Method of Continuous Representation of Functions Having Real and Imaginary Parts

Size: px
Start display at page:

Download "Method of Continuous Representation of Functions Having Real and Imaginary Parts"

Transcription

1 Journal of Modern Mathematics Frontier, Volume 5 06 doi: /jmmf Method of Continuous Representation of Functions Having Real and Imaginar Parts Ivanov K.S. * Department of Aero Space Control Sstems, Almat Universit of Power Engineering and Telecommunication, Kazakhstan, Almat, Batursinov street, 6 * ivanovgreek@mail.ru Abstract Method of graphic representation of function which accepts real and imaginar values in the full range of values of argument is presented. Imaginar values of function are represented b comple numbers. The method aes contain two mutuall perpendicular real aes and imaginar ais which is perpendicular to the real aes. The real part of a comple number is postponed on horizontal real ais. The imaginar part of comple number is postponed on imaginar ais. The real part of function is represented in vertical real plane. The imaginar part of function is represented in horizontal imaginar plane. The method allows building the full graphic representation of function within the full range of argument change. B means of a method new properties are found. Kewords Comple Number; Real Plane, Imaginar Plane; Full Image Introduction It is known that the comple number m a ib can be presented in the representation of a point M ( aib, ) on the imaginar plane having the real ais and imaginar ais. The parametre a is postponed on the real ais and the parametre ib (an imaginar part) is postponed on the imaginar ais in a perpendicular direction. In mathematics the cases take place when at the real values of argument the function f( ) accepts imaginar values in the representation of an imaginar number having onl an imaginar part. Earlier the attempts of a graphical representation of an imaginar part of function (circle) in a pseudo Euclidean plane in the representation of two open branches of a hperbola [] were undertaken. However the real part of function has not been represented. The task in view to create a method which allows to represent completel graphicall a function f( ) which accepts the real and imaginar values in a full continuous range of argument change and to analse its a realit complianc. Method of Continuous Representation of Functions The method of continuous representation of function f( ) consists in the following (fig. ). The method coordinate sstem has real aes O, O and imaginar ais Oi which is placed perpendicularl to the real aes. Here i. M(, ) i M i (, i) O FIG.. GRAPHICAL REPRESENTATION OF THE REAL AND IMAGINARY POINTS 4

2 Journal of Modern Mathematics Frontier, Volume Argument has onl the real values in a full continuous range of values and is postponed on ais O. Function f( ) can have the real or imaginar values. Real values are postponed on ais O, imaginar values i are postponed on ais Oi. Real point M las in plane O, imaginar point M i las in plane Oi. The general plot of function will contain the real and imaginar parts. Graphical Representation of Functions Circle Function of a circle with radius r looks like r. () r i =i O F FIG.. GENERAL PLOT OF CIRCLE At r r real function (circle) occurs in the real (vertical) plane O. At r and r imaginar function (equiangular hperbola) occurs in an imaginar (horizontal) plane Oi. The full plot of a circle containing the real part and imaginar parts (shown b a dot line) is presented in fig.. The dotted straight lines which are drawing in an imaginar plane under angle 45 to ais O are representing equiangular hperbola asmptotes. It would be more evident to represent an imaginar part of function in the form of a real valued function in a conditional real plane. The imaginar part of function can be conditionall presented in the representation of a real valued function according to the following theorem. The theorem of transformation of functions. The imaginar part of function can be presented as conditional real function and on the contrar b multiplication of the equation of function b imaginar numberi. Generall function looks like A where A an positive number. At A imaginar function takes place. Letʹs multipl the function equation b i. We will gain i i A. We will mark out i z where z the designation of a conditional real number in conditionall real plane Oz. After introduction i under a root we 5

3 Journal of Modern Mathematics Frontier, Volume 5 06 will gain z A. At A the gained equation epresses a conditionall real function in plane Oz as was to be shown. For the circle equation it is had r. After transformation with multiplication b i we will gain the equation of the real equiangular hperbola in sstem Oz or an imaginar equiangular hperbola in sstem Oi z r. () Check of Adequac of the Accepted Technique of Graphic Representation to Mathematical Realit Check can be eecuted on the basis of the following statement pseudo Euclidean geometr: the isotropic straight progressing through focus b a curve, is a tangent to this curve []. Such statement does not conform to a usual graphical representation according to which an straight which is passing through a pole of a curve must cross a curve. However the method of continuous representation of functions is capable to give evident geometrical representation of this phenomenon. The isotropic isotropic line which is passing through focus of circle F (or through the circle centre) looks like i. According to the accepted technique this straight must be in imaginar plane Oi. Therefore the isotropic straight can be a tangent to an imaginar part of the circle which is placed in an imaginar plane. We will present the analtical description of this phenomenon. The tangent equation to the curve of the second order which is passing through the set point can be gained from condition of coincidence of two intersection points of a straight with curve (imaginar circle). Letʹs determine co ordinates of intersection points of some straight k with angular coefficient k which is passing through origin of co ordinates and circle (). We will carr out a joint resolution of the equation of straight and the circle equation. Letʹs substitute value from the equation of a direct circle in the equation. k r. After squaring we will gain For isotropic straight k r. Further k i. From the equation (3) we will find values at ( k ) r. (3), r /( ) From here we will find abscissas of intersection points,. k i. (4) Letʹs substitute these values in the equation (). We will gain ordinates of intersection points in an imaginar plane k, k. Thus each straight matching to an isotropic straight has two conterminous intersection points with an imaginar circle at и. Hence, each straight is a tangent to an imaginar part of circle (that is to a hperbola). Analtical regularit matches to a graphic representation. The isotropic straight coincides with asmptotes of an imaginar equiangular hperbola which have points of contact with a curve in infinit at,. Letʹs consider another wa of statement that the isotropic straight which is through passing through focus of a circle is tangent to circle. The tangent equation to a circle which is passing through point of contact M( ) looks like r. (5) Letʹs substitute values of co ordinates of point M(, ) which is on an isotropic straight at i i r or, we will gain 6

4 Journal of Modern Mathematics Frontier, Volume i r /. (6) At we will gain the equation of the tangent i which is passing through point M. We will multipl this equation on i, we will gain The equation (7) is the equation of an isotropic straight. i. (7) Further we will substitute values of co ordinates of point M (, ) which is on an isotropic straight at i in the equation (5), we will gain i r or i r /. (8) At we will gain the equation of the tangent which is passing through point M coincides with the equation (7) and also is the equation of an isotropic straight. Thus graphical acknowledging of known regularit pseudo Euclidean geometr is gained. Here it is possible to note surprising regularit. i. This equation As is known contact point M of straight and curve of the second order is a point in which two infinitel close intersection points M (, i ) and M (, i ) are placed. In the considered case the coincidence of two points M and M in one point means that the isotropic straight (7) becomes closed in one imaginar point M which is simultaneousl in positive and negative infinite. The point which moves on a straight to positive infinite appears in negative infinite. At the same time it is necessar to note that the equation (7) defines two mutuall perpendicular isotropic straight lines. This regularit can be tied up to an eplanation of infinit and reticence of the Universe. Ellipse Function of ellipse looks like Here a and b big and small semi aes of an ellipse. ( / ). (9) b a a The full plot of ellipse with the image onl the right imaginar part is presented in fig. 3. The real part of ellipse is presented on vertical plane O. The imaginar part of ellipse is presented on horizontal plane. The imaginar part of function can be converted to a real valued function. Letʹs multipl the equation (9) b i, we will gain Here a a. i b a