Subdivision in Willmore Flow Problems

Size: px
Start display at page:

Download "Subdivision in Willmore Flow Problems"

Transcription

1 Subdivision in Willmore Flow Problems Jingmin Chen 1 Sara Grundel 2 Rob Kusner 3 Thomas Yu 1 Andrew Zigerelli 1 1 Drexel University, Philadelphia 2 New York University and Max Planck Institute Magdeburg 3 University of Massachusetts, Amherst November 2, 2012

2 Red Blood Cells

3 Genus 1 Lipid

4 Canham-Helfrich Model for Lipid Bilayer Let H be the mean curvature and K be the Gauss curvature. min αh 2 + βk da S subject to: 1 area constraint: 2 volume constraint: V = 1 3 S A = S S 1 da = a 0 [xî + yĵ + zˆk] da = v 0 3 bilayer area difference constraint: M = H da = m 0 S (α, β, a 0, v 0, m 0 - constants determined by physical conditions)

5 Canham-Helfrich Model for Lipid Bilayer Let H be the mean curvature and K be the Gauss curvature. min αh 2 + βk da S subject to: 1 area constraint: 2 volume constraint: V = 1 3 S A = S S 1 da = a 0 [xî + yĵ + zˆk] da = v 0 3 bilayer area difference constraint: M = H da = m 0 S (α, β, a 0, v 0, m 0 - constants determined by physical conditions)

6 Lipid Bilayer Membrane Cross-section: S H da = lim ε 0 area difference of the two ε-offset surfaces of S 2ε

7 By Gauss-Bonnet Theorem, S K da = 4π(1 g), we get the following equivalent problem. subject to: min W (C) := H 2 da C S(C) A = S 1 da = a 0 V = 1 3 S [xî + yĵ + zˆk] da = v 0 M = S H da = m 0

8 Previous Computational Work Pioneer work: Brakke s surface evolver Recent work: Driuzk, Bonita-Nochetto-Pauletti uses piecewise linear/quadratic surfaces requires technical weak formulations Also: Bobenko-Schröder defines a discrete Willmore energy on piecewise linear surfaces, respecting Möbius invariance unknown connection to the continuous Willmore energy did not explore the lipid bilayer problem

9 Our approach based on subdivision surfaces computes bona-fide Willmore energy, hence NO weak formulation computes gradient of W, A, V, M w.r.t. control data uses standard optimization solvers sped up by multiscale optimization

10 Our approach based on subdivision surfaces computes bona-fide Willmore energy, hence NO weak formulation computes gradient of W, A, V, M w.r.t. control data uses standard optimization solvers sped up by multiscale optimization

11 Our approach based on subdivision surfaces computes bona-fide Willmore energy, hence NO weak formulation computes gradient of W, A, V, M w.r.t. control data uses standard optimization solvers sped up by multiscale optimization

12 Subdivision Surface 1-4 refinement (connectivity) Subdivision rule (geometric positions) S = S(C), C R 3 #V - (coarse scale) control data

13 Subdivision Surface 1-4 refinement (connectivity) Subdivision rule (geometric positions) S = S(C), C R 3 #V - (coarse scale) control data

14 2-D Box Splines & Ordinary Rules Features of this subdivision scheme: Acts locally Shift invariant D6 Symmetric Linear Converge to C 2 spline function

15 2-D Box Splines & Subdivision

16 Surfaces of arbitrary topology Bad news: Tori are the only surfaces that can be regularly triangulated (By Euler characteristics V E + F = 2(1 g))

17 Surfaces of arbitrary topology Bad news: Tori are the only surfaces that can be regularly triangulated (By Euler characteristics V E + F = 2(1 g)) Good news: Any extraordinary vertex will be isolated in this iterative 1-4 refinement process

18 Extraordinary vertex rule Loop: β = 1 k (5 8 ( cos 2π k )2 ).

19 Patch layout

20 Computation of Willmore energy and its gradient P = C ν Φ ν = C η B η D Cν W = D Cη W D Cν C η

21 Multiscale Minimization Minimize at coarsest scale Subdivide Minimize at finer scale Subdivide Minimize at next finer scale... Feature: built-in subdivision structure guarantees (i) well-definitedness of W-energy at all scales and (ii) progressive improvement Also: 4-th order accurate

22 Uniqueness of W -energy minimization Open question Do we have uniqueness up to rigid motions? Recall the following facts: W invariant under rigid motion, scaling, and sphere inversion the 3-D Möbius group dim Möb(3) = 10 There are still 4 degrees of freedom left!

