A New Concept on Automatic Parking of an Electric Vehicle

Size: px
Start display at page:

Download "A New Concept on Automatic Parking of an Electric Vehicle"

Transcription

1 A New Concept on Automatic Parking of an Electric Vehicle C. CAMUS P. COELHO J.C. QUADRADO Instituto Superior de Engenharia de Lisboa Rua Conselheiro Emídio Navarro PORTUGAL Abstract: - A solution to perform an automatic parking manoeuvre for an electric vehicle is presented in this paper. A mathematical dnamic model is described considering the initial and final position of the vehicle in each point of the desired trajector controlled b the vehicle s velocit and steering angle. The problem of obstacle detection is also considered to avoid collision and a discrete trajector generation is formulated based on the initial and destination position of the vehicle. Ke-Words: - Electrical vehicle, automatic parking, trajector generation 1. Introduction An intelligent vehicle should have the abilit to handle information (from sensors), plan and eecute vehicular motion control in a similar wa as done b a human driver. Parking is certainl one of the vehicular motion controls that present some challenge. To properl park a car into the space between two parked cars (parallel parking) is quite a subtle task that needs human epertise. There is several research work on automated guided vehicles with focus in different aspects. Basicall all the eisting solutions use vision [1] or ultrasonic sensors [] to detect parking slots and obstacles, followed b planning and eecution of a designed motion series. Some algorithms were suggested for the purpose of parallel automatic parking [3]. The relationship between the current position and the desired position ma have an infinit number of combinations. The purpose of this paper is to find a reasonable solution for the parallel parking problem. To solve this problem we begin to establish a vehicle s dnamic model and the corresponding inverse dnamics model, then we made a few obstacle detection considerations and we finalize with a model for trajector generation.. The Automatic Parking Problem In this paper we propose to find a solution to perform an automatic parking manoeuvre b an electric vehicle. To do so the following data is required: The position and orientation of the initial and final points and the position of obstacles around it. An algorithm to describe a discrete trajector must be found for the vehicle to be driven and an obstacle detection algorithm must be developed to avoid collision when the vehicle is driven through the defined trajector to the final parking place. 3. Dnamic Model of the Vehicle To establish the vehicle position we define a two dimension cartesian sstem (, ) and a variable for orientation. Thus the geographic position of the vehicle is defined b a combination of position and orientation P(,, ). The direction is taken counter-clockwise from the -ais, accordingl to figure 1. (orientation coordinate) (, ) (position coordinates) Fig.1 Coordinates position sstem The dnamic model simulates the vehicle s behaviour establishing each new position P(,, ) based in the previous position P( 0, 0, 0 ) and the

2 commands applied to the vehicle (Figure ). Those commands are velocit υ and steering angle θ. 0 Dnamic 0 Model 0 υ Fig. Dnamic model for the new vehicle s position The resulting function is described in (1). P(,, ) = f ( 0, 0, 0, υ, θ) (1) For this dnamic model it is assumed that the vehicle is a rigid bod of length l, width is ignored as well as mass an all the eisting friction forces (Figure 3). θ In cartesian components,, the equation assumes (3). = 0 + υ t + ½ a t = 0 + υ t + ½ a t (3) As the speed and acceleration have the same orientation as the vehicle the can be written in terms of coordinates, i.e. for velocit (4) and for acceleration (5). υ = υ cos υ = υ sen (4) a = a cos a = a sen (5) The resulting mechanical equations are described in (6). = 0 + υ cos t + ½ a cos t = 0 + υ sen t + ½ a sen t (6) Being the acceleration defined in (7) a = dυ/dt (7) l Considering small time intervals we have (8) a = υ / t = (υ-υ 0 )/ t (8) Fig.3 Simplified vehicle model Considering the general equation of variable straight movement of a point presented in (), where r is the new position vector; r 0 is the initial position vector; υ 0 is the initial speed vector applied to the point; a is the acceleration vector applied to the point. r = r 0 + υ 0 t + ½ a t () The vehicle in cartesian components () is presented in figure 4. 0 υ 0 Fig.4 Components of the vehicle Thus, in a discrete form, for time intervals, the model becomes in terms of position coordinates (9) = 0 +υ cos t+½ (υ-υ 0 )cos t = 0 +υ sen t+½ (υ-υ 0 )sen t (9) Regarding the orientation coordinate we have equation (10). d / dt = υ θ / l (10) In the discrete form (10) becomes (11), where l is the vehicle s length; υ is the speed applied to the car; is the orientation coordinate of the vehicle related to the referential ; θ is the steering angle that defines the direction applied to the car. = 0 + υ θ / l t (11) The dnamic model considered for the vehicle is, in its discrete form, defined b (1), where ( 0, 0, 0 ) is the previous position of the vehicle; (,, ) is the new position of the vehicle; (υ,θ) are the commands applied to the vehicle.

3 = 0 υ θ / l t = 0 + υ cos t + ½ (υ-υ 0 ) cos t (1) = 0 + υ sen t + ½ (υ-υ 0 ) sen t 4. Inverse Dnamic Model The mathematical model that represents the vehicle s dnamic behaviour is defined b (1). Figure 5 describes the inverse dnamic model considered. 5. Obstacle Detection Considerations Detection of obstacles is performed avoiding them to get inside a securit zone established around the vehicle. An kind of obstacle can be described b a set of small line segments defined b a set of pair coordinates. For the parallel parking action the normal situation is presented in figure 7. Desired Commands position to appl Inverse υ Dnamic Model θ Current position Fig.5 Inverse dnamics model of the vehicle According to Figure 5, the inverse model can be formulated as the commands (velocit and steering angle) that should be applied to the vehicle so that it goes from an initial position P( 0, 0, 0 ) to a final one P(,, ) (13). P(υ, θ) = f (,,, 0, 0, 0 ) (13) Solving (1) in order to υ and θ, the resulting sstem s equations is (14). Fig.7 Obstacles contours Once the environment where the vehicle stands is defined b the line segments designed with outside contour points of obstacles we should take into account that this obstacles stand in a constant referential that we call obstacles referential ref Obstacles (). When the vehicle moves it performs a translation and a rotation movement and the vehicle s referential ref vehicle (uv) changes as related to obstacles referential (Figure 8). θ = ( - 0 ) l / (υ t) (14) υ = /3 [(- 0 )+(- 0 )]/[(cos+sen) t] + υ 0 /3 v The resulting position control analtical model of the vehicle can be epressed in terms of the coordinates, and and b considering the dnamic and inverse dnamics model (Figure 6). u Desired Commands Position Position to appl Obtained ref υ Inverse ref Dnamic Dnamics ref θ Model Model Fig. 6 Block diagram of the vehicle s model Fig.8 Translation and rotation of ref vehicle (uv) When the vehicle stands at its initial position the two referentials coincide. When the car begins its parking manoeuvre its referential changes b translation and rotation movements. To describe the vehicle position in terms of the obstacles referential we convert the vehicle s referential into the obstacles referential b a mapping matri (15)[4].

