Chapter 3 Methods of Analysis: 2) Mesh Analysis

Size: px
Start display at page:

Download "Chapter 3 Methods of Analysis: 2) Mesh Analysis"

Transcription

1 Chapter 3 Methods of Analysis: 2) Mesh Analysis Dr. Waleed Al-Hanafy waleed alhanafy@yahoo.com Faculty of Electronic Engineering, Menoufia Univ., Egypt MSA Summer Course: Electric Circuit Analysis I (ESE 233) Lecture no. 5 July 27, 2011

2 Overview 1 Mesh Analysis Procedures 2 Mesh Analysis with Current Sources 3 Conclusions Reference: [1] Alexander Sadiku, Fundamentals of Electric Circuits, 4th ed. McGraw-Hill, 2009.

3 Introduction Mesh analysis provides another general procedure for analysing circuits, using mesh currents as the circuit variables Using mesh currents instead of element currents as circuit variables is convenient and reduces the number of equations that must be solved simultaneously Recall that a loop is a closed path with no node passed more than once. A mesh is a loop that does not contain any other loop within it Nodal analysis applies KCL to find unknown voltages in a given circuit, while mesh analysis applies KVL to find unknown currents Mesh analysis is not quite as general as nodal analysis because it is only applicable to a circuit that is planar A planar circuit is one that can be drawn in a plane with no branches crossing one another; otherwise it is nonplanar A circuit may have crossing branches and still be planar if it can be redrawn such that it has no crossing branches

4 Example

5 What is a Mesh? A mesh is a loop which does not contain any other loops within it Paths abefa and bcdeb are meshes, but path abcdefa is not a mesh

6 Mesh Method Steps Steps to Determine the Mesh Currents: 1 Assign mesh currents i 1, i 2,, i n to the n meshes 2 Apply KVL to each of the n meshes. Use Ohm s law to express the voltages in terms of the mesh currents 3 Solve the resulting n simultaneous equations to get the mesh currents.

7 Example-1 Find the branch currents I1, I2, and I3 using mesh analysis For mesh 1, applying KVL i (i 1 i 2 ) + 10 = 0 For mesh 2, or 3i 1 2i 2 = 1 6i 2 + 4i (i 2 i 1 ) 10 = 0 or i 1 = 2i 2 1 Solving for i 1 and i 2 results in i 1 = i 2 = 1 A. Thus I 1 = i 1 = 1 A, I 2 = i 2 = 1 A, and I 3 = i 1 i 2 = 0

8 Exercise-1 Calculate the mesh currents i 1 and i 2 in the circuit shown Answer: i 1 = 2 3 A, i 2 = 0

9 Example-2 Use mesh analysis to find the current i 0 in the circuit shown For mesh 1, (i 1 i 2 ) + 12(i 1 i 3 ) = 0 = 11i 1 5i 2 6i 3 = 12 For mesh 2, 24i 2 + 4(i 2 i 3 ) + 10(i 2 i 1 ) = 0 = 5i i 2 2i 3 = 0 For mesh 3, 4i (i 3 i 1 ) + 4(i 3 i 2 ) = 0 Since i 0 = i 1 i 2, then = i 1 i 2 + 2i 3 = 0 Finally: i 1 = 2.25 A, i 2 =.75 A, and i 3 = 1.5 A, thus i 0 = i 1 i 2 = 1.5 A

10 Applying mesh analysis to circuits containing current sources (dependent or independent) may appear complicated. But it is actually much easier than what we encountered in the previous section, because the presence of the current sources reduces the number of equations. Case 1: When a current source exists only in one mesh: Consider the circuit below, we set i 2 = 5 A and write a mesh equation for the other mesh in the usual way, that is, i 1 + 6(i 1 + i 2 ) = 0 i 1 = 2 A

11 Case 2: When a current source exists between two meshes: Consider the circuit below we create a supermesh by excluding the current source and any elements connected in series with it, as shown in Fig. (b). Thus, A supermesh results when two meshes have a (dependent or independent) current source in common. Thus i i 2 + 4i 2 = 0 6i i 2 = 20. Since by applying KCL at node 0, i 2 = i 1 + 6, then i 1 = 3.2 A and i 2 = 2.8 A.

12 Example-3 For the circuit shown, find i 1 to i 4 using mesh analysis Note that meshes 1 and 2 form a supermesh since they have an independent current source in common. Also, meshes 2 and 3 form another supermesh because they have a dependent current source in common. The two supermeshes intersect and form a larger supermesh as shown. For the larger supermesh, we have 2i 1 + 4i 3 + 8(i 3 i 4) + 6i 2 = 0. We also have at node P, i 2 = i and at node Q i 2 = i 3 + 3i 0. But i 0 = i 4. At mesh 4, 2i 4 + 8(i 4 i 3) + 10 = 0. Solving results in i 1 = 7.5 A, i 2 = 2.5 A, i 3 = 3.93 A, and i 2 = A.

