B A glscale3f2,2,2) gltranslate3f,,) DrawSquare) glpopmatri) 47

48 Modularization drawing a scaled square push/pop ensures no coord sstem change void drawblockfloat k) { glpushmatri); glscalefk,k,k); glbegingl_line_loop); glverte3f,,); glverte3f,,); glverte3f,,); glverte3f,,); glend); } glpopmatri); 48

49 Matri Stacks advantages no need to compute inverse matrices all the time modularize changes to pipeline state avoids incremental changes to coordinate sstems accumulation of numerical errors practical issues in graphics hardware, depth of matri stacks is limited tpicall 6 for model/view and about 4 for projective matri) 49

50 Transformation Hierarch Eample 3 F h F h F h F h F F h F h glloadidentit); gltranslatef4,,); glpushmatri); glrotatef45,,,); gltranslatef,2,); glscalef2,,); gltranslate,,); glpopmatri); F W 5

51 Transformation Hierarch Eample gltranslate3f,,); glrotatef,,,); DrawBod); glpushmatri); gltranslate3f,7,); DrawHead); glpopmatri); glpushmatri); gltranslate2.5,5.5,); glrotatef 2,,,); DrawUArm); gltranslate,-3.5,); glrotatef 3,,,); DrawLArm); glpopmatri);... draw other arm) 5

52 Hierarchical Modelling advantages define object once, instantiate multiple copies transformation parameters often good control knobs maintain structural constraints if well-designed limitations epressivit: not alwas the best controls can t do closed kinematic chains keep hand on hip can t do other constraints collision detection self-intersection walk through walls 52

Transformations III. Week 2, Fri Jan 19

Transformations III. Week 2, Fri Jan 19 Universit of British Columbia CPSC 34 Computer Graphics Jan-Apr 2007 Tamara Munzner Transformations III Week 2, Fri Jan 9 http://www.ugrad.cs.ubc.ca/~cs34/vjan2007 Readings for Jan 5-22 FCG Chap 6 Transformation

More information

Notes. University of British Columbia

Notes. University of British Columbia Notes Drop-bo is no. 14 You can hand in our assignments Assignment 0 due Fri. 4pm Assignment 1 is out Office hours toda 16:00 17:00, in lab or in reading room Uniersit of Uniersit of Chapter 4 - Reminder

More information

Transformations IV. Week 3, Mon Jan 22

Transformations IV. Week 3, Mon Jan 22 University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2007 Tamara Munzner Transformations IV Week 3, Mon Jan 22 http://www.ugrad.cs.ubc.ca/~cs314/vjan2007 Readings for Jan 15-22 FCG Chap 6

More information

Transformations II. Week 2, Wed Jan 17

Transformations II. Week 2, Wed Jan 17 Universit of British Columbia CPSC 34 Computer Graphics Jan-Apr 27 Tamara Munzner Transformations II Week 2, Wed Jan 7 http://www.ugrad.cs.ubc.ca/~cs34/vjan27 Readings for Jan 5-22 FCG Chap 6 Transformation

More information

Transformations IV. Week 3, Wed Jan 20

Transformations IV. Week 3, Wed Jan 20 University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2010 Tamara Munzner Transformations IV Week 3, Wed Jan 20 http://www.ugrad.cs.ubc.ca/~cs314/vjan2010 Assignments 2 Correction: Assignments

More information

1/29/13. Computer Graphics. Transformations. Simple Transformations

1/29/13. Computer Graphics. Transformations. Simple Transformations /29/3 Computer Graphics Transformations Simple Transformations /29/3 Contet 3D Coordinate Sstems Right hand (or counterclockwise) coordinate sstem Left hand coordinate sstem Not used in this class and

More information

Viewing/Projection IV. Week 4, Fri Jan 29

Viewing/Projection IV. Week 4, Fri Jan 29 Universit of British Columbia CPSC 314 Computer Graphics Jan-Apr 2010 Tamara Munner Viewing/Projection IV Week 4, Fri Jan 29 http://www.ugrad.cs.ubc.ca/~cs314/vjan2010 News etra TA office hours in lab

More information

Viewing/Projections III. Week 4, Wed Jan 31

Viewing/Projections III. Week 4, Wed Jan 31 Universit of British Columbia CPSC 34 Computer Graphics Jan-Apr 27 Tamara Munner Viewing/Projections III Week 4, Wed Jan 3 http://www.ugrad.cs.ubc.ca/~cs34/vjan27 News etra TA coverage in lab to answer