23 Uniqueness of W -energy minimization Open question Do we have uniqueness up to rigid motions? Recall the following facts: W invariant under rigid motion, scaling, and sphere inversion the 3-D Möbius group dim Möb(3) = 10 There are still 4 degrees of freedom left!

24 Uniqueness(unconstrained) For unconstrained W -energy minimization: Genus 0: round spheres A round sphere is invariant under Möbius transformations.

25 Uniqueness(unconstrained) For unconstrained W -energy minimization: Genus 0: round spheres A round sphere is invariant under Möbius transformations. Genus 1: Clifford torus (Willmore s conjecture, Marques-Neves theorem since Feb 27, 2012)

26 Uniqueness(unconstrained) For unconstrained W -energy minimization: Genus 0: round spheres A round sphere is invariant under Möbius transformations. Genus 1: Clifford torus (Willmore s conjecture, Marques-Neves theorem since Feb 27, 2012) Genus 2: Lawson s surface (Kusner s conjecture)

27 Uniqueness(constrained) By the Hurwitz 84(g-1) theorem, conclusion for the (A, V, M) constrained Willmore problem: non-uniqueness for genus 2 uniqueness problem far from settled when genus = 0, 1

28 Uniqueness(constrained) By the Hurwitz 84(g-1) theorem, conclusion for the (A, V, M) constrained Willmore problem: non-uniqueness for genus 2 uniqueness problem far from settled when genus = 0, 1

29 Open questions numerical exploration of uniqueness simulation of conformal diffusion numerical analysis of proposed subdivision approach

30 Open questions numerical exploration of uniqueness simulation of conformal diffusion numerical analysis of proposed subdivision approach Thanks for your attention!

Numerical Methods for Biomembranes based on PL Surfaces

Numerical Methods for Biomembranes based on PL Surfaces Numerical Methods for Biomembranes based on PL Surfaces John P. Brogan 1, Yilin Yang 2, and Thomas P.-Y. Yu 3 1 Department of Mathematics, Drexel University, jpb345@drexel.edu 2 Center for Computational

More information

A Flexible C 2 Subdivision Scheme on the Sphere: With Application to Biomembrane Modelling

A Flexible C 2 Subdivision Scheme on the Sphere: With Application to Biomembrane Modelling SIAM J. APPL. ALGEBRA GEOMETRY Vol. 1, pp. 459 483 c 2017 Society for Industrial and Applied Mathematics A Flexible C 2 Subdivision Scheme on the Sphere: With Application to Biomembrane Modelling Jingmin

More information

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link)

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link) Advanced Computer Graphics (Spring 03) CS 83, Lecture 7: Subdivision Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs83/sp3 Slides courtesy of Szymon Rusinkiewicz, James O Brien with material from Denis

More information

Constrained Willmore Tori in the 4 Sphere

Constrained Willmore Tori in the 4 Sphere (Technische Universität Berlin) 16 August 2006 London Mathematical Society Durham Symposium Methods of Integrable Systems in Geometry Constrained Willmore Surfaces The Main Result Strategy of Proof Constrained

More information

Three Points Make a Triangle Or a Circle

Three Points Make a Triangle Or a Circle Three Points Make a Triangle Or a Circle Peter Schröder joint work with Liliya Kharevych, Boris Springborn, Alexander Bobenko 1 In This Section Circles as basic primitive it s all about the underlying

More information

Embedded graphs. Sasha Patotski. Cornell University November 24, 2014

Embedded graphs. Sasha Patotski. Cornell University November 24, 2014 Embedded graphs Sasha Patotski Cornell University ap744@cornell.edu November 24, 2014 Sasha Patotski (Cornell University) Embedded graphs November 24, 2014 1 / 11 Exercise Embed K 6 and K 7 into a torus.