13 Homework Use mesh analysis to determine i 1, i 2, and i 3 in the circuit shown Answer: i 1 = A, i 2 =.4737 A, and i 3 = A

14 Conclusion Concluding remarks Mesh analysis method is studied as a key tool to analyse any circuit Basic mesh analysis steps is introduced highlighted by some examples The case of supermesh is also given with examples.

ELECTRICAL CIRCUIT AND MACHINE ENT 249/3. Methods of Analysis

ELECTRICAL CIRCUIT AND MACHINE ENT 249/3. Methods of Analysis ELECTRICAL CIRCUIT AND MACHINE ENT 49/ Methods of Analysis Introduction Nodal Analysis KCL & Ohm s Law Nodal Analysis with Voltage Sources (Supernode) KCL, Ohm s & KVL Law Mesh Analysis - KVL & Ohm s Law

More information

Method of analysis. Bởi: Sy Hien Dinh

Method of analysis. Bởi: Sy Hien Dinh Method of analysis Bởi: Sy Hien Dinh INTRODUCTION Having understood the fundamental laws of circuit theory (Ohm s law and Kirchhhoff s laws), we are now prepared to apply to develop two powerful techniques

More information

The mesh-current method

The mesh-current method The mesh-current method Equivalent resistance Voltage / current dividers Source transformations Node voltages Mesh currents Superposition Mirror image of the node-voltage method. Define mesh currents flowing

More information

Circuit Analysis I (ENGR 2405) Chapter 3 Method of Analysis Nodal(KCL) and Mesh(KVL)

Circuit Analysis I (ENGR 2405) Chapter 3 Method of Analysis Nodal(KCL) and Mesh(KVL) Crcut Analyss I (ENG 405) Chapter Method of Analyss Nodal(KCL) and Mesh(KVL) Nodal Analyss If nstead of focusng on the oltages of the crcut elements, one looks at the oltages at the nodes of the crcut,

More information

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Direct Current Circuits : Methods of Analysis

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Direct Current Circuits : Methods of Analysis BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING Drect Current Crcuts : Methods of Analyss Ismal Mohd Kharuddn, Zulkfl Md Yusof Faculty of Manufacturng Engneerng Unerst Malaysa Pahang Drect Current Crcut

More information

EE T32/ELECTRIC CIRCUIT ANALYSIS

EE T32/ELECTRIC CIRCUIT ANALYSIS UNIT- III NETWORK TOPOLOGY Network Topology: Network terminology - Graph of a network - Incidence and reduced incidence matrices Trees Cutsets - Fundamental cutsets - Cutset matrix Tiesets Link currents

More information

Lecture 3. ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, 2008 Pearson Education, Inc.

Lecture 3. ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, 2008 Pearson Education, Inc. Lecture 3 Circuit i Laws, Voltage & Current Dividers ELECTICAL ENGINEEING: PINCIPLES AND APPLICATIONS, Fourth Edition, by Allan. Hambley, 008 Pearson Education, Inc. KICHHOFF S CUENT LAW The net current

More information

E40M. Solving Circuits using Nodal Analysis, Part II and EveryCircuit TM. M. Horowitz, J. Plummer, R. Howe 1

E40M. Solving Circuits using Nodal Analysis, Part II and EveryCircuit TM. M. Horowitz, J. Plummer, R. Howe 1 E40M Solving Circuits using Nodal Analysis, Part II and EveryCircuit TM M. Horowitz, J. Plummer, R. Howe 1 The Key Idea from Last Lecture Systematic Nodal Analysis 1. Label all the nodes (V A, V B, or

More information

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses Optics Course (Phys ) Geometrical Optics Refraction through Lenses Lecturer: Dr Zeina Hashim Slide 1 Objectives covered in this lesson : 1. The refracting power of a thin lens. 2. Thin lens combinations.

More information

i v v 6 i 2 i 3 v + (1) (2) (3) (4) (5) Substituting (4) and (5) into (3) (6) = 2 (7) (5) and (6) (8) (4) and (6) ˆ

i v v 6 i 2 i 3 v + (1) (2) (3) (4) (5) Substituting (4) and (5) into (3) (6) = 2 (7) (5) and (6) (8) (4) and (6) ˆ 5V 6 v 6 î v v Ω î Ω v v 8Ω V î v 5 6Ω 5 Mesh : 6ˆ ˆ = Mesh : ˆ 8ˆ = Mesh : ˆ ˆ ˆ 8 0 = 5 Solvng ˆ ˆ ˆ from () = Solvng ˆ ˆ ˆ from () = 7 7 Substtutng () and (5) nto () (5) and (6) 9 ˆ = A 8 ˆ = A 0 ()

More information

How Do We Figure Out the Voltages and Currents?