More information

Location: Planet Laser Interview Skills Workshop

Location: Planet Laser Interview Skills Workshop Department of Computer Science Undergraduate Events Events this week Drop in Resume/Cover Letter Editing Date: Tues., Jan 19 CSSS Laser Tag Time: 12:30 2 pm Date: Sun., Jan 24 Location: Rm 255, ICICS/CS

More information

Using GLU/GLUT Objects. GLU/GLUT Objects. glucylinder() glutwirecone() GLU/GLUT provides very simple object primitives

Using GLU/GLUT Objects. GLU/GLUT Objects. glucylinder() glutwirecone() GLU/GLUT provides very simple object primitives Using GLU/GLUT Objects GLU/GLUT provides ver simple object primitives glutwirecone gluclinder glutwirecube GLU/GLUT Objects Each glu/glut object has its default sie, position, and orientation You need

More information

6. Modelview Transformations

6. Modelview Transformations 6. Modelview Transformations Transformation Basics Transformations map coordinates from one frame of reference to another through matri multiplications Basic transformation operations include: - translation

More information

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications CSE328 Fundamentals of Computer Graphics: Theor, Algorithms, and Applications Hong in State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794-44 Tel: (63)632-845; Fa:

More information

CPSC 314, Midterm Exam. 8 March 2010

CPSC 314, Midterm Exam. 8 March 2010 CPSC, Midterm Eam 8 March 00 Closed book, no electronic devices besides (simple, nongraphing) calculators. Cell phones must be turned off. Place our photo ID face up on our desk. One single-sided sheet

More information

CPSC 314, Midterm Exam 1. 9 Feb 2007

CPSC 314, Midterm Exam 1. 9 Feb 2007 CPSC, Midterm Eam 9 Feb 007 Closed book, no calculators or other electronic devices. Cell phones must be turned off. Place our photo ID face up on our desk. One single-sided sheet of handwritten notes

More information

News. Projections and Picking. Transforming View Volumes. Projections recap. Basic Perspective Projection. Basic Perspective Projection

News. Projections and Picking. Transforming View Volumes. Projections recap. Basic Perspective Projection. Basic Perspective Projection Universit of British Columbia CPSC 44 Computer Graphics Projections and Picking Wed 4 Sep 3 project solution demo recap: projections projections 3 picking News Project solution eecutable available idea

More information

Viewing/Projections IV. Week 4, Fri Feb 1

Viewing/Projections IV. Week 4, Fri Feb 1 Universit of British Columbia CPSC 314 Computer Graphics Jan-Apr 2008 Tamara Munzner Viewing/Projections IV Week 4, Fri Feb 1 http://www.ugrad.cs.ubc.ca/~cs314/vjan2008 News extra TA office hours in lab

More information

Scene Graphs & Modeling Transformations COS 426

Scene Graphs & Modeling Transformations COS 426 Scene Graphs & Modeling Transformations COS 426 3D Object Representations Points Range image Point cloud Surfaces Polgonal mesh Subdivision Parametric Implicit Solids Voels BSP tree CSG Sweep High-level

More information

Modeling Transformations

Modeling Transformations שיעור 3 גרפיקה ממוחשבת תשס"ח ב ליאור שפירא Modeling Transformations Heavil based on: Thomas Funkhouser Princeton Universit CS 426, Fall 2 Modeling Transformations Specif transformations for objects Allows

More information

Modeling Transformations

Modeling Transformations Transformations Transformations Specif transformations for objects o Allos definitions of objects in on coordinate sstems o Allos use of object definition multiple times in a scene Adam Finkelstein Princeton

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Michael Kazhdan (601.457/657) HB Ch. 5 FvDFH Ch. 5 Announcement Assignment 2 has been posted: Due: 10/24 ASAP: Download the code and make sure it compiles» On windows: just build

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Thomas Funkhouser Princeton Universit CS 426, Fall 2 Modeling Transformations Specif transformations for objects Allos definitions of objects in on coordinate sstems Allos use

More information

1. We ll look at: Types of geometrical transformation. Vector and matrix representations

1. We ll look at: Types of geometrical transformation. Vector and matrix representations Tob Howard COMP272 Computer Graphics and Image Processing 3: Transformations Tob.Howard@manchester.ac.uk Introduction We ll look at: Tpes of geometrical transformation Vector and matri representations