4 - - cos -sen a P = sen a cos a P uv (15) In graphical terms this situation corresponds to figure 9. v u Fig.9 Representing the car in ref Obstacles () It is also possible to convert a point at the obstacles referential into the cars referential b the transform matri (16). The equation of the line segment defined b two points is presented in (17). 0 = m (- 0 ) (17) m = ( 1-0 ) / ( 1-0 ) The non-centred equation of the ellipse is given b (18), where (f, g) is the centre and (r a, r b ) are the ellipse radius. (-f) /r a + (-g) / r b The resulting sstem is (19). = 1 (18) 0 = m (- 0 ) (19) (-f) /r a + (-g) / r b = 1 The solution of this equations sstem (19) are the points P 1 and P where the line intercepts the ellipse. If there isn t a real solution it means that the do not intercept. If the solution is real then we must verif if it belongs to the line segment (P 3 P 4 ) of the obstacle contour (Figure 11) cos -sen a P uv = sen a cos a P (16) Obstacle P 1 P Intersection points not to consider If the obstacles are included into the vehicle s referential it is possible to test if the enter at the vehicles securit zone. The securit zone considered has the geometric form of an ellipse (Figure 10). In figure 10 the ellipse option was taken considering the easier wa to represent the car s polnomial shape. Ellipse Circumference Line segments (1 equation) (1 equation) (4 equations) P 3 P 4 Line without intersection Fig.11 Eample of obstacle without intersection In the end is also necessar to verif in which of the four quadrants, in the vehicle s referential, the interception points are and ignore those that are outside the vehicle s direction. Fig. 10 Possible geometric forms of the securit zone With this option and using onl one equation (ellipse) is possible to assure that an obstacle that intersects the securit zone is detected. This can be done b the constant verification of the intersection of a line segment with an ellipse. 6. Trajector generation for automatic parking For the automated vehicle parking it is necessar to define a trajector that the car must perform in order to reach the desired final position. As far as the final desired position P f (,,) is established, the set of points in plan where the car should drive to reach its objective, should be calculated.

5 The trajector is constructed b a set of points, with the coordinates of the several positions of the vehicle, referenced to the obstacles referential. The solution to find the correct trajector for automatic parking is obtained considering that the path connecting initial and final positions of the vehicle is approimatel two circumference arcs (Figure 1). Initial position (0,0,90) Trajector Fig.1 - Trajector for automatic parking Final position ( f, f,90) For the eample in Figure 1, the initial position of the parallel parking manoeuvre is P i (0,0,90), where the two referential sstems, the vehicle s and the obstacle s, coincide. The final position desired is P f ( f, f, 90). The vehicle should end its parking manoeuvre in a parallel position. First we must determine the characteristics of the circumferences whose arcs the trajector segments belong to (Figure 13). P i (0,0,90) C 1 r 1 r C Pf i ( f, f,90) points P i and P f and the line formed with points C 1 and C (Figure 14). P i (0,0,90) C 1 P m ( m, m, m ) C P f ( f, f,90) Fig.14 Interception point between C 1 and C The circumferences equations are described in (1), where c 1,c 1, c,c are the circumference centres; r 1,r are the radius;, the circumference interception point (P m ( m, m, m ) in Figure 14). (-c 1 ) +(-c 1 ) = r 1 (-c ) +(-c ) = r In the present eample () is verified (1) r 1 = r = r c 1 = r c 1 = 0 () c,= f Solving the equations sstem (3) we find r and the coordinate c. (-r) +() = r (-c ) +(- f ) = r (3) With the circumference equations established is possible to compose the trajector. It is necessar now to calculate the trajector points that belong to these circumferences. A possible method is to calculate the angle λ, between the line that joints the vehicle s initial and final position points and the - ais (Figure 15). Fig.13 Circumferences centre and radius The centres of the circunference and radius are described in (0) C 1 (+ r 1, 0 ), C ( f - r, f ) if P f {1 st Q,4 th Q} C 1 (- r 1, 0 ), C ( f + r, f ) if P f { nd Q,3 rd Q} (0) The point where the circumferences touch is the intersection point of the straight line formed with c 1,c 1 λ c, c Fig.15 Trajector calculation