How Do We Figure Out the Voltages and Currents? How Do We Figure Out the Voltages and Currents? Diode Solar Cell Li Bat Volt Conv R In this set of lecture notes we ll develop methods to analyze circuits. M. Horowitz, J. Plummer, R. Howe 2 Useless Box

More information

E40M. Solving Circuits using Nodal Analysis and EveryCircuit TM. M. Horowitz, J. Plummer, R. Howe 1

E40M. Solving Circuits using Nodal Analysis and EveryCircuit TM. M. Horowitz, J. Plummer, R. Howe 1 E40M Solving Circuits using Nodal Analysis and EveryCircuit TM M. Horowitz, J. Plummer, R. Howe 1 How Do We Figure Out the Voltages and Currents? Diode Solar Cell Li Bat Volt Conv R In this set of lecture

More information

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes Section 13.5: Equations of Lines and Planes 1 Objectives 1. Find vector, symmetric, or parametric equations for a line in space given two points on the line, given a point on the line and a vector parallel

More information

LOOP ANALYSIS. The second systematic technique to determine all currents and voltages in a circuit

LOOP ANALYSIS. The second systematic technique to determine all currents and voltages in a circuit LOOP ANALYSS The second systematic technique to determine all currents and voltages in a circuit T S DUAL TO NODE ANALYSS - T FRST DETERMNES ALL CURRENTS N A CRCUT AND THEN T USES OHM S LAW TO COMPUTE

More information

Kuratowski Notes , Fall 2005, Prof. Peter Shor Revised Fall 2007

Kuratowski Notes , Fall 2005, Prof. Peter Shor Revised Fall 2007 Kuratowski Notes 8.30, Fall 005, Prof. Peter Shor Revised Fall 007 Unfortunately, the OCW notes on Kuratowski s theorem seem to have several things substantially wrong with the proof, and the notes from

More information

15. PARAMETRIZED CURVES AND GEOMETRY

15. PARAMETRIZED CURVES AND GEOMETRY 15. PARAMETRIZED CURVES AND GEOMETRY Parametric or parametrized curves are based on introducing a parameter which increases as we imagine travelling along the curve. Any graph can be recast as a parametrized

More information

FINITE ELEMENT ANALYSIS PROGRAM OF FRAMES

FINITE ELEMENT ANALYSIS PROGRAM OF FRAMES FINITE EEMENT ANAYSIS PROGRAM OF FRAMES Monica V. Pathak 1, Asst. Prof. G. B. Bhaskar 2 1 Student, M.Tech, 2 Associate Professor Department of Civil Engineering, G. H. Raisoni Academy of Engineering &

More information

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS DR. ANDREW SCHWARTZ, PH.D. 10.1 Graphs and Graph Models (1) A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes)

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19 Lecture 17: Recursive Ray Tracing Where is the way where light dwelleth? Job 38:19 1. Raster Graphics Typical graphics terminals today are raster displays. A raster display renders a picture scan line

More information

Lab 5 Nodal and Mesh Analysis

Lab 5 Nodal and Mesh Analysis Lab 5 Nodal and Mesh Analysis Objectives concepts 1. node voltage and mesh current 2. systems of equations 3. matrix inverse skills 1. simulating a circuit 2. building a circuit on a breadboard 3. analyzing

More information

Epipolar Geometry CSE P576. Dr. Matthew Brown

Epipolar Geometry CSE P576. Dr. Matthew Brown Epipolar Geometry CSE P576 Dr. Matthew Brown Epipolar Geometry Epipolar Lines, Plane Constraint Fundamental Matrix, Linear solution + RANSAC Applications: Structure from Motion, Stereo [ Szeliski 11] 2

More information

1.1 ELEMENTARY LINEAR GRAPH THEORY: IMPORTANT TERMS

1.1 ELEMENTARY LINEAR GRAPH THEORY: IMPORTANT TERMS NETWORK TOPOLOGY 2. INTRODUCTION The solution of a given linear network problem requires the formation of a set of equations describing the response of the network. The mathematical model so derived, must

More information

Using Classical Mechanism Concepts to Motivate Modern Mechanism Analysis and Synthesis Methods

Using Classical Mechanism Concepts to Motivate Modern Mechanism Analysis and Synthesis Methods Using Classical Mechanism Concepts to Motivate Modern Mechanism Analysis and Synthesis Methods Robert LeMaster, Ph.D. 1 Abstract This paper describes a methodology by which fundamental concepts in the

More information

ROTATIONAL DEPENDENCE OF THE SUPERCONVERGENT PATCH RECOVERY AND ITS REMEDY FOR 4-NODE ISOPARAMETRIC QUADRILATERAL ELEMENTS

ROTATIONAL DEPENDENCE OF THE SUPERCONVERGENT PATCH RECOVERY AND ITS REMEDY FOR 4-NODE ISOPARAMETRIC QUADRILATERAL ELEMENTS COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng, 15, 493±499 (1999) ROTATIONAL DEPENDENCE OF THE SUPERCONVERGENT PATCH RECOVERY AND ITS REMEDY FOR 4-NODE ISOPARAMETRIC QUADRILATERAL