More information

Topic: Orientation, Surfaces, and Euler characteristic

Topic: Orientation, Surfaces, and Euler characteristic Topic: Orientation, Surfaces, and Euler characteristic The material in these notes is motivated by Chapter 2 of Cromwell. A source I used for smooth manifolds is do Carmo s Riemannian Geometry. Ideas of

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017 DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU 15-458/858B Fall 2017 LECTURE 10: DISCRETE CURVATURE DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU 15-458/858B

More information

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University Greedy Routing in Wireless Networks Jie Gao Stony Brook University A generic sensor node CPU. On-board flash memory or external memory Sensors: thermometer, camera, motion, light sensor, etc. Wireless

More information

Geometry of Flat Surfaces

Geometry of Flat Surfaces Geometry of Flat Surfaces Marcelo iana IMPA - Rio de Janeiro Xi an Jiaotong University 2005 Geometry of Flat Surfaces p.1/43 Some (non-flat) surfaces Sphere (g = 0) Torus (g = 1) Bitorus (g = 2) Geometry

More information

From isothermic triangulated surfaces to discrete holomorphicity

From isothermic triangulated surfaces to discrete holomorphicity From isothermic triangulated surfaces to discrete holomorphicity Wai Yeung Lam TU Berlin Oberwolfach, 2 March 2015 Joint work with Ulrich Pinkall Wai Yeung Lam (TU Berlin) isothermic triangulated surfaces

More information

Discrete Differential Geometry: An Applied Introduction

Discrete Differential Geometry: An Applied Introduction Discrete Differential Geometry: An Applied Introduction Eitan Grinspun with Mathieu Desbrun, Konrad Polthier, Peter Schröder, & Ari Stern 1 Differential Geometry Why do we care? geometry of surfaces Springborn

More information

Greedy Routing with Guaranteed Delivery Using Ricci Flow

Greedy Routing with Guaranteed Delivery Using Ricci Flow Greedy Routing with Guaranteed Delivery Using Ricci Flow Jie Gao Stony Brook University Joint work with Rik Sarkar, Xiaotian Yin, Wei Zeng, Feng Luo, Xianfeng David Gu Greedy Routing Assign coordinatesto

More information

Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines

Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines Günther Greiner Kai Hormann Abstract In this note we describe surface reconstruction algorithms based on optimization

More information

Lectures in Discrete Differential Geometry 3 Discrete Surfaces

Lectures in Discrete Differential Geometry 3 Discrete Surfaces Lectures in Discrete Differential Geometry 3 Discrete Surfaces Etienne Vouga March 19, 2014 1 Triangle Meshes We will now study discrete surfaces and build up a parallel theory of curvature that mimics

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems Long Chen University of California, Irvine chenlong@math.uci.edu Joint work with: Huayi Wei (Xiangtan University),

More information

Discrete differential geometry: Surfaces made from Circles

Discrete differential geometry: Surfaces made from Circles Discrete differential geometry: Alexander Bobenko (TU Berlin) with help of Tim Hoffmann, Boris Springborn, Ulrich Pinkall, Ulrike Scheerer, Daniel Matthes, Yuri Suris, Kevin Bauer Papers A.I. Bobenko,

More information

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia 2008 1 Non-Convex Non Convex Boundary Convex boundary creates significant distortion Free boundary is better 2 Fixed

More information

CS Object Representation. Aditi Majumder, CS 112 Slide 1

CS Object Representation. Aditi Majumder, CS 112 Slide 1 CS 112 - Object Representation Aditi Majumder, CS 112 Slide 1 What is Graphics? Modeling Computer representation of the 3D world Analysis For efficient rendering For catering the model to different applications..