More information

CS559: Computer Graphics

CS559: Computer Graphics CS559: Computer Graphics Lecture 8: 3D Transforms Li Zhang Spring 28 Most Slides from Stephen Chenne Finish Color space Toda 3D Transforms and Coordinate sstem Reading: Shirle ch 6 RGB and HSV Green(,,)

More information

Location: Planet Laser Interview Skills Workshop

Location: Planet Laser Interview Skills Workshop Department of Computer Science Undergraduate Events Events this week Drop in Resume/Cover Letter Editing Date: Tues., Jan 19 CSSS Laser Tag Time: 12:30 2 pm Date: Sun., Jan 24 Location: Rm 255, ICICS/CS

More information

CS Computer Graphics: Transformations & The Synthetic Camera

CS Computer Graphics: Transformations & The Synthetic Camera CS 543 - Computer Graphics: Transformations The Snthetic Camera b Robert W. Lindeman gogo@wpi.edu (with help from Emmanuel Agu ;-) Introduction to Transformations A transformation changes an objects Size

More information

Image Warping. Some slides from Steve Seitz

Image Warping.   Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Spring 2 Image Transformations image filtering: change range of image g() = T(f())

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Michael Kazhdan (601.457/657) HB Ch. 5 FvDFH Ch. 5 Overview Ra-Tracing so far Modeling transformations Ra Tracing Image RaTrace(Camera camera, Scene scene, int width, int heigh,

More information

Determining the 2d transformation that brings one image into alignment (registers it) with another. And

Determining the 2d transformation that brings one image into alignment (registers it) with another. And Last two lectures: Representing an image as a weighted combination of other images. Toda: A different kind of coordinate sstem change. Solving the biggest problem in using eigenfaces? Toda Recognition

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theor, Algorithms, and Applications Hong Qin State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794--44 Tel: (63)632-845; Fa: (63)632-8334 qin@cs.sunsb.edu

More information

Reading. Hierarchical Modeling. Symbols and instances. Required: Angel, sections , 9.8. Optional:

Reading. Hierarchical Modeling. Symbols and instances. Required: Angel, sections , 9.8. Optional: Reading Required: Angel, sections 9.1 9.6, 9.8 Optional: Hierarchical Modeling OpenGL rogramming Guide, the Red Book, chapter 3 cse457-07-hierarchical 1 cse457-07-hierarchical 2 Symbols and instances Most

More information

Name: [20 points] Consider the following OpenGL commands:

Name: [20 points] Consider the following OpenGL commands: Name: 2 1. [20 points] Consider the following OpenGL commands: glmatrimode(gl MODELVIEW); glloadidentit(); glrotatef( 90.0, 0.0, 1.0, 0.0 ); gltranslatef( 2.0, 0.0, 0.0 ); glscalef( 2.0, 1.0, 1.0 ); What

More information

To Do. Demo (Projection Tutorial) Motivation. What we ve seen so far. Outline. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 5: Viewing

To Do. Demo (Projection Tutorial) Motivation. What we ve seen so far. Outline. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 5: Viewing Foundations of Computer Graphics (Fall 0) CS 84, Lecture 5: Viewing http://inst.eecs.berkele.edu/~cs84 To Do Questions/concerns about assignment? Remember it is due Sep. Ask me or TAs re problems Motivation

More information

To Do. Course Outline. Course Outline. Goals. Motivation. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 3: Transformations 1

To Do. Course Outline. Course Outline. Goals. Motivation. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 3: Transformations 1 Fondations of Compter Graphics (Fall 212) CS 184, Lectre 3: Transformations 1 http://inst.eecs.berkele.ed/~cs184 Sbmit HW b To Do Start looking at HW 1 (simple, bt need to think) Ais-angle rotation and

More information

Motivation. What we ve seen so far. Demo (Projection Tutorial) Outline. Projections. Foundations of Computer Graphics

Motivation. What we ve seen so far. Demo (Projection Tutorial) Outline. Projections. Foundations of Computer Graphics Foundations of Computer Graphics Online Lecture 5: Viewing Orthographic Projection Ravi Ramamoorthi Motivation We have seen transforms (between coord sstems) But all that is in 3D We still need to make

More information

To Do. Motivation. Demo (Projection Tutorial) What we ve seen so far. Computer Graphics. Summary: The Whole Viewing Pipeline