More information

RESISTIVE CIRCUITS MULTI NODE/LOOP CIRCUIT ANALYSIS

RESISTIVE CIRCUITS MULTI NODE/LOOP CIRCUIT ANALYSIS RESSTE CRCUTS MULT NODE/LOOP CRCUT ANALYSS DEFNNG THE REFERENCE NODE S TAL 4 THESTATEMENT 4 S MEANNGLES UNTL THE REFERENCE PONT S DEFNED BY CONENTON THE GROUND SYMBOL SPECFES THE REFERENCE PONT. ALL NODE

More information

Lesson 20: Every Line is a Graph of a Linear Equation

Lesson 20: Every Line is a Graph of a Linear Equation Student Outcomes Students know that any non vertical line is the graph of a linear equation in the form of, where is a constant. Students write the equation that represents the graph of a line. Lesson

More information

Part A: Course Outline

Part A: Course Outline University of Macau Faculty of Science and Technology Course Title: Department of Electrical and Computer Engineering Part A: Course Outline Communication System and Data Network Course Code: ELEC460 Year

More information

EE5780 Advanced VLSI CAD

EE5780 Advanced VLSI CAD EE5780 Advanced VLSI CAD Lecture 1 Introduction Zhuo Feng 1.1 Prof. Zhuo Feng Office: EERC 513 Phone: 487-3116 Email: zhuofeng@mtu.edu Class Website http://www.ece.mtu.edu/~zhuofeng/ee5780fall2013.html

More information

Week 8: The fundamentals of graph theory; Planar Graphs 25 and 27 October, 2017

Week 8: The fundamentals of graph theory; Planar Graphs 25 and 27 October, 2017 (1/25) MA284 : Discrete Mathematics Week 8: The fundamentals of graph theory; Planar Graphs 25 and 27 October, 2017 1 Definitions 1. A graph 2. Paths and connected graphs 3. Complete graphs 4. Vertex degree

More information

Reflection and Mirrors Additional Review

Reflection and Mirrors Additional Review Reflection and Mirrors Additional Review Question 1: aa. The angle of incidence is defined as the angle between the and the. a. incident ray, reflected ray b. incident ray, surface c. incident ray, normal

More information

Using Modified Euler Method (MEM) for the Solution of some First Order Differential Equations with Initial Value Problems (IVPs).

Using Modified Euler Method (MEM) for the Solution of some First Order Differential Equations with Initial Value Problems (IVPs). Using Modified Euler Method (MEM) for the Solution of some First Order Differential Equations with Initial Value Problems (IVPs). D.I. Lanlege, Ph.D. * ; U.M. Garba, B.Sc.; and A. Aluebho, B.Sc. Department

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI Department of Computer Science and Engineering CS6702 - GRAPH THEORY AND APPLICATIONS Anna University 2 & 16 Mark Questions & Answers Year / Semester: IV /

More information

Lecture-12: Closed Sets

Lecture-12: Closed Sets and Its Examples Properties of Lecture-12: Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Introduction and Its Examples Properties of 1 Introduction

More information

Lesson 19: The Graph of a Linear Equation in Two Variables is a Line

Lesson 19: The Graph of a Linear Equation in Two Variables is a Line Lesson 19: The Graph of a Linear Equation in Two Variables is a Line Classwork Exercises Theorem: The graph of a linear equation y = mx + b is a non-vertical line with slope m and passing through (0, b),

More information

You can download missing data from the course website, together with the codes R and python that we will run in this exercise.

You can download missing data from the course website, together with the codes R and python that we will run in this exercise. Exercise 4: Samples Characterization Aim: Sampling environmental conditions Principal Component Analysis of environmental conditions Hierarchical clustering of sampling spots Interpretation of the environmental

More information

Modern Processors. RISC Architectures

Modern Processors. RISC Architectures Modern Processors RISC Architectures Figures used from: Manolis Katevenis, RISC Architectures, Ch. 20 in Zomaya, A.Y.H. (ed), Parallel and Distributed Computing Handbook, McGraw-Hill, 1996 RISC Characteristics

More information

Updated Guidelines for Writing Reports for The Electrical Engineering Program Pending Approved by EE Faculty

Updated Guidelines for Writing Reports for The Electrical Engineering Program Pending Approved by EE Faculty EE xxxl LABORATORY REPORT Laboratory Experiment No. Updated Guidelines for Writing Reports for The Electrical Engineering Program Pending Approved by EE Faculty Written by: Joe Student Date Performed:

More information

Lecture 10. Vector Network Analyzers and Signal Flow Graphs

Lecture 10. Vector Network Analyzers and Signal Flow Graphs HP8510 Lecture 10 Vector Network Analyzers and Signal Flow Graphs Sections: 6.7 and 6.11 Homework: From Section 6.13 Exercises: 4, 5, 6, 7, 9, 10, 22 Acknowledgement: Some diagrams and photos are from

More information

: Dimension. Lecturer: Barwick. Wednesday 03 February 2016

: Dimension. Lecturer: Barwick. Wednesday 03 February 2016 18.06.01: Dimension Lecturer: Barwick Wednesday 03 February 2016 What is dimension? Line segments are 1-dimensional; here s one now: Planar regions are 2-dimensional; here s one: Finally, cubes are 3-dimensional:

More information

Phase Rolling and the Impacts on Protection. By: Denglin (Dennis) Tang, Burns & McDonnell 2016 Minnesota Power Systems Conference

Phase Rolling and the Impacts on Protection. By: Denglin (Dennis) Tang, Burns & McDonnell 2016 Minnesota Power Systems Conference Phase Rolling and the Impacts on Protection By: Denglin (Dennis) Tang, Burns & McDonnell 2016 Minnesota Power Systems Conference Overview Background Introduction. Relays Settings and Operation. Phase Rolling

More information

Abstract. Introduction

Abstract. Introduction The analysis of geometrical and thermal errors of non-cartesian structures J.M. Freeman and D.G. Ford Engineering Control and Metrology Research Group, The School ofengineering, University of Huddersfield.

More information

Introduction to FEM calculations

Introduction to FEM calculations Introduction to FEM calculations How to start informations Michał Rad (rad@agh.edu.pl) 20.04.2018 Outline Field calculations what is it? Model Program How to: Make a model Set up the parameters Perform

More information

Objectives: - You need to be able to use the two equations above and the series and parallel circuit rules.

Objectives: - You need to be able to use the two equations above and the series and parallel circuit rules. F: Solve Complete Circuits Level 3 Prerequisite: Solve Ohm s Law and the Power Formula Points To: Solve Complete Circuit with Nontraditional Information Objectives: V = IR P = IV - Given a battery and

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k I.f Tangent Planes and Normal Lines Again we begin by: Recall: (1) Given two vectors A = a 1 i + a 2 j + a 3 k, B = b 1 i + b 2 j + b 3 k then A B is a vector perpendicular to both A and B. Then length

More information

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines Math 18.02 (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines February 12 Reading Material: From Simmons: 17.1 and 17.2. Last time: Square Systems. Word problem. How many solutions?

More information

PROBLEMS PROBLEMS 203

PROBLEMS PROBLEMS 203 P PROBLMS 203 This time, rather than using meters to make the measurements, we will use indicators. The ndicators key pad is the tenth down on the left toolbar. t has the appearance of an LCD display with

More information

ANSYS EXERCISE ANSYS 5.6 Temperature Distribution in a Turbine Blade with Cooling Channels

ANSYS EXERCISE ANSYS 5.6 Temperature Distribution in a Turbine Blade with Cooling Channels I. ANSYS EXERCISE ANSYS 5.6 Temperature Distribution in a Turbine Blade with Cooling Channels Copyright 2001-2005, John R. Baker John R. Baker; phone: 270-534-3114; email: jbaker@engr.uky.edu This exercise

More information

Static force analysis of planar mechanisms in MechAnalyzer software

Static force analysis of planar mechanisms in MechAnalyzer software Static force analysis of planar mechanisms in MechAnalyzer software Sachin Kumar Verma 1, Janani Swaminathan 2, Rajeevlochana G. Chittawadigi 3, Subir Kumar Saha 4 1,2 Department of Mechanical Engineering,

More information

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem David Glickenstein November 26, 2008 1 Graph minors Let s revisit some de nitions. Let G = (V; E) be a graph. De nition 1 Removing

More information

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 Lecture 25: Bezier Subdivision And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 1. Divide and Conquer If we are going to build useful

More information

Exercise 2: FACET Base Unit Familiarization

Exercise 2: FACET Base Unit Familiarization Exercise 2: FACET Base Unit Familiarization EXERCISE OBJECTIVE When you have completed this exercise, you will discover the operating features of the base unit and DC FUNDAMENTALS circuit board. You will

More information

Introduction Ray tracing basics Advanced topics (shading) Advanced topics (geometry) Graphics 2010/2011, 4th quarter. Lecture 11: Ray tracing

Introduction Ray tracing basics Advanced topics (shading) Advanced topics (geometry) Graphics 2010/2011, 4th quarter. Lecture 11: Ray tracing Lecture 11 Ray tracing Introduction Projection vs. ray tracing Projection Ray tracing Rendering Projection vs. ray tracing Projection Ray tracing Basic methods for image generation Major areas of computer

More information

15. GEOMETRY AND COORDINATES

15. GEOMETRY AND COORDINATES 15. GEOMETRY AND COORDINATES We define. Given we say that the x-coordinate is while the y- coordinate is. We can view the coordinates as mappings from to : Coordinates take in a point in the plane and

More information

Lecture notes: Object modeling

Lecture notes: Object modeling Lecture notes: Object modeling One of the classic problems in computer vision is to construct a model of an object from an image of the object. An object model has the following general principles: Compact

More information

CE1911 LECTURE FSM DESIGN PRACTICE DAY 2

CE1911 LECTURE FSM DESIGN PRACTICE DAY 2 REVIEW QUESTIONS Spend time reviewing your lecture notes from the previous week. Prepare written answers to these questions at the top of a Microsoft Word document.. State how flip flops and latches differ