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry Lecturer: Adrian Butscher, Justin Solomon Scribe: Adrian Buganza-Tepole CS 468 (Spring 2013) Discrete Differential Geometry Lecture 19: Conformal Geometry Conformal maps In previous lectures we have explored

More information

Discrete Differential Geometry. Differential Geometry

Discrete Differential Geometry. Differential Geometry Discrete Differential Geometry Yiying Tong CSE 891 Sect 004 Differential Geometry Why do we care? theory: special surfaces minimal, CMC, integrable, etc. computation: simulation/processing Grape (u. of

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS JIAN LIANG AND HONGKAI ZHAO Abstract. In this paper we present a general framework for solving partial differential equations on manifolds represented

More information

Calculus on the complex plane C

Calculus on the complex plane C Calculus on the complex plane C Let z = x + iy be the complex variable on the complex plane C == R ir where i = 1. Definition A function f : C C is holomorphic if it is complex differentiable, i.e., for

More information

GAUSS-BONNET FOR DISCRETE SURFACES

GAUSS-BONNET FOR DISCRETE SURFACES GAUSS-BONNET FOR DISCRETE SURFACES SOHINI UPADHYAY Abstract. Gauss-Bonnet is a deep result in differential geometry that illustrates a fundamental relationship between the curvature of a surface and its

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F:

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: CS 177 Homework 1 Julian Panetta October, 009 1 Euler Characteristic 1.1 Polyhedral Formula We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: V E + F = 1 First,

More information

Manifold T-spline. Ying He 1 Kexiang Wang 2 Hongyu Wang 2 Xianfeng David Gu 2 Hong Qin 2. Geometric Modeling and Processing 2006

Manifold T-spline. Ying He 1 Kexiang Wang 2 Hongyu Wang 2 Xianfeng David Gu 2 Hong Qin 2. Geometric Modeling and Processing 2006 Ying He 1 Kexiang Wang 2 Hongyu Wang 2 Xianfeng David Gu 2 Hong Qin 2 1 School of Computer Engineering Nanyang Technological University, Singapore 2 Center for Visual Computing (CVC) Stony Brook University,

More information

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg COMPUTER AIDED GEOMETRIC DESIGN Thomas W. Sederberg January 31, 2011 ii T. W. Sederberg iii Preface This semester is the 24 th time I have taught a course at Brigham Young University titled, Computer Aided

More information

Euler s Theorem. Brett Chenoweth. February 26, 2013

Euler s Theorem. Brett Chenoweth. February 26, 2013 Euler s Theorem Brett Chenoweth February 26, 2013 1 Introduction This summer I have spent six weeks of my holidays working on a research project funded by the AMSI. The title of my project was Euler s

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

1.7.1 Laplacian Smoothing

1.7.1 Laplacian Smoothing 1.7.1 Laplacian Smoothing 320491: Advanced Graphics - Chapter 1 434 Theory Minimize energy functional total curvature estimate by polynomial-fitting non-linear (very slow!) 320491: Advanced Graphics -

More information

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November Surfaces for CAGD FSP Tutorial FSP-Seminar, Graz, November 2005 1 Tensor Product Surfaces Given: two curve schemes (Bézier curves or B splines): I: x(u) = m i=0 F i(u)b i, u [a, b], II: x(v) = n j=0 G

More information

4.2 Simplicial Homology Groups

4.2 Simplicial Homology Groups 4.2. SIMPLICIAL HOMOLOGY GROUPS 93 4.2 Simplicial Homology Groups 4.2.1 Simplicial Complexes Let p 0, p 1,... p k be k + 1 points in R n, with k n. We identify points in R n with the vectors that point

More information

Optimal (local) Triangulation of Hyperbolic Paraboloids

Optimal (local) Triangulation of Hyperbolic Paraboloids Optimal (local) Triangulation of Hyperbolic Paraboloids Dror Atariah Günter Rote Freie Universität Berlin December 14 th 2012 Outline Introduction Taylor Expansion Quadratic Surfaces Vertical Distance

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches

Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches Fuhua Frank Cheng,GangChen, and Jun-Hai Yong University of Kentucky, Lexington, KY, USA Tsinghua University, Beijing,

More information

What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape

What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape Geometry Processing What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape What is Geometry Processing? Understanding the math of 3D shape and applying

More information

Parameterization with Manifolds

Parameterization with Manifolds Parameterization with Manifolds Manifold What they are Why they re difficult to use When a mesh isn t good enough Problem areas besides surface models A simple manifold Sphere, torus, plane, etc. Using

More information

Two Connections between Combinatorial and Differential Geometry

Two Connections between Combinatorial and Differential Geometry Two Connections between Combinatorial and Differential Geometry John M. Sullivan Institut für Mathematik, Technische Universität Berlin Berlin Mathematical School DFG Research Group Polyhedral Surfaces