To Do. Motivation. Demo (Projection Tutorial) What we ve seen so far. Computer Graphics. Summary: The Whole Viewing Pipeline Computer Graphics CSE 67 [Win 9], Lecture 5: Viewing Ravi Ramamoorthi http://viscomp.ucsd.edu/classes/cse67/wi9 To Do Questions/concerns about assignment? Remember it is due tomorrow! (Jan 6). Ask me or

More information

Transforms 1 Christian Miller CS Fall 2011

Transforms 1 Christian Miller CS Fall 2011 Transforms 1 Christian Miller CS 354 - Fall 2011 Transformations What happens if you multiply a square matrix and a vector together? You get a different vector with the same number of coordinates These

More information

CSCI-4530/6530 Advanced Computer Graphics

CSCI-4530/6530 Advanced Computer Graphics Luo Jr. CSCI-45/65 Advanced Computer Graphics http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/s9/ Barb Cutler cutler@cs.rpi.edu MRC 9A Piar Animation Studios, 986 Topics for the Semester Mesh Simplification

More information

Image Warping : Computational Photography Alexei Efros, CMU, Fall Some slides from Steve Seitz

Image Warping : Computational Photography Alexei Efros, CMU, Fall Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Fall 2 Image Transformations image filtering: change range of image g() T(f())

More information

What and Why Transformations?

What and Why Transformations? 2D transformations What and Wh Transformations? What? : The geometrical changes of an object from a current state to modified state. Changing an object s position (translation), orientation (rotation)

More information

Image Warping (Szeliski Sec 2.1.2)

Image Warping (Szeliski Sec 2.1.2) Image Warping (Szeliski Sec 2..2) http://www.jeffre-martin.com CS94: Image Manipulation & Computational Photograph Aleei Efros, UC Berkele, Fall 7 Some slides from Steve Seitz Image Transformations image

More information

Homogeneous Coordinates

Homogeneous Coordinates COMS W4172 3D Math 2 Steven Feiner Department of Computer Science Columbia Universit New York, NY 127 www.cs.columbia.edu/graphics/courses/csw4172 Februar 1, 218 1 Homogeneous Coordinates w X W Y X W Y

More information

CS 428: Fall Introduction to. Viewing and projective transformations. Andrew Nealen, Rutgers, /23/2009 1

CS 428: Fall Introduction to. Viewing and projective transformations. Andrew Nealen, Rutgers, /23/2009 1 CS 428: Fall 29 Introduction to Computer Graphics Viewing and projective transformations Andrew Nealen, Rutgers, 29 9/23/29 Modeling and viewing transformations Canonical viewing volume Viewport transformation

More information

4. Two Dimensional Transformations

4. Two Dimensional Transformations 4. Two Dimensional Transformations CS362 Introduction to Computer Graphics Helena Wong, 2 In man applications, changes in orientations, sizes, and shapes are accomplished with geometric transformations

More information

Warping, Morphing and Mosaics

Warping, Morphing and Mosaics Computational Photograph and Video: Warping, Morphing and Mosaics Prof. Marc Pollefes Dr. Gabriel Brostow Toda s schedule Last week s recap Warping Morphing Mosaics Toda s schedule Last week s recap Warping

More information

(x, y) (ρ, θ) ρ θ. Polar Coordinates. Cartesian Coordinates

(x, y) (ρ, θ) ρ θ. Polar Coordinates. Cartesian Coordinates Coordinate Sstems Point Representation in two dimensions Cartesian Coordinates: (; ) Polar Coordinates: (; ) (, ) ρ θ (ρ, θ) Cartesian Coordinates Polar Coordinates p = CPS1, 9: Computer Graphics D Geometric

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical descriptions of geometric changes,

More information

CPSC 314, Midterm Exam. 8 March 2013

CPSC 314, Midterm Exam. 8 March 2013 CPSC, Midterm Eam 8 March 0 Closed book, no electronic devices besides simple calculators. Cell phones must be turned off. Place our photo ID face up on our desk. One single-sided sheet of handwritten

More information

CS 2770: Intro to Computer Vision. Multiple Views. Prof. Adriana Kovashka University of Pittsburgh March 14, 2017

CS 2770: Intro to Computer Vision. Multiple Views. Prof. Adriana Kovashka University of Pittsburgh March 14, 2017 CS 277: Intro to Computer Vision Multiple Views Prof. Adriana Kovashka Universit of Pittsburgh March 4, 27 Plan for toda Affine and projective image transformations Homographies and image mosaics Stereo

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Computer Graphics Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical

More information

CS 428: Fall Introduction to. Transformations in OpenGL + hierarchical modeling. Andrew Nealen, Rutgers, /21/2009 1