More information

LAB #1 BASIC DIGITAL CIRCUIT

LAB #1 BASIC DIGITAL CIRCUIT LAB #1 BASIC DIGITAL CIRCUIT OBJECTIVES 1. To study the operation of basic logic gates. 2. To build a logic circuit from Boolean expressions. 3. To introduce some basic concepts and laboratory techniques

More information

Unit 7 Day 5 Graph Theory. Section 5.1 and 5.2

Unit 7 Day 5 Graph Theory. Section 5.1 and 5.2 Unit 7 Day 5 Graph Theory Section 5.1 and 5.2 Determine if the below exist; write it if it exists or explain using the definition why it doesn t exist. B Euler Path? No, because more than two have odd

More information

Undirected Network Summary

Undirected Network Summary Undirected Network Summary Notice that the network above has multiple edges joining nodes a to d and the network has a loop at node d. Also c is called an isolated node as it is not connected to any other

More information

The Euler Equidimensional Equation ( 3.2)

The Euler Equidimensional Equation ( 3.2) The Euler Equidimensional Equation ( 3.) The Euler Equidimensional Equation ( 3.) The Euler Equidimensional Equation Definition The Euler equidimensional equation for the unknown function y with singular

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

Unit 4: Block Diagram Reduction

Unit 4: Block Diagram Reduction Block Diagram Reduction Signal-Flow Graphs Unit 4: Block Diagram Reduction Engineering 5821: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland February 15,

More information

ORF 307: Lecture 14. Linear Programming: Chapter 14: Network Flows: Algorithms

ORF 307: Lecture 14. Linear Programming: Chapter 14: Network Flows: Algorithms ORF 307: Lecture 14 Linear Programming: Chapter 14: Network Flows: Algorithms Robert J. Vanderbei April 10, 2018 Slides last edited on April 10, 2018 http://www.princeton.edu/ rvdb Agenda Primal Network

More information

ADAPTIVE APPROACH IN NONLINEAR CURVE DESIGN PROBLEM. Simo Virtanen Rakenteiden Mekaniikka, Vol. 30 Nro 1, 1997, s

ADAPTIVE APPROACH IN NONLINEAR CURVE DESIGN PROBLEM. Simo Virtanen Rakenteiden Mekaniikka, Vol. 30 Nro 1, 1997, s ADAPTIVE APPROACH IN NONLINEAR CURVE DESIGN PROBLEM Simo Virtanen Rakenteiden Mekaniikka, Vol. 30 Nro 1, 1997, s. 14-24 ABSTRACT In recent years considerable interest has been shown in the development

More information

Dr. Chuck Cartledge. 10 June 2015

Dr. Chuck Cartledge. 10 June 2015 Miscellanea Exam #1 Break Exam review 2.1 2.2 2.3 2.4 Break 3 4 Conclusion References CSC-205 Computer Organization Lecture #003 Chapter 2, Sections 2.1 through 4 Dr. Chuck Cartledge 10 June 2015 1/30

More information

Lesson 1: Complementary and Supplementary Angles

Lesson 1: Complementary and Supplementary Angles lasswork Opening As we begin our study of unknown angles, let us review key definitions. Term Definition Two angles and, with a common side, are angles if is in the interior of. When two lines intersect,

More information

LOOP ANALYSIS. determine all currents and Voltages in IT IS DUAL TO NODE ANALYSIS - IT FIRST DETERMINES ALL CURRENTS IN A CIRCUIT

LOOP ANALYSIS. determine all currents and Voltages in IT IS DUAL TO NODE ANALYSIS - IT FIRST DETERMINES ALL CURRENTS IN A CIRCUIT LOOP ANALYSS The second systematic technique to determine all currents and oltages in a circuit T S DUAL TO NODE ANALYSS - T FRST DETERMNES ALL CURRENTS N A CRCUT AND THEN T USES OHM S LAW TO COMPUTE NECESSARY

More information

Tangents of Parametric Curves

Tangents of Parametric Curves Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 32 Notes These notes correspond to Section 92 in the text Tangents of Parametric Curves When a curve is described by an equation of the form y = f(x),

More information

(Refer Slide Time: 00:02:24 min)

(Refer Slide Time: 00:02:24 min) CAD / CAM Prof. Dr. P. V. Madhusudhan Rao Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture No. # 9 Parametric Surfaces II So these days, we are discussing the subject

More information

Genetic Algorithm Based Template Optimization for a Vision System: Obstacle Detection

Genetic Algorithm Based Template Optimization for a Vision System: Obstacle Detection ISTET'09 Umair Ali Khan, Alireza Fasih, Kyandoghere Kyamakya, Jean Chamberlain Chedjou Transportation Informatics Group, Alpen Adria University, Klagenfurt, Austria. Genetic Algorithm Based Template Optimization

More information

Geology Geomath Estimating the coefficients of various Mathematical relationships in Geology