More information

Mesh-Based Inverse Kinematics

Mesh-Based Inverse Kinematics CS468, Wed Nov 9 th 2005 Mesh-Based Inverse Kinematics R. W. Sumner, M. Zwicker, C. Gotsman, J. Popović SIGGRAPH 2005 The problem 1 General approach Learn from experience... 2 As-rigid-as-possible shape

More information

Level Set Method in a Finite Element Setting

Level Set Method in a Finite Element Setting Level Set Method in a Finite Element Setting John Shopple University of California, San Diego November 6, 2007 Outline 1 Level Set Method 2 Solute-Solvent Model 3 Reinitialization 4 Conclusion Types of

More information

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions Nira Dyn School of Mathematical Sciences Tel Aviv University Michael S. Floater Department of Informatics University of

More information

Geometric structures on 2-orbifolds

Geometric structures on 2-orbifolds Geometric structures on 2-orbifolds Section 1: Manifolds and differentiable structures S. Choi Department of Mathematical Science KAIST, Daejeon, South Korea 2010 Fall, Lectures at KAIST S. Choi (KAIST)

More information

Geometric modeling 1

Geometric modeling 1 Geometric Modeling 1 Look around the room. To make a 3D model of a room requires modeling every single object you can see. Leaving out smaller objects (clutter) makes the room seem sterile and unrealistic

More information

Invariant Measures of Convex Sets. Eitan Grinspun, Columbia University Peter Schröder, Caltech

Invariant Measures of Convex Sets. Eitan Grinspun, Columbia University Peter Schröder, Caltech Invariant Measures of Convex Sets Eitan Grinspun, Columbia University Peter Schröder, Caltech What will we measure? Subject to be measured, S an object living in n-dim space convex, compact subset of R

More information

MA 323 Geometric Modelling Course Notes: Day 36 Subdivision Surfaces

MA 323 Geometric Modelling Course Notes: Day 36 Subdivision Surfaces MA 323 Geometric Modelling Course Notes: Day 36 Subdivision Surfaces David L. Finn Today, we continue our discussion of subdivision surfaces, by first looking in more detail at the midpoint method and

More information

CLASSIFICATION OF SURFACES

CLASSIFICATION OF SURFACES CLASSIFICATION OF SURFACES JUSTIN HUANG Abstract. We will classify compact, connected surfaces into three classes: the sphere, the connected sum of tori, and the connected sum of projective planes. Contents

More information

Weak Tangents of Metric Spheres

Weak Tangents of Metric Spheres Weak Tangents of Metric Spheres Angela Wu University of California, Los Angeles New Developments in Complex Analysis and Function Theory, 2nd July, 2018 Angela Wu Weak Tangents of Metric Spheres Weak Tangent:

More information

Two Counterexamples of Global Differential Geometry for Polyhedra

Two Counterexamples of Global Differential Geometry for Polyhedra Two Counterexamples of Global Differential Geometry for Polyhedra Abdênago Barros, Esdras Medeiros and Romildo Silva Departatamento de Matemática Universidade Federal do Ceará 60450-520 Fortaleza-Ceará,

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Subdivision overview

Subdivision overview Subdivision overview CS4620 Lecture 16 2018 Steve Marschner 1 Introduction: corner cutting Piecewise linear curve too jagged for you? Lop off the corners! results in a curve with twice as many corners

More information

[8] that this cannot happen on the projective plane (cf. also [2]) and the results of Robertson, Seymour, and Thomas [5] on linkless embeddings of gra

[8] that this cannot happen on the projective plane (cf. also [2]) and the results of Robertson, Seymour, and Thomas [5] on linkless embeddings of gra Apex graphs with embeddings of face-width three Bojan Mohar Department of Mathematics University of Ljubljana Jadranska 19, 61111 Ljubljana Slovenia bojan.mohar@uni-lj.si Abstract Aa apex graph is a graph

More information

Curvature, Finite Topology, and Foliations

Curvature, Finite Topology, and Foliations Characterizations of Complete Embedded Minimal Surfaces: Finite Curvature, Finite Topology, and Foliations Michael Nagle March 15, 2005 In classifying minimal surfaces, we start by requiring them to be