CS 428: Fall Introduction to. Transformations in OpenGL + hierarchical modeling. Andrew Nealen, Rutgers, /21/2009 1 CS 428: Fall 2009 Introduction to Computer Graphics Transformations in OpenGL + hierarchical modeling 9/21/2009 1 Review of affine transformations Use projective geometry staple of CG Euclidean (x,z) (x,y,z)

More information

6.837 Computer Graphics Hierarchical Modeling Wojciech Matusik, MIT EECS Some slides from BarbCutler & Jaakko Lehtinen

6.837 Computer Graphics Hierarchical Modeling Wojciech Matusik, MIT EECS Some slides from BarbCutler & Jaakko Lehtinen 6.837 Computer Graphics Hierarchical Modeling Wojciech Matusik, MIT EECS Some slides from BarbCutler & Jaakko Lehtinen Image courtesy of BrokenSphere on Wikimedia Commons. License: CC-BY-SA. This content

More information

Two Dimensional Viewing

Two Dimensional Viewing Two Dimensional Viewing Dr. S.M. Malaek Assistant: M. Younesi Two Dimensional Viewing Basic Interactive Programming Basic Interactive Programming User controls contents, structure, and appearance of objects

More information

Computer Graphics. P04 Transformations. Aleksandra Pizurica Ghent University

Computer Graphics. P04 Transformations. Aleksandra Pizurica Ghent University Computer Graphics P4 Transformations Aleksandra Pizurica Ghent Universit Telecommunications and Information Processing Image Processing and Interpretation Group Transformations in computer graphics Goal:

More information

Computer Graphics Geometric Transformations

Computer Graphics Geometric Transformations Computer Graphics 2016 6. Geometric Transformations Hongxin Zhang State Key Lab of CAD&CG, Zhejiang University 2016-10-31 Contents Transformations Homogeneous Co-ordinates Matrix Representations of Transformations

More information

CMSC 425: Lecture 10 Basics of Skeletal Animation and Kinematics

CMSC 425: Lecture 10 Basics of Skeletal Animation and Kinematics : Lecture Basics of Skeletal Animation and Kinematics Reading: Chapt of Gregor, Game Engine Architecture. The material on kinematics is a simplification of similar concepts developed in the field of robotics,

More information

Introduction to Homogeneous Transformations & Robot Kinematics

Introduction to Homogeneous Transformations & Robot Kinematics Introduction to Homogeneous Transformations & Robot Kinematics Jennifer Ka, Rowan Universit Computer Science Department Januar 25. Drawing Dimensional Frames in 2 Dimensions We will be working in -D coordinates,

More information

Transformations II. Arbitrary 3D Rotation. What is its inverse? What is its transpose? Can we constructively elucidate this relationship?

Transformations II. Arbitrary 3D Rotation. What is its inverse? What is its transpose? Can we constructively elucidate this relationship? Utah School of Computing Fall 25 Transformations II CS46 Computer Graphics From Rich Riesenfeld Fall 25 Arbitrar 3D Rotation What is its inverse? What is its transpose? Can we constructivel elucidate this

More information

Hierarchical Modeling. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Hierarchical Modeling. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Hierarchical Modeling University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Angel, sections 9.1-9.6 [reader pp. 169-185] OpenGL Programming Guide, chapter 3 Focus especially

More information

GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner

GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner GLOBAL EDITION Interactive Computer Graphics A Top-Down Approach with WebGL SEVENTH EDITION Edward Angel Dave Shreiner This page is intentionall left blank. 4.10 Concatenation of Transformations 219 in

More information

Image Warping. Some slides from Steve Seitz

Image Warping.   Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Fall 26 Image Warping image filtering: change range of image g() T(f()) f T f image

More information

Lecture 5: Transforms II. Computer Graphics and Imaging UC Berkeley CS184/284A

Lecture 5: Transforms II. Computer Graphics and Imaging UC Berkeley CS184/284A Lecture 5: Transforms II Computer Graphics and Imaging UC Berkeley 3D Transforms 3D Transformations Use homogeneous coordinates again: 3D point = (x, y, z, 1) T 3D vector = (x, y, z, 0) T Use 4 4 matrices