Geology Geomath Estimating the coefficients of various Mathematical relationships in Geology Geology 351 - Geomath Estimating the coefficients of various Mathematical relationships in Geology Throughout the semester you ve encountered a variety of mathematical relationships between various geologic

More information

Math 443/543 Graph Theory Notes 5: Planar graphs and coloring

Math 443/543 Graph Theory Notes 5: Planar graphs and coloring Math 443/543 Graph Theory Notes 5: Planar graphs and coloring David Glickenstein October 10, 2014 1 Planar graphs The Three Houses and Three Utilities Problem: Given three houses and three utilities, can

More information

Intro to Contemporary Math

Intro to Contemporary Math Intro to Contemporary Math Planar Graphs Nicholas Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK Announcements Your project (all parts) must be uploaded on Canvas by Tuesday, November 20th.

More information

Logic and Computer Design Fundamentals. Chapter 2 Combinational Logic Circuits. Part 3 Additional Gates and Circuits

Logic and Computer Design Fundamentals. Chapter 2 Combinational Logic Circuits. Part 3 Additional Gates and Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 3 Additional Gates and Circuits Charles Kime & Thomas Kaminski 28 Pearson Education, Inc. (Hyperlinks are active in View

More information

Assignment 4: Mesh Parametrization

Assignment 4: Mesh Parametrization CSCI-GA.3033-018 - Geometric Modeling Assignment 4: Mesh Parametrization In this exercise you will Familiarize yourself with vector field design on surfaces. Create scalar fields whose gradients align

More information

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1 UNIT I INTRODUCTION CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1. Define Graph. A graph G = (V, E) consists

More information

Communication Complexity and Parallel Computing

Communication Complexity and Parallel Computing Juraj Hromkovic Communication Complexity and Parallel Computing With 40 Figures Springer Table of Contents 1 Introduction 1 1.1 Motivation and Aims 1 1.2 Concept and Organization 4 1.3 How to Read the

More information

Graphs and Discrete Structures

Graphs and Discrete Structures Graphs and Discrete Structures Nicolas Bousquet Louis Esperet Fall 2018 Abstract Brief summary of the first and second course. É 1 Chromatic number, independence number and clique number The chromatic

More information

A Novel Design of High Speed and Area Efficient De-Multiplexer. using Pass Transistor Logic

A Novel Design of High Speed and Area Efficient De-Multiplexer. using Pass Transistor Logic A Novel Design of High Speed and Area Efficient De-Multiplexer Using Pass Transistor Logic K.Ravi PG Scholar(VLSI), P.Vijaya Kumari, M.Tech Assistant Professor T.Ravichandra Babu, Ph.D Associate Professor

More information

Lecture 2. Dr John Armstrong

Lecture 2. Dr John Armstrong Computing for Geometry and Number Theory Lecture 2 Dr John Armstrong King's College London December 6, 2018 Last week we used Mathematica as a calculator Using the workbook, for example to type SHIFT +

More information

Nesting points in the sphere. Dan Archdeacon. University of Vermont. Feliu Sagols.

Nesting points in the sphere. Dan Archdeacon. University of Vermont.   Feliu Sagols. Nesting points in the sphere Dan Archdeacon Dept. of Computer Science University of Vermont Burlington, VT, USA 05405 e-mail: dan.archdeacon@uvm.edu Feliu Sagols Dept. of Computer Science University of

More information

Face Width and Graph Embeddings of face-width 2 and 3

Face Width and Graph Embeddings of face-width 2 and 3 Face Width and Graph Embeddings of face-width 2 and 3 Instructor: Robin Thomas Scribe: Amanda Pascoe 3/12/07 and 3/14/07 1 Representativity Recall the following: Definition 2. Let Σ be a surface, G a graph,

More information

Zener Diode. Nafees Ahamad Asstt. Prof., EECE Deptt, DIT University, Dehradun Website: By: Nafees Ahamad, EECE Deptt, DITU 1

Zener Diode. Nafees Ahamad Asstt. Prof., EECE Deptt, DIT University, Dehradun Website:  By: Nafees Ahamad, EECE Deptt, DITU 1 Zener Diode Nafees Ahamad Asstt. Prof., EECE Deptt, DIT University, Dehradun Website: www.eedofdit.weebly.com By: Nafees Ahamad, EECE Deptt, DITU 1 Zener Diode A Zener diode is like an ordinary silicon

More information

CO SIMULATION OF GENERIC POWER CONVERTER USING MATLAB/SIMULINK AND MODELSIM

CO SIMULATION OF GENERIC POWER CONVERTER USING MATLAB/SIMULINK AND MODELSIM CO SIMULATION OF GENERIC POWER CONVERTER USING MATLAB/SIMULINK AND MODELSIM Ajay Singh MIT, Modinagar U.P (India) ABSTRACT In this paper we discuss about the co-simulation of generic converter using MATLAB

More information

Subtraction Understand Subtraction on a Number Line Using a number line let s demonstrate the subtraction process using the problem 7 5.