More information

weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces.

weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. joint work with (S. Osher, R. Fedkiw and M. Kang) Desired properties for surface reconstruction:

More information

1 Unstable periodic discrete minimal surfaces

1 Unstable periodic discrete minimal surfaces 1 Unstable periodic discrete minimal surfaces Konrad Polthier Technische Universität Berlin, Institut für Mathematik polthier@math.tu-berlin.de Summary. In this paper we define the new alignment energy

More information

CONFORMAL MAPPING POTENTIAL FLOW AROUND A WINGSECTION USED AS A TEST CASE FOR THE INVISCID PART OF RANS SOLVERS

CONFORMAL MAPPING POTENTIAL FLOW AROUND A WINGSECTION USED AS A TEST CASE FOR THE INVISCID PART OF RANS SOLVERS European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 2006 CONFORMAL MAPPING POTENTIAL FLOW AROUND A WINGSECTION

More information

Emil Saucan EE Department, Technion

Emil Saucan EE Department, Technion Curvature Estimation over Smooth Polygonal Meshes Using The Half Tube Formula Emil Saucan EE Department, Technion Joint work with Gershon Elber and Ronen Lev. Mathematics of Surfaces XII Sheffield September

More information

Manifold Splines with Single Extraordinary Point

Manifold Splines with Single Extraordinary Point Manifold Splines with Single Extraordinary Point Xianfeng Gu Stony Brook Ying He NTU Miao Jin Stony Brook Feng Luo Rutgers Hong Qin Stony Brook Shing-Tung Yau Harvard Abstract This paper develops a novel

More information

A Conformal Energy for Simplicial Surfaces

A Conformal Energy for Simplicial Surfaces Combinatorial and Computational Geometry MSRI Publications Volume 52, 2005 A Conformal Energy for Simplicial Surfaces ALEXANDER I. BOBENKO Abstract. A new functional for simplicial surfaces is suggested.

More information

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College Topological Data Analysis - I Afra Zomorodian Department of Computer Science Dartmouth College September 3, 2007 1 Acquisition Vision: Images (2D) GIS: Terrains (3D) Graphics: Surfaces (3D) Medicine: MRI

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces 1 Geometric Modeling Sometimes need more than polygon meshes Smooth surfaces Traditional geometric modeling used NURBS Non uniform rational B-Spline Demo 2 Problems with NURBS A single

More information

4. Definition: topological space, open set, topology, trivial topology, discrete topology.

4. Definition: topological space, open set, topology, trivial topology, discrete topology. Topology Summary Note to the reader. If a statement is marked with [Not proved in the lecture], then the statement was stated but not proved in the lecture. Of course, you don t need to know the proof.

More information

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION Dan Englesson danen344@student.liu.se Sunday 12th April, 2011 Abstract In this lab assignment which was done in the course TNM079, Modeling and animation,

More information

Simulation Details for 2D

Simulation Details for 2D Appendix B Simulation Details for 2D In this appendix we add some details two-dimensional simulation method. The details provided here describe the method used to obtain results reported in Chapters 3

More information

An Intuitive Framework for Real-Time Freeform Modeling

An Intuitive Framework for Real-Time Freeform Modeling An Intuitive Framework for Real-Time Freeform Modeling Leif Kobbelt Shape Deformation Complex shapes Complex deformations User Interaction Very limited user interface 2D screen & mouse Intuitive metaphor

More information

Multidimensional scaling

Multidimensional scaling Multidimensional scaling Lecture 5 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Cinderella 2.0 2 If it doesn t fit,

More information

Level Set Methods and Fast Marching Methods

Level Set Methods and Fast Marching Methods Level Set Methods and Fast Marching Methods I.Lyulina Scientific Computing Group May, 2002 Overview Existing Techniques for Tracking Interfaces Basic Ideas of Level Set Method and Fast Marching Method

More information

Smoothing & Fairing. Mario Botsch

Smoothing & Fairing. Mario Botsch Smoothing & Fairing Mario Botsch Motivation Filter out high frequency noise Desbrun, Meyer, Schroeder, Barr: Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow, SIGGRAPH 99 2 Motivation