More information

Lecture 6 Sections 4.3, 4.6, 4.7. Wed, Sep 9, 2009

Lecture 6 Sections 4.3, 4.6, 4.7. Wed, Sep 9, 2009 Lecture 6 Sections 4.3, 4.6, 4.7 Hampden-Sydney College Wed, Sep 9, 2009 Outline 1 2 3 4 re are three mutually orthogonal axes: the x-axis, the y-axis, and the z-axis. In the standard viewing position,

More information

Projection: Mapping 3-D to 2-D. Orthographic Projection. The Canonical Camera Configuration. Perspective Projection

Projection: Mapping 3-D to 2-D. Orthographic Projection. The Canonical Camera Configuration. Perspective Projection Projection: Mapping 3-D to 2-D Our scene models are in 3-D space and images are 2-D so we need some wa of projecting 3-D to 2-D The fundamental approach: planar projection first, we define a plane in 3-D

More information

Image Warping CSE399b, Spring 07 Computer Vision

Image Warping CSE399b, Spring 07 Computer Vision Image Warping CSE399b, Spring 7 Computer Vision http://maps.a9.com http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html Autostiching on A9.com

More information

Introduction to Homogeneous Transformations & Robot Kinematics

Introduction to Homogeneous Transformations & Robot Kinematics Introduction to Homogeneous Transformations & Robot Kinematics Jennifer Ka Rowan Universit Computer Science Department. Drawing Dimensional Frames in 2 Dimensions We will be working in -D coordinates,

More information

CS F-07 Objects in 2D 1

CS F-07 Objects in 2D 1 CS420-2010F-07 Objects in 2D 1 07-0: Representing Polgons We want to represent a simple polgon Triangle, rectangle, square, etc Assume for the moment our game onl uses these simple shapes No curves for

More information

Lecture 4: Viewing. Topics:

Lecture 4: Viewing. Topics: Lecture 4: Viewing Topics: 1. Classical viewing 2. Positioning the camera 3. Perspective and orthogonal projections 4. Perspective and orthogonal projections in OpenGL 5. Perspective and orthogonal projection

More information

CSC 418/2504 Computer Graphics, Winter 2012 Assignment 1 (10% of course grade)

CSC 418/2504 Computer Graphics, Winter 2012 Assignment 1 (10% of course grade) CSC 418/2504 Computer Graphics, Winter 2012 Assignment 1 (10% of course grade) Part A [50 marks in total] Due 11:59pm onwed., Feb. 8, 2012. Below are 4 exercises covering di erent topics from the first

More information

IMGD The Game Development Process: 3D Modeling and Transformations

IMGD The Game Development Process: 3D Modeling and Transformations IMGD - The Game Development Process: 3D Modeling and Transformations b Robert W. Lindeman (gogo@wpi.edu Kent Quirk (kent_quirk@cognito.com (with lots of input from Mark Clapool! Overview of 3D Modeling

More information

Geometric Model of Camera

Geometric Model of Camera Geometric Model of Camera Dr. Gerhard Roth COMP 42A Winter 25 Version 2 Similar Triangles 2 Geometric Model of Camera Perspective projection P(X,Y,Z) p(,) f X Z f Y Z 3 Parallel lines aren t 4 Figure b

More information

Outline. Intro. Week 1, Fri Jan 4. What is CG used for? What is Computer Graphics? University of British Columbia CPSC 314 Computer Graphics Jan 2013

Outline. Intro. Week 1, Fri Jan 4. What is CG used for? What is Computer Graphics? University of British Columbia CPSC 314 Computer Graphics Jan 2013 University of British Columbia CPSC 314 Computer Graphics Jan 2013 Tamara Munzner Intro Outline defining computer graphics course structure course content overview Week 1, Fri Jan 4 http://www.ugrad.cs.ubc.ca/~cs314/vjan2013

More information

Intro. Week 1, Fri Jan 4

Intro. Week 1, Fri Jan 4 University of British Columbia CPSC 314 Computer Graphics Jan 2013 Tamara Munzner Intro Week 1, Fri Jan 4 http://www.ugrad.cs.ubc.ca/~cs314/vjan2013 Outline defining computer graphics course structure

More information

Geometric Transformations

Geometric Transformations CS INTRODUCTION TO COMPUTER GRAPHICS Geometric Transformations D and D Andries an Dam 9/9/7 /46 CS INTRODUCTION TO COMPUTER GRAPHICS How do we use Geometric Transformations? (/) Objects in a scene at the

More information

CS770/870 Spring 2017 Transformations

CS770/870 Spring 2017 Transformations CS770/870 Spring 2017 Transformations Coordinate sstems 2D Transformations Homogeneous coordinates Matrices, vectors, points Coordinate Sstems Coordinate sstems used in graphics Screen coordinates: the