Subtraction Understand Subtraction on a Number Line Using a number line let s demonstrate the subtraction process using the problem 7 5. Objective 1 Subtraction Understand Subtraction on a Number Line Using a number line let s demonstrate the subtraction process using the problem 7 5. -7-6 -5-4 -3-2 -1 0 1 2 3 4 5 6 7 Using the number line

More information

Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets

Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets Saul Glasman 14 September 2016 Let s give the definition of an open subset of R. Definition 1. Let U R. We

More information

Modelling Active Building Elements with Special Materials

Modelling Active Building Elements with Special Materials Modelling Active Building Elements with Special Materials Mark Evans Nicolas J. Kelly Energy Simulation Research Unit University of Strathclyde, Glasgow Summary This report details the addition of the

More information

Network Topology and Graph

Network Topology and Graph Network Topology Network Topology and Graph EEE442 Computer Method in Power System Analysis Any lumped network obeys 3 basic laws KVL KCL linear algebraic constraints Ohm s law Anawach Sangswang Dept.

More information

Verifying Trigonometric Identities

Verifying Trigonometric Identities Verifying Trigonometric Identities What you should learn Verify trigonometric identities. Why you should learn it You can use trigonometric identities to rewrite trigonometric equations that model real-life

More information

Transient Response of a Rocket

Transient Response of a Rocket Transient Response of a Rocket 100 Force 0 1.0 1.001 3.0 Time Objectives: Develope a finite element model that represents an axial force (thrust) applied to a rocket over time. Perform a linear transient

More information

Planar graphs. Math Prof. Kindred - Lecture 16 Page 1

Planar graphs. Math Prof. Kindred - Lecture 16 Page 1 Planar graphs Typically a drawing of a graph is simply a notational shorthand or a more visual way to capture the structure of the graph. Now we focus on the drawings themselves. Definition A drawing of

More information

Graphs of Equations. MATH 160, Precalculus. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Graphs of Equations

Graphs of Equations. MATH 160, Precalculus. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Graphs of Equations Graphs of Equations MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: sketch the graphs of equations, find the x- and y-intercepts

More information

Properties of Quadratic functions

Properties of Quadratic functions Name Today s Learning Goals: #1 How do we determine the axis of symmetry and vertex of a quadratic function? Properties of Quadratic functions Date 5-1 Properties of a Quadratic Function A quadratic equation

More information

Fundamentals of Operations Research. Prof. G. Srinivasan. Department of Management Studies. Indian Institute of Technology Madras.

Fundamentals of Operations Research. Prof. G. Srinivasan. Department of Management Studies. Indian Institute of Technology Madras. Fundamentals of Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology Madras Lecture No # 06 Simplex Algorithm Initialization and Iteration (Refer Slide

More information

2 Partial Solution of Homework

2 Partial Solution of Homework Math 3181 Dr. Franz Rothe Name: All3181\3181_fall12h2.tex Use the back pages for extra space, attach blank pages if necessary You may submit the solution in groups up to four students due September 21

More information

GARDEN CITY UNIVERSITY. Bachelor of Computer Applications SEMESTER- I. Course: CONCEPTS OF PROGRAMMING USING C LANGUAGE CODE: 05ABCAR17111 CREDITS: 04

GARDEN CITY UNIVERSITY. Bachelor of Computer Applications SEMESTER- I. Course: CONCEPTS OF PROGRAMMING USING C LANGUAGE CODE: 05ABCAR17111 CREDITS: 04 GARDEN CITY UNIVERSITY Bachelor of Computer Applications SEMESTER- I Course: CONCEPTS OF PROGRAMMING USING C LANGUAGE CODE: 05ABCAR17111 CREDITS: 04 Unit 1 Programming Basics 1.1 Introduction to Programming

More information

ENCM 339 Fall 2017 Lecture Section 01 Lab 9 for the Week of November 20

ENCM 339 Fall 2017 Lecture Section 01 Lab 9 for the Week of November 20 page 1 of 9 ENCM 339 Fall 2017 Lecture Section 01 Lab 9 for the Week of November 20 Steve Norman Department of Electrical & Computer Engineering University of Calgary November 2017 Lab instructions and

More information

Computing intersections in a set of line segments: the Bentley-Ottmann algorithm

Computing intersections in a set of line segments: the Bentley-Ottmann algorithm Computing intersections in a set of line segments: the Bentley-Ottmann algorithm Michiel Smid October 14, 2003 1 Introduction In these notes, we introduce a powerful technique for solving geometric problems.

More information

Solid Modeling Lecture Series. Prof. Gary Wang Department of Mechanical and Manufacturing Engineering The University of Manitoba

Solid Modeling Lecture Series. Prof. Gary Wang Department of Mechanical and Manufacturing Engineering The University of Manitoba Solid Modeling 25.353 Lecture Series Prof. Gary Wang Department of Mechanical and Manufacturing Engineering The University of Manitoba Information complete, unambiguous, accurate solid model Solid Modeling

More information