More information

GEOMETRY OF SURFACES. b3 course Nigel Hitchin

GEOMETRY OF SURFACES. b3 course Nigel Hitchin GEOMETRY OF SURFACES b3 course 2004 Nigel Hitchin hitchin@maths.ox.ac.uk 1 1 Introduction This is a course on surfaces. Your mental image of a surface should be something like this: or this However we

More information

MA651 Topology. Lecture 4. Topological spaces 2

MA651 Topology. Lecture 4. Topological spaces 2 MA651 Topology. Lecture 4. Topological spaces 2 This text is based on the following books: Linear Algebra and Analysis by Marc Zamansky Topology by James Dugundgji Fundamental concepts of topology by Peter

More information

Rigid folding analysis of offset crease thick folding

Rigid folding analysis of offset crease thick folding Proceedings of the IASS Annual Symposium 016 Spatial Structures in the 1st Century 6-30 September, 016, Tokyo, Japan K. Kawaguchi, M. Ohsaki, T. Takeuchi eds.) Rigid folding analysis of offset crease thick

More information

Multiresolution Computation of Conformal Structures of Surfaces

Multiresolution Computation of Conformal Structures of Surfaces Multiresolution Computation of Conformal Structures of Surfaces Xianfeng Gu Yalin Wang Shing-Tung Yau Division of Engineering and Applied Science, Harvard University, Cambridge, MA 0138 Mathematics Department,

More information

Near-Optimum Adaptive Tessellation of General Catmull-Clark Subdivision Surfaces

Near-Optimum Adaptive Tessellation of General Catmull-Clark Subdivision Surfaces Near-Optimum Adaptive Tessellation of General Catmull-Clark Subdivision Surfaces Shuhua Lai and Fuhua (Frank) Cheng (University of Kentucky) Graphics & Geometric Modeling Lab, Department of Computer Science,

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

Surfaces: notes on Geometry & Topology

Surfaces: notes on Geometry & Topology Surfaces: notes on Geometry & Topology 1 Surfaces A 2-dimensional region of 3D space A portion of space having length and breadth but no thickness 2 Defining Surfaces Analytically... Parametric surfaces

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Cannon s conjecture, subdivision rules, and expansion complexes

Cannon s conjecture, subdivision rules, and expansion complexes Cannon s conjecture, subdivision rules, and expansion complexes W. Floyd (joint work with J. Cannon and W. Parry) Department of Mathematics Virginia Tech UNC Greensboro: November, 2014 Motivation from

More information

AMS527: Numerical Analysis II

AMS527: Numerical Analysis II AMS527: Numerical Analysis II A Brief Overview of Finite Element Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao SUNY Stony Brook AMS527: Numerical Analysis II 1 / 25 Overview Basic concepts Mathematical

More information

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Per-Olof Persson (persson@mit.edu) Department of Mathematics Massachusetts Institute of Technology http://www.mit.edu/

More information

Discrete Surface Ricci Flow

Discrete Surface Ricci Flow TO APPEAR IN IEEE TVCG 1 Discrete Surface Ricci Flow Miao Jin 1, Junho Kim 1,3,FengLuo 2, and Xianfeng Gu 1 1 Stony Brook University 2 Rutgers University 3 Dong-Eui University Abstract This work introduces

More information

An interpolating 4-point C 2 ternary stationary subdivision scheme

An interpolating 4-point C 2 ternary stationary subdivision scheme Computer Aided Geometric Design 9 (2002) 8 www.elsevier.com/locate/comaid An interpolating 4-point C 2 ternary stationary subdivision scheme M.F Hassan a,, I.P. Ivrissimitzis a, N.A. Dodgson a,m.a.sabin

More information

Central issues in modelling

Central issues in modelling Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction includes: manual modelling; fitting to

More information

Geometry Processing TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA

Geometry Processing TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA Geometry Processing What is Geometry Processing? Understanding the math of 3D shape What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape What is Geometry

More information

Generalizing the C 4 Four-directional Box Spline to Surfaces of Arbitrary Topology Luiz Velho Abstract. In this paper we introduce a new scheme that g