More information

CS4670: Computer Vision

CS4670: Computer Vision CS467: Computer Vision Noah Snavely Lecture 8: Geometric transformations Szeliski: Chapter 3.6 Reading Announcements Project 2 out today, due Oct. 4 (demo at end of class today) Image alignment Why don

More information

Affine and Projective Transformations

Affine and Projective Transformations CS 674: Intro to Computer Vision Affine and Projective Transformations Prof. Adriana Kovaska Universit of Pittsburg October 3, 26 Alignment problem We previousl discussed ow to matc features across images,

More information

Two possible ways to specify transformations. Each part of the object is transformed independently relative to the origin

Two possible ways to specify transformations. Each part of the object is transformed independently relative to the origin Transformations Two possible ways to specify transformations Each part of the object is transformed independently relative to the origin - Not convenient! z y Translate the base by (5,0,0); Translate the

More information

Image warping. image filtering: change range of image. image warping: change domain of image g(x) = f(h(x)) h(y)=0.5y+0.5. h([x,y])=[x,y/2] f h

Image warping. image filtering: change range of image. image warping: change domain of image g(x) = f(h(x)) h(y)=0.5y+0.5. h([x,y])=[x,y/2] f h Image warping Image warping image filtering: change range of image g() () = h(f()) h(f()) f h g h()=0.5+0.5 image warping: change domain of image g() = f(h()) f h g h([,])=[,/2] Parametric (global) warping

More information

Image Warping. Computational Photography Derek Hoiem, University of Illinois 09/28/17. Photo by Sean Carroll

Image Warping. Computational Photography Derek Hoiem, University of Illinois 09/28/17. Photo by Sean Carroll Image Warping 9/28/7 Man slides from Alosha Efros + Steve Seitz Computational Photograph Derek Hoiem, Universit of Illinois Photo b Sean Carroll Reminder: Proj 2 due monda Much more difficult than project

More information

Image Warping, mesh, and triangulation CSE399b, Spring 07 Computer Vision

Image Warping, mesh, and triangulation CSE399b, Spring 07 Computer Vision http://grail.cs.washington.edu/projects/rotoscoping/ Image Warping, mesh, and triangulation CSE399b, Spring 7 Computer Vision Man of the slides from A. Efros. Parametric (global) warping Eamples of parametric

More information

Computer Graphics. Si Lu. Fall er_graphics.htm 10/11/2017

Computer Graphics. Si Lu. Fall er_graphics.htm 10/11/2017 Computer Graphics Si Lu Fall 27 http://www.cs.pd.edu/~lusi/cs447/cs447_547_comput er_graphics.htm //27 Last time Filtering Resampling 2 Toda Compositing NPR 3D Graphics Toolkits Transformations 3 Demo

More information

2D/3D Geometric Transformations and Scene Graphs

2D/3D Geometric Transformations and Scene Graphs 2D/3D Geometric Transformations and Scene Graphs Week 4 Acknowledgement: The course slides are adapted from the slides prepared by Steve Marschner of Cornell University 1 A little quick math background

More information

More on Transformations. COS 426, Spring 2019 Princeton University

More on Transformations. COS 426, Spring 2019 Princeton University More on Transformations COS 426, Spring 2019 Princeton Universit Agenda Grab-bag of topics related to transformations: General rotations! Euler angles! Rodrigues s rotation formula Maintaining camera transformations!

More information

Last Time. Correct Transparent Shadow. Does Ray Tracing Simulate Physics? Does Ray Tracing Simulate Physics? Refraction and the Lifeguard Problem

Last Time. Correct Transparent Shadow. Does Ray Tracing Simulate Physics? Does Ray Tracing Simulate Physics? Refraction and the Lifeguard Problem Graphics Pipeline: Projective Last Time Shadows cast ra to light stop after first intersection Reflection & Refraction compute direction of recursive ra Recursive Ra Tracing maimum number of bounces OR

More information

Modeling Objects. Modeling. Symbol-Instance Table. Instance Transformation. Each appearance of the object in the model is an instance

Modeling Objects. Modeling. Symbol-Instance Table. Instance Transformation. Each appearance of the object in the model is an instance Modeling Objects Modeling Hierarchical Transformations Hierarchical Models Scene Graphs A prototype has a default size, position, and orientation You need to perform modeling transformations to position

More information

What does OpenGL do?