6 The angle in figure 15 is given b (4). tg λ = (c 1 -c )/(c 1 -c ) (4) The limit of angle variation of the parametric equations of a circumference in order to get the trajector points, can also be determined. Based in the parametric equations (5) and the angle variation according the final point s quadrants, the trajector set points can be obtained. = C + r cos δ = C + r sen δ (5) If P f belongs to the 1 st Quadrant: Pc1: 180 < δ < 180-λ with δ< 0 Pc: λ < δ < 0 with δ< 0 If P f belongs to the nd Quadrant: Pc1: 0 < δ < λ with δ > 0 Pc: 180-λ < δ < 180 with δ< 0 If P f belongs to the 3 rd Quadrant: Pc1: 0 < δ < -λ with δ < 0 Pc: 180-λ < δ < 180 with δ> 0 If P f belongs to the 4 th Quadrant: Pc1: 180 < δ < 180+λ with δ > 0 Pc: λ < δ < 0 with δ< 0 The previous points are defined in terms of the position coordinates through the solution of the referred parametric equations and in terms of the orientation coordinate through the sum (or subtraction due to vehicle direction) of 90 to the δ angle used to calculate the position coordinates. The vehicle s orientation is for each trajector point perpendicular to the curve s radius as it shows in the figure Conclusions In this paper, we proposed a solution to the parallel parking problem finding the discrete trajector through circumference arcs. The solution is ver simple and eas to appl when compared to other solutions. A spine parking solution could also be performed or automatic parking with several tries in smaller space. The obstacles detection algorithm computes the coordinates of a possible collision. The elliptical securit zone has simple mathematical representation and can var with the vehicle s speed. The sstem was implemented with successful results. Future work will be done including sonar based sensors that allow a direct obstacle detection and measurement. References: [1] Jin Xu, Guang Chen and Ming Xie, Vision- Guided Automatic Parking for Smart Car. Proceedings of IEEE Intelligent Vehicles Smposium, Dearborn, MI, USA, October 000. [] C. Laugier and F. Thierr, Sensor-based control architecture for a car-like vehicle. Proceedings of IEEE International Conference on Intelligent Robots and Sstems, [3] Jin Xu, Ming Xie and Jiangzhou Lu, Duple Motion Planning Strateg for Automatic Manoeuvre of Vehicle in Comple Environment. 001 IEEE Intelligent Transportation Sstems Conference Proceedings, August 001. [4] Industrial Robotics: Technolog, Programming and Aplications; M.P.Grover, M. Weiss, R.N. Odre; Mc Graw-Hill International Editions, Singapore, P i C 1 λ P f C Fig.16 - Orientation angle calculation

MEM380 Applied Autonomous Robots Winter Robot Kinematics

MEM380 Applied Autonomous Robots Winter Robot Kinematics MEM38 Applied Autonomous obots Winter obot Kinematics Coordinate Transformations Motivation Ultimatel, we are interested in the motion of the robot with respect to a global or inertial navigation frame

More information

NATIONAL UNIVERSITY OF SINGAPORE. (Semester I: 1999/2000) EE4304/ME ROBOTICS. October/November Time Allowed: 2 Hours

NATIONAL UNIVERSITY OF SINGAPORE. (Semester I: 1999/2000) EE4304/ME ROBOTICS. October/November Time Allowed: 2 Hours NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION FOR THE DEGREE OF B.ENG. (Semester I: 1999/000) EE4304/ME445 - ROBOTICS October/November 1999 - Time Allowed: Hours INSTRUCTIONS TO CANDIDATES: 1. This paper

More information

1. We ll look at: Types of geometrical transformation. Vector and matrix representations

1. We ll look at: Types of geometrical transformation. Vector and matrix representations Tob Howard COMP272 Computer Graphics and Image Processing 3: Transformations Tob.Howard@manchester.ac.uk Introduction We ll look at: Tpes of geometrical transformation Vector and matri representations

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical descriptions of geometric changes,

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Computer Graphics Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical

More information

GRAPHICS OUTPUT PRIMITIVES

GRAPHICS OUTPUT PRIMITIVES CHAPTER 3 GRAPHICS OUTPUT PRIMITIVES LINE DRAWING ALGORITHMS DDA Line Algorithm Bresenham Line Algorithm Midpoint Circle Algorithm Midpoint Ellipse Algorithm CG - Chapter-3 LINE DRAWING Line drawing is

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 9 ARAMETRIC EQUATIONS AND OLAR COORDINATES So far we have described plane curves b giving as a function of f or as a function of t or b giving a relation between and that defines implicitl as a function

More information

Method of Continuous Representation of Functions Having Real and Imaginary Parts

Method of Continuous Representation of Functions Having Real and Imaginary Parts www.sjmmf.org Journal of Modern Mathematics Frontier, Volume 5 06 doi: 0.4355/jmmf.06.05.00 Method of Continuous Representation of Functions Having Real and Imaginar Parts Ivanov K.S. * Department of Aero

More information

KINEMATICS STUDY AND WORKING SIMULATION OF THE SELF- ERECTION MECHANISM OF A SELF-ERECTING TOWER CRANE, USING NUMERICAL AND ANALYTICAL METHODS

KINEMATICS STUDY AND WORKING SIMULATION OF THE SELF- ERECTION MECHANISM OF A SELF-ERECTING TOWER CRANE, USING NUMERICAL AND ANALYTICAL METHODS The rd International Conference on Computational Mechanics and Virtual Engineering COMEC 9 9 OCTOBER 9, Brasov, Romania KINEMATICS STUY AN WORKING SIMULATION OF THE SELF- ERECTION MECHANISM OF A SELF-ERECTING

More information

Developing a Tracking Algorithm for Underwater ROV Using Fuzzy Logic Controller

Developing a Tracking Algorithm for Underwater ROV Using Fuzzy Logic Controller 5 th Iranian Conference on Fuzz Sstems Sept. 7-9, 2004, Tehran Developing a Tracking Algorithm for Underwater Using Fuzz Logic Controller M.H. Saghafi 1, H. Kashani 2, N. Mozaani 3, G. R. Vossoughi 4 mh_saghafi@ahoo.com

More information

A rigid body free to move in a reference frame will, in the general case, have complex motion, which is simultaneously a combination of rotation and

A rigid body free to move in a reference frame will, in the general case, have complex motion, which is simultaneously a combination of rotation and 050389 - Analtical Elements of Mechanisms Introduction. Degrees of Freedom he number of degrees of freedom (DOF) of a sstem is equal to the number of independent parameters (measurements) that are needed

More information

USE OF PMAC S CIRCULAR INTERPOLATION FOR ELLIPSES, SPIRALS AND HELICES:

USE OF PMAC S CIRCULAR INTERPOLATION FOR ELLIPSES, SPIRALS AND HELICES: USE OF PMAC S CIRCULAR INTERPOLATION FOR ELLIPSES, SPIRALS AND HELICES: PMAC allows circular interpolation on the X, Y, and Z aes in a coordinate sstem. As with linear blended moves, TA and TS control

More information

CS F-07 Objects in 2D 1

CS F-07 Objects in 2D 1 CS420-2010F-07 Objects in 2D 1 07-0: Representing Polgons We want to represent a simple polgon Triangle, rectangle, square, etc Assume for the moment our game onl uses these simple shapes No curves for

More information

angle The figure formed by two lines with a common endpoint called a vertex. angle bisector The line that divides an angle into two equal parts.

angle The figure formed by two lines with a common endpoint called a vertex. angle bisector The line that divides an angle into two equal parts. A angle The figure formed b two lines with a common endpoint called a verte. verte angle angle bisector The line that divides an angle into two equal parts. circle A set of points that are all the same

More information

THE INVERSE GRAPH. Finding the equation of the inverse. What is a function? LESSON

THE INVERSE GRAPH. Finding the equation of the inverse. What is a function? LESSON LESSON THE INVERSE GRAPH The reflection of a graph in the line = will be the graph of its inverse. f() f () The line = is drawn as the dotted line. Imagine folding the page along the dotted line, the two

More information

of Straight Lines 1. The straight line with gradient 3 which passes through the point,2

of Straight Lines 1. The straight line with gradient 3 which passes through the point,2 Learning Enhancement Team Model answers: Finding Equations of Straight Lines Finding Equations of Straight Lines stud guide The straight line with gradient 3 which passes through the point, 4 is 3 0 Because

More information

Perspective Projection Transformation

Perspective Projection Transformation Perspective Projection Transformation Where does a point of a scene appear in an image?? p p Transformation in 3 steps:. scene coordinates => camera coordinates. projection of camera coordinates into image

More information

Chapter 3 : Computer Animation

Chapter 3 : Computer Animation Chapter 3 : Computer Animation Histor First animation films (Disne) 30 drawings / second animator in chief : ke frames others : secondar drawings Use the computer to interpolate? positions orientations

More information

Two Dimensional Viewing

Two Dimensional Viewing Two Dimensional Viewing Dr. S.M. Malaek Assistant: M. Younesi Two Dimensional Viewing Basic Interactive Programming Basic Interactive Programming User controls contents, structure, and appearance of objects

More information

dt Acceleration is the derivative of velocity with respect to time. If a body's position at time t is S = f(t), the body's acceleration at time t is

dt Acceleration is the derivative of velocity with respect to time. If a body's position at time t is S = f(t), the body's acceleration at time t is APPLICATIN F DERIVATIVE INTRDUCTIN In this section we eamine some applications in which derivatives are used to represent and interpret the rates at which things change in the world around us. Let S be

More information

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics:

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics: Chapter Summar Ke Terms standard form of a quadratic function (.1) factored form of a quadratic function (.1) verte form of a quadratic function (.1) concavit of a parabola (.1) reference points (.) transformation

More information

E0005E - Industrial Image Analysis

E0005E - Industrial Image Analysis E0005E - Industrial Image Analysis The Hough Transform Matthew Thurley slides by Johan Carlson 1 This Lecture The Hough transform Detection of lines Detection of other shapes (the generalized Hough transform)

More information

8.6 Three-Dimensional Cartesian Coordinate System

8.6 Three-Dimensional Cartesian Coordinate System SECTION 8.6 Three-Dimensional Cartesian Coordinate Sstem 69 What ou ll learn about Three-Dimensional Cartesian Coordinates Distance and Midpoint Formulas Equation of a Sphere Planes and Other Surfaces

More information

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is.

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is. Interactive Computer Graphics Warping and morphing Lecture 14+15: Warping and Morphing Lecture 14: Warping and Morphing: Slide 1 Lecture 14: Warping and Morphing: Slide 2 Warping and Morphing What is Warping

More information

GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner

GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner GLOBAL EDITION Interactive Computer Graphics A Top-Down Approach with WebGL SEVENTH EDITION Edward Angel Dave Shreiner This page is intentionall left blank. 4.10 Concatenation of Transformations 219 in

More information

Section 9.3: Functions and their Graphs

Section 9.3: Functions and their Graphs Section 9.: Functions and their Graphs Graphs provide a wa of displaing, interpreting, and analzing data in a visual format. In man problems, we will consider two variables. Therefore, we will need to

More information

8.5. Quadratic Function A function f is a quadratic function if f(x) ax 2 bx c, where a, b, and c are real numbers, with a 0.

8.5. Quadratic Function A function f is a quadratic function if f(x) ax 2 bx c, where a, b, and c are real numbers, with a 0. 8.5 Quadratic Functions, Applications, and Models In the previous section we discussed linear functions, those that are defined b firstdegree polnomials. In this section we will look at quadratic functions,

More information

Function vs Relation Notation: A relationis a rule which takes an inputand may/or may not produce multiple outputs. Relation: y = 2x + 1

Function vs Relation Notation: A relationis a rule which takes an inputand may/or may not produce multiple outputs. Relation: y = 2x + 1 /0/07 X Y - - - - 0 7. Relations Vs. Functions Warm up: Make a table of values, then graph the relation + Definition: A relationis a rule which takes an inputand ma/or ma not produce multiple outputs.

More information

3.9 Differentials. Tangent Line Approximations. Exploration. Using a Tangent Line Approximation

3.9 Differentials. Tangent Line Approximations. Exploration. Using a Tangent Line Approximation 3.9 Differentials 3 3.9 Differentials Understand the concept of a tangent line approimation. Compare the value of the differential, d, with the actual change in,. Estimate a propagated error using a differential.

More information

[ ] [ ] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D. φ = cos 1 1/ φ = tan 1 [ 2 /1]

[ ] [ ] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D. φ = cos 1 1/ φ = tan 1 [ 2 /1] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D A vector is specified b its coordinates, so it is defined relative to a reference frame. The same vector will have different coordinates in

More information

x=2 26. y 3x Use calculus to find the area of the triangle with the given vertices. y sin x cos 2x dx 31. y sx 2 x dx

x=2 26. y 3x Use calculus to find the area of the triangle with the given vertices. y sin x cos 2x dx 31. y sx 2 x dx 4 CHAPTER 6 APPLICATIONS OF INTEGRATION 6. EXERCISES 4 Find the area of the shaded region.. =5-. (4, 4) =. 4. = - = (_, ) = -4 =œ + = + =.,. sin,. cos, sin,, 4. cos, cos, 5., 6., 7.,, 4, 8., 8, 4 4, =_

More information

Grid and Mesh Generation. Introduction to its Concepts and Methods

Grid and Mesh Generation. Introduction to its Concepts and Methods Grid and Mesh Generation Introduction to its Concepts and Methods Elements in a CFD software sstem Introduction What is a grid? The arrangement of the discrete points throughout the flow field is simpl

More information

MEAM 520. Mobile Robots

MEAM 520. Mobile Robots MEAM 520 Mobile Robots Katherine J. Kuchenbecker, Ph.D. General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, Universit of Pennslvania Lecture 22: December 6, 2012 T

More information

Sections 5.1, 5.2, 5.3, 8.1,8.6 & 8.7 Practice for the Exam

Sections 5.1, 5.2, 5.3, 8.1,8.6 & 8.7 Practice for the Exam Sections.1,.2,.3, 8.1,8.6 & 8.7 Practice for the Eam MAC 1 -- Sulivan 8th Ed Name: Date: Class/Section: State whether the function is a polnomial function or not. If it is, give its degree. If it is not,

More information

Glossary alternate interior angles absolute value function Example alternate exterior angles Example angle of rotation Example

Glossary alternate interior angles absolute value function Example alternate exterior angles Example angle of rotation Example Glossar A absolute value function An absolute value function is a function that can be written in the form, where is an number or epression. alternate eterior angles alternate interior angles Alternate

More information

Pre-Algebra Notes Unit 8: Graphs and Functions

Pre-Algebra Notes Unit 8: Graphs and Functions Pre-Algebra Notes Unit 8: Graphs and Functions The Coordinate Plane A coordinate plane is formed b the intersection of a horizontal number line called the -ais and a vertical number line called the -ais.

More information

A Full Analytical Solution to the Direct and Inverse Kinematics of the Pentaxis Robot Manipulator

A Full Analytical Solution to the Direct and Inverse Kinematics of the Pentaxis Robot Manipulator A Full Analtical Solution to the Direct and Inverse Kinematics of the Pentais Robot Manipulator Moisés Estrada Castañeda, Luis Tupak Aguilar Bustos, Luis A. Gonále Hernánde Instituto Politécnico Nacional

More information

CS770/870 Spring 2017 Transformations

CS770/870 Spring 2017 Transformations CS770/870 Spring 2017 Transformations Coordinate sstems 2D Transformations Homogeneous coordinates Matrices, vectors, points Coordinate Sstems Coordinate sstems used in graphics Screen coordinates: the

More information

Section 3.1: Introduction to Linear Equations in 2 Variables Section 3.2: Graphing by Plotting Points and Finding Intercepts

Section 3.1: Introduction to Linear Equations in 2 Variables Section 3.2: Graphing by Plotting Points and Finding Intercepts Remember to read the tetbook before attempting to do our homework. Section 3.1: Introduction to Linear Equations in 2 Variables Section 3.2: Graphing b Plotting Points and Finding Intercepts Rectangular

More information

Introduction to Homogeneous Transformations & Robot Kinematics

Introduction to Homogeneous Transformations & Robot Kinematics Introduction to Homogeneous Transformations & Robot Kinematics Jennifer Ka Rowan Universit Computer Science Department. Drawing Dimensional Frames in 2 Dimensions We will be working in -D coordinates,

More information

UNIT NUMBER 5.2. GEOMETRY 2 (The straight line) A.J.Hobson

UNIT NUMBER 5.2. GEOMETRY 2 (The straight line) A.J.Hobson JUST THE MATHS UNIT NUMBER 5.2 GEOMETRY 2 (The straight line) b A.J.Hobson 5.2.1 Preamble 5.2.2 Standard equations of a straight line 5.2. Perpendicular straight lines 5.2.4 Change of origin 5.2.5 Exercises

More information

The Immune Self-adjusting Contour Error Coupled Control in Machining Based on Grating Ruler Sensors

The Immune Self-adjusting Contour Error Coupled Control in Machining Based on Grating Ruler Sensors Sensors & Transducers Vol. 181 Issue 10 October 014 pp. 37-44 Sensors & Transducers 014 b IFSA Publishing S. L. http://www.sensorsportal.com The Immune Self-adjusting Contour Error Coupled Control in Machining

More information

Investigation Free Fall

Investigation Free Fall Investigation Free Fall Name Period Date You will need: a motion sensor, a small pillow or other soft object What function models the height of an object falling due to the force of gravit? Use a motion

More information

Image Metamorphosis By Affine Transformations

Image Metamorphosis By Affine Transformations Image Metamorphosis B Affine Transformations Tim Mers and Peter Spiegel December 16, 2005 Abstract Among the man was to manipulate an image is a technique known as morphing. Image morphing is a special

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometr and Camera Calibration 3D Coordinate Sstems Right-handed vs. left-handed 2D Coordinate Sstems ais up vs. ais down Origin at center vs. corner Will often write (u, v) for image coordinates v

More information

Graphs, Linear Equations, and Functions

Graphs, Linear Equations, and Functions Graphs, Linear Equations, and Functions. The Rectangular R. Coordinate Fractions Sstem bjectives. Interpret a line graph.. Plot ordered pairs.. Find ordered pairs that satisf a given equation. 4. Graph

More information

Name: [20 points] Consider the following OpenGL commands:

Name: [20 points] Consider the following OpenGL commands: Name: 2 1. [20 points] Consider the following OpenGL commands: glmatrimode(gl MODELVIEW); glloadidentit(); glrotatef( 90.0, 0.0, 1.0, 0.0 ); gltranslatef( 2.0, 0.0, 0.0 ); glscalef( 2.0, 1.0, 1.0 ); What

More information

Closure Polynomials for Strips of Tetrahedra

Closure Polynomials for Strips of Tetrahedra Closure Polnomials for Strips of Tetrahedra Federico Thomas and Josep M. Porta Abstract A tetrahedral strip is a tetrahedron-tetrahedron truss where an tetrahedron has two neighbors ecept those in the

More information

Introduction to Trigonometric Functions. Peggy Adamson and Jackie Nicholas

Introduction to Trigonometric Functions. Peggy Adamson and Jackie Nicholas Mathematics Learning Centre Introduction to Trigonometric Functions Pegg Adamson and Jackie Nicholas c 998 Universit of Sdne Acknowledgements A significant part of this manuscript has previousl appeared

More information

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES Mathematics SKE, Strand J UNIT J Further Transformations: Tet STRND J: TRNSFORMTIONS, VETORS and MTRIES J Further Transformations Tet ontents Section J.1 Translations * J. ombined Transformations Mathematics

More information

2.3. Horizontal and Vertical Translations of Functions. Investigate

2.3. Horizontal and Vertical Translations of Functions. Investigate .3 Horizontal and Vertical Translations of Functions When a video game developer is designing a game, she might have several objects displaed on the computer screen that move from one place to another

More information

LESSON 3.1 INTRODUCTION TO GRAPHING

LESSON 3.1 INTRODUCTION TO GRAPHING LESSON 3.1 INTRODUCTION TO GRAPHING LESSON 3.1 INTRODUCTION TO GRAPHING 137 OVERVIEW Here s what ou ll learn in this lesson: Plotting Points a. The -plane b. The -ais and -ais c. The origin d. Ordered

More information

Rational functions and graphs. Section 2: Graphs of rational functions

Rational functions and graphs. Section 2: Graphs of rational functions Rational functions and graphs Section : Graphs of rational functions Notes and Eamples These notes contain subsections on Graph sketching Turning points and restrictions on values Graph sketching You can

More information

Trigonometry Review Day 1

Trigonometry Review Day 1 Name Trigonometry Review Day 1 Algebra II Rotations and Angle Terminology II Terminal y I Positive angles rotate in a counterclockwise direction. Reference Ray Negative angles rotate in a clockwise direction.

More information

Planning Movement of a Robotic Arm for Assembly of Products

Planning Movement of a Robotic Arm for Assembly of Products Journal of Mechanics Engineering and Automation 5 (2015) 257-262 doi: 10.17265/2159-5275/2015.04.008 D DAVID PUBLISHING Planning Movement of a Robotic Arm for Assembly of Products Jose Ismael Ojeda Campaña

More information

Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter

More information

CMSC 425: Lecture 10 Basics of Skeletal Animation and Kinematics

CMSC 425: Lecture 10 Basics of Skeletal Animation and Kinematics : Lecture Basics of Skeletal Animation and Kinematics Reading: Chapt of Gregor, Game Engine Architecture. The material on kinematics is a simplification of similar concepts developed in the field of robotics,

More information

Multibody Motion Estimation and Segmentation from Multiple Central Panoramic Views

Multibody Motion Estimation and Segmentation from Multiple Central Panoramic Views Multibod Motion Estimation and Segmentation from Multiple Central Panoramic Views Omid Shakernia René Vidal Shankar Sastr Department of Electrical Engineering & Computer Sciences Universit of California

More information

S-SHAPED ONE TRAIL PARALLEL PARKING OF A CAR-LIKE MOBILE ROBOT

S-SHAPED ONE TRAIL PARALLEL PARKING OF A CAR-LIKE MOBILE ROBOT S-SHAPED ONE TRAIL PARALLEL PARKING OF A CAR-LIKE MOBILE ROBOT 1 SOE YU MAUNG MAUNG, 2 NU NU WIN, 3 MYINT HTAY 1,2,3 Mechatronic Engineering Department, Mandalay Technological University, The Republic

More information

Chapter 3 Path Optimization

Chapter 3 Path Optimization Chapter 3 Path Optimization Background information on optimization is discussed in this chapter, along with the inequality constraints that are used for the problem. Additionally, the MATLAB program for

More information

Tracking of Human Body using Multiple Predictors

Tracking of Human Body using Multiple Predictors Tracking of Human Body using Multiple Predictors Rui M Jesus 1, Arnaldo J Abrantes 1, and Jorge S Marques 2 1 Instituto Superior de Engenharia de Lisboa, Postfach 351-218317001, Rua Conselheiro Emído Navarro,

More information

What and Why Transformations?

What and Why Transformations? 2D transformations What and Wh Transformations? What? : The geometrical changes of an object from a current state to modified state. Changing an object s position (translation), orientation (rotation)

More information

2.4 Polynomial and Rational Functions

2.4 Polynomial and Rational Functions Polnomial Functions Given a linear function f() = m + b, we can add a square term, and get a quadratic function g() = a 2 + f() = a 2 + m + b. We can continue adding terms of higher degrees, e.g. we can

More information

Precision Peg-in-Hole Assembly Strategy Using Force-Guided Robot

Precision Peg-in-Hole Assembly Strategy Using Force-Guided Robot 3rd International Conference on Machiner, Materials and Information Technolog Applications (ICMMITA 2015) Precision Peg-in-Hole Assembl Strateg Using Force-Guided Robot Yin u a, Yue Hu b, Lei Hu c BeiHang

More information

D-Calib: Calibration Software for Multiple Cameras System

D-Calib: Calibration Software for Multiple Cameras System D-Calib: Calibration Software for Multiple Cameras Sstem uko Uematsu Tomoaki Teshima Hideo Saito Keio Universit okohama Japan {u-ko tomoaki saito}@ozawa.ics.keio.ac.jp Cao Honghua Librar Inc. Japan cao@librar-inc.co.jp

More information

Algebra I. Linear Equations. Slide 1 / 267 Slide 2 / 267. Slide 3 / 267. Slide 3 (Answer) / 267. Slide 4 / 267. Slide 5 / 267

Algebra I. Linear Equations. Slide 1 / 267 Slide 2 / 267. Slide 3 / 267. Slide 3 (Answer) / 267. Slide 4 / 267. Slide 5 / 267 Slide / 67 Slide / 67 lgebra I Graphing Linear Equations -- www.njctl.org Slide / 67 Table of ontents Slide () / 67 Table of ontents Linear Equations lick on the topic to go to that section Linear Equations

More information

Integrating ICT into mathematics at KS4&5

Integrating ICT into mathematics at KS4&5 Integrating ICT into mathematics at KS4&5 Tom Button tom.button@mei.org.uk www.mei.org.uk/ict/ This session will detail the was in which ICT can currentl be used in the teaching and learning of Mathematics

More information

Transformations using matrices

Transformations using matrices Transformations using matrices 6 sllabusref eferenceence Core topic: Matrices and applications In this cha 6A 6B 6C 6D 6E 6F 6G chapter Geometric transformations and matri algebra Linear transformations

More information

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1 Toda s class Geometric objects and transformations Wednesda, November 7, 27 Computer Graphics - Class 5 Vector operations Review of vector operations needed for working in computer graphics adding two

More information

1.2. Characteristics of Polynomial Functions. What are the key features of the graphs of polynomial functions?

1.2. Characteristics of Polynomial Functions. What are the key features of the graphs of polynomial functions? 1.2 Characteristics of Polnomial Functions In Section 1.1, ou eplored the features of power functions, which are single-term polnomial functions. Man polnomial functions that arise from real-world applications

More information

Unit I - Chapter 3 Polynomial Functions 3.1 Characteristics of Polynomial Functions

Unit I - Chapter 3 Polynomial Functions 3.1 Characteristics of Polynomial Functions Math 3200 Unit I Ch 3 - Polnomial Functions 1 Unit I - Chapter 3 Polnomial Functions 3.1 Characteristics of Polnomial Functions Goal: To Understand some Basic Features of Polnomial functions: Continuous

More information

3D X-ray Laminography with CMOS Image Sensor Using a Projection Method for Reconstruction of Arbitrary Cross-sectional Images

3D X-ray Laminography with CMOS Image Sensor Using a Projection Method for Reconstruction of Arbitrary Cross-sectional Images Ke Engineering Materials Vols. 270-273 (2004) pp. 192-197 online at http://www.scientific.net (2004) Trans Tech Publications, Switzerland Online available since 2004/08/15 Citation & Copright (to be inserted

More information

4.1 Angles and Angle Measure. 1, multiply by

4.1 Angles and Angle Measure. 1, multiply by 4.1 Angles and Angle Measure Angles can be measured in degrees or radians. Angle measures without units are considered to be in radians. Radian: One radian is the measure of the central angle subtended

More information

Charting new territory: Formulating the Dalivian coordinate system

Charting new territory: Formulating the Dalivian coordinate system Parabola Volume 53, Issue 2 (2017) Charting new territory: Formulating the Dalivian coordinate system Olivia Burton and Emma Davis 1 Numerous coordinate systems have been invented. The very first and most

More information

Chapter 8.1: Circular Functions (Trigonometry)

Chapter 8.1: Circular Functions (Trigonometry) Chapter 8.1: Circular Functions (Trigonometry) SSMTH1: Precalculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M. Mendoza Chapter 8.1: Circular Functions Lecture 8.1: Basic

More information

Think About. Unit 5 Lesson 3. Investigation. This Situation. Name: a Where do you think the origin of a coordinate system was placed in creating this

Think About. Unit 5 Lesson 3. Investigation. This Situation. Name: a Where do you think the origin of a coordinate system was placed in creating this Think About This Situation Unit 5 Lesson 3 Investigation 1 Name: Eamine how the sequence of images changes from frame to frame. a Where do ou think the origin of a coordinate sstem was placed in creating

More information

The directional derivative of f x, y in the direction of at x, y u. f x sa y sb f x y (, ) (, ) 0 0 y 0 0

The directional derivative of f x, y in the direction of at x, y u. f x sa y sb f x y (, ) (, ) 0 0 y 0 0 Review: 0, lim D f u 0 0 0 0 u The directional derivative of f, in the direction of at, is denoted b D f, : u a, b must a unit vector u f sa sb f s 0 (, ) (, ) s f (, ) a f (, ) b 0 0 0 0 0 0 D f, f u

More information

0 COORDINATE GEOMETRY

0 COORDINATE GEOMETRY 0 COORDINATE GEOMETRY Coordinate Geometr 0-1 Equations of Lines 0- Parallel and Perpendicular Lines 0- Intersecting Lines 0- Midpoints, Distance Formula, Segment Lengths 0- Equations of Circles 0-6 Problem

More information

4 B. 4 D. 4 F. 3. What are some common characteristics of the graphs of cubic and quartic polynomial functions?

4 B. 4 D. 4 F. 3. What are some common characteristics of the graphs of cubic and quartic polynomial functions? .1 Graphing Polnomial Functions COMMON CORE Learning Standards HSF-IF.B. HSF-IF.C.7c Essential Question What are some common characteristics of the graphs of cubic and quartic polnomial functions? A polnomial

More information

Lines and Their Slopes

Lines and Their Slopes 8.2 Lines and Their Slopes Linear Equations in Two Variables In the previous chapter we studied linear equations in a single variable. The solution of such an equation is a real number. A linear equation

More information

5.3 Angles and Their Measure

5.3 Angles and Their Measure 5.3 Angles and Their Measure 1. Angles and their measure 1.1. Angles. An angle is formed b rotating a ra about its endpoint. The starting position of the ra is called the initial side and the final position

More information

PRT simulation research

PRT simulation research THE ARCHIVES OF TRANSPORT VOL. XXVII-XXVIII NO 3-4 13 PRT simulation research Maciej Kozłowski Włodzimierz Choromański ** Received November 13 Abstract The paper presents analses results of PRT vehicle

More information

Manipulator trajectory planning

Manipulator trajectory planning Manipulator trajectory planning Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics Czech Republic http://cmp.felk.cvut.cz/~hlavac Courtesy to

More information

Connecting Algebra and Geometry with Polygons

Connecting Algebra and Geometry with Polygons Connecting Algebra and Geometr with Polgons 15 Circles are reall important! Once ou know our wa around a circle, ou can use this knowledge to figure out a lot of other things! 15.1 Name That Triangle!

More information

Tubes are Fun. By: Douglas A. Ruby Date: 6/9/2003 Class: Geometry or Trigonometry Grades: 9-12 INSTRUCTIONAL OBJECTIVES:

Tubes are Fun. By: Douglas A. Ruby Date: 6/9/2003 Class: Geometry or Trigonometry Grades: 9-12 INSTRUCTIONAL OBJECTIVES: Tubes are Fun B: Douglas A. Rub Date: 6/9/2003 Class: Geometr or Trigonometr Grades: 9-2 INSTRUCTIONAL OBJECTIVES: Using a view tube students will conduct an eperiment involving variation of the viewing

More information

LINEAR PROGRAMMING. Straight line graphs LESSON

LINEAR PROGRAMMING. Straight line graphs LESSON LINEAR PROGRAMMING Traditionall we appl our knowledge of Linear Programming to help us solve real world problems (which is referred to as modelling). Linear Programming is often linked to the field of

More information

NUMB3RS Activity: The Center of it All. Episode: Pilot

NUMB3RS Activity: The Center of it All. Episode: Pilot NUMBRS Activit Teacher Page NUMBRS Activit: The Center of it All Topic: Circles Grade Level: 9 - Objective: Eplore the circumcenter and investigate the relationship between the position of the circumcenter

More information

20 Calculus and Structures

20 Calculus and Structures 0 Calculus and Structures CHAPTER FUNCTIONS Calculus and Structures Copright LESSON FUNCTIONS. FUNCTIONS A function f is a relationship between an input and an output and a set of instructions as to how

More information

THE ORTHOGLIDE: KINEMATICS AND WORKSPACE ANALYSIS

THE ORTHOGLIDE: KINEMATICS AND WORKSPACE ANALYSIS THE ORTHOGIDE: KINEMATICS AND WORKSPACE ANAYSIS A. Pashkevich Robotic aborator, Belarusian State Universit of Informatics and Radioelectronics 6 P. Brovka St., Minsk, 007, Belarus E-mail: pap@ bsuir.unibel.b

More information

Unit 4 Trigonometry. Study Notes 1 Right Triangle Trigonometry (Section 8.1)

Unit 4 Trigonometry. Study Notes 1 Right Triangle Trigonometry (Section 8.1) Unit 4 Trigonometr Stud Notes 1 Right Triangle Trigonometr (Section 8.1) Objective: Evaluate trigonometric functions of acute angles. Use a calculator to evaluate trigonometric functions. Use trigonometric

More information

EXPANDING THE CALCULUS HORIZON. Robotics

EXPANDING THE CALCULUS HORIZON. Robotics EXPANDING THE CALCULUS HORIZON Robotics Robin designs and sells room dividers to defra college epenses. She is soon overwhelmed with orders and decides to build a robot to spra paint her dividers. As in

More information

Scientific Manual FEM-Design 16.0

Scientific Manual FEM-Design 16.0 1.4.6 Calculations considering diaphragms All of the available calculation in FEM-Design can be performed with diaphragms or without diaphragms if the diaphragms were defined in the model. B the different

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 5. Graph sketching

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 5. Graph sketching Roberto s Notes on Differential Calculus Chapter 8: Graphical analsis Section 5 Graph sketching What ou need to know alread: How to compute and interpret limits How to perform first and second derivative

More information

MATH STUDENT BOOK. 12th Grade Unit 7

MATH STUDENT BOOK. 12th Grade Unit 7 MATH STUDENT BOOK 1th Grade Unit 7 Unit 7 POLAR COORDINATES MATH 107 POLAR COORDINATES INTRODUCTION 1. POLAR EQUATIONS 5 INTRODUCTION TO POLAR COORDINATES 5 POLAR EQUATIONS 1 POLAR CURVES 19 POLAR FORMS

More information

Module 2, Section 2 Graphs of Trigonometric Functions

Module 2, Section 2 Graphs of Trigonometric Functions Principles of Mathematics Section, Introduction 5 Module, Section Graphs of Trigonometric Functions Introduction You have studied trigonometric ratios since Grade 9 Mathematics. In this module ou will

More information

Motion Capture & Simulation

Motion Capture & Simulation Motion Capture & Simulation Motion Capture Character Reconstructions Joint Angles Need 3 points to compute a rigid body coordinate frame 1 st point gives 3D translation, 2 nd point gives 2 angles, 3 rd

More information

Unit 2: Locomotion Kinematics of Wheeled Robots: Part 3

Unit 2: Locomotion Kinematics of Wheeled Robots: Part 3 Unit 2: Locomotion Kinematics of Wheeled Robots: Part 3 Computer Science 4766/6778 Department of Computer Science Memorial University of Newfoundland January 28, 2014 COMP 4766/6778 (MUN) Kinematics of

More information

Appendix D Trigonometry

Appendix D Trigonometry Math 151 c Lynch 1 of 8 Appendix D Trigonometry Definition. Angles can be measure in either degree or radians with one complete revolution 360 or 2 rad. Then Example 1. rad = 180 (a) Convert 3 4 into degrees.

More information

1 Trigonometry. Copyright Cengage Learning. All rights reserved.

1 Trigonometry. Copyright Cengage Learning. All rights reserved. 1 Trigonometry Copyright Cengage Learning. All rights reserved. 1.1 Radian and Degree Measure Copyright Cengage Learning. All rights reserved. Objectives Describe angles. Use radian measure. Use degree

More information

Polar Functions Polar coordinates

Polar Functions Polar coordinates 548 Chapter 1 Parametric, Vector, and Polar Functions 1. What ou ll learn about Polar Coordinates Polar Curves Slopes of Polar Curves Areas Enclosed b Polar Curves A Small Polar Galler... and wh Polar

More information