Generalizing the C 4 Four-directional Box Spline to Surfaces of Arbitrary Topology Luiz Velho Abstract. In this paper we introduce a new scheme that g Generalizing the C 4 Four-directional Box Spline to Surfaces of Arbitrary Topology Luiz Velho Abstract. In this paper we introduce a new scheme that generalizes the four-directional box spline of class

More information

Manifold Splines with Single Extraordinary Point

Manifold Splines with Single Extraordinary Point Manifold Splines with Single Extraordinary Point Xianfeng Gu a,ying He b,,miaojin a,fengluo c, Hong Qin a, Shing-Tung Yau d a Computer Science Department, Stony Brook University, NY, USA. b School of Computer

More information

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light II Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

Computing Geodesic Spectra of Surfaces

Computing Geodesic Spectra of Surfaces Computing Geodesic Spectra of Surfaces Miao Jin Stony Brook University Feng Luo Rutgers University Shing-Tung Yau Harvard University Xianfeng Gu Stony Brook University Abstract Surface classification is

More information

Control Volume Finite Difference On Adaptive Meshes

Control Volume Finite Difference On Adaptive Meshes Control Volume Finite Difference On Adaptive Meshes Sanjay Kumar Khattri, Gunnar E. Fladmark, Helge K. Dahle Department of Mathematics, University Bergen, Norway. sanjay@mi.uib.no Summary. In this work

More information

Using Subspace Constraints to Improve Feature Tracking Presented by Bryan Poling. Based on work by Bryan Poling, Gilad Lerman, and Arthur Szlam

Using Subspace Constraints to Improve Feature Tracking Presented by Bryan Poling. Based on work by Bryan Poling, Gilad Lerman, and Arthur Szlam Presented by Based on work by, Gilad Lerman, and Arthur Szlam What is Tracking? Broad Definition Tracking, or Object tracking, is a general term for following some thing through multiple frames of a video

More information

Implementation of Circle Pattern Parameterization

Implementation of Circle Pattern Parameterization Implementation of Circle Pattern Parameterization Thesis by Liliya Kharevych In Partial Fulfillment of the Requirements for the Degree of Master of Science California Institute of Technology Pasadena,

More information

Ternary Butterfly Subdivision

Ternary Butterfly Subdivision Ternary Butterfly Subdivision Ruotian Ling a,b Xiaonan Luo b Zhongxian Chen b,c a Department of Computer Science, The University of Hong Kong b Computer Application Institute, Sun Yat-sen University c

More information

Refinable bivariate quartic and quintic C 2 -splines for quadrilateral subdivisions

Refinable bivariate quartic and quintic C 2 -splines for quadrilateral subdivisions Refinable bivariate quartic and quintic C 2 -splines for quadrilateral subdivisions Charles K. Chui, Qingtang Jiang Department of Mathematics and Computer Science University of Missouri St. Louis St. Louis,

More information

Mutation-linear algebra and universal geometric cluster algebras

Mutation-linear algebra and universal geometric cluster algebras Mutation-linear algebra and universal geometric cluster algebras Nathan Reading NC State University Mutation-linear ( µ-linear ) algebra Universal geometric cluster algebras The mutation fan Universal

More information

Conformal Flattening ITK Filter

Conformal Flattening ITK Filter =1 Conformal Flattening ITK Filter Release 0.00 Yi Gao 1, John Melonakos 1, and Allen Tannenbaum 1 July 10, 2006 1 Georgia Institute of Technology, Atlanta, GA Abstract This paper describes the Insight

More information

Geometric Fairing of Irregular Meshes for Free-Form Surface Design

Geometric Fairing of Irregular Meshes for Free-Form Surface Design Geometric Fairing of Irregular Meshes for Free-Form Surface Design Robert Schneider, Leif Kobbelt 1 Max-Planck Institute for Computer Sciences, Stuhlsatzenhausweg 8, D-66123 Saarbrücken, Germany Abstract

More information

Joe Warren, Scott Schaefer Rice University

Joe Warren, Scott Schaefer Rice University Joe Warren, Scott Schaefer Rice University Polygons are a ubiquitous modeling primitive in computer graphics. Their popularity is such that special purpose graphics hardware designed to render polygons

More information