What does OpenGL do? Theor behind Geometrical Transform What does OpenGL do? So the user specifies a lot of information Ee Center Up Near, far, UP EE Left, right top, bottom, etc. f b CENTER left right top bottom What does

More information

Location: Planet Laser Interview Skills Workshop

Location: Planet Laser Interview Skills Workshop Department of Computer Science Undergraduate Events Events this week Drop in Resume/Cover Letter Editing Date: Tues., Jan 19 CSSS Laser Tag Time: 12:30 2 pm Date: Sun., Jan 24 Location: Rm 255, ICICS/CS

More information

Chap 7, 2009 Spring Yeong Gil Shin

Chap 7, 2009 Spring Yeong Gil Shin Three-Dimensional i Viewingi Chap 7, 29 Spring Yeong Gil Shin Viewing i Pipeline H d fi i d? How to define a window? How to project onto the window? Rendering "Create a picture (in a snthetic camera) Specification

More information

3-Dimensional Viewing

3-Dimensional Viewing CHAPTER 6 3-Dimensional Vieing Vieing and projection Objects in orld coordinates are projected on to the vie plane, hich is defined perpendicular to the vieing direction along the v -ais. The to main tpes

More information

Affine Transformations in 3D

Affine Transformations in 3D Affine Transformations in 3D 1 Affine Transformations in 3D 1 Affine Transformations in 3D General form 2 Translation Elementary 3D Affine Transformations 3 Scaling Around the Origin 4 Along x-axis Shear

More information

CS 543: Computer Graphics. 3D Transformations

CS 543: Computer Graphics. 3D Transformations CS 543: Coputer Graphics 3D Transforations Robert W. Lindean Associate Professor Interactive Media Gae Developent Departent of Coputer Science Worcester Poltechnic Institute gogo@wpi.edu (with lots of

More information

Last Lecture. Edge Detection. Filtering Pyramid

Last Lecture. Edge Detection. Filtering Pyramid Last Lecture Edge Detection Filtering Pramid Toda Motion Deblur Image Transformation Removing Camera Shake from a Single Photograph Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T. Roweis and William T.

More information

MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration

MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration Image formation How are objects in the world captured in an image? Phsical parameters of image formation Geometric Tpe of projection Camera

More information

Kinematics and Orientations

Kinematics and Orientations Kinematics and Orientations Hierarchies Forward Kinematics Transformations (review) Euler angles Quaternions Yaw and evaluation function for assignment 2 Building a character Just translate, rotate, and

More information

CS4202: Test. 1. Write the letter corresponding to the library name next to the statement or statements that describe library.

CS4202: Test. 1. Write the letter corresponding to the library name next to the statement or statements that describe library. CS4202: Test Name: 1. Write the letter corresponding to the library name next to the statement or statements that describe library. (4 points) A. GLUT contains routines that use lower level OpenGL commands

More information

TIEA311 Tietokonegrafiikan perusteet kevät 2018

TIEA311 Tietokonegrafiikan perusteet kevät 2018 TIEA311 Tietokonegrafiikan perusteet kevät 2018 ( Principles of Computer Graphics Spring 2018) Copyright and Fair Use Notice: The lecture videos of this course are made available for registered students

More information

Chapter 3: Modeling Transformation

Chapter 3: Modeling Transformation Chapter 3: Modeling Transformation Graphics Programming, 8th Sep. Graphics and Media Lab. Seoul National University 2011 Fall OpenGL Steps Every step in the graphics pipeline is related to the transformation.

More information

Fitting a transformation: Feature-based alignment April 30 th, Yong Jae Lee UC Davis

Fitting a transformation: Feature-based alignment April 30 th, Yong Jae Lee UC Davis Fitting a transformation: Feature-based alignment April 3 th, 25 Yong Jae Lee UC Davis Announcements PS2 out toda; due 5/5 Frida at :59 pm Color quantization with k-means Circle detection with the Hough

More information

Hierarchical Modeling and scene graphs

Hierarchical Modeling and scene graphs Hierarchical Modeling and scene graphs Overview Examine the limitations of linear modeling Introduce hierarchical models Introduce Tree and DAG models Build a tree-structured model of a humanoid figure

More information

Chapter 3 : Computer Animation

Chapter 3 : Computer Animation Chapter 3 : Computer Animation Histor First animation films (Disne) 30 drawings / second animator in chief : ke frames others : secondar drawings Use the computer to interpolate? positions orientations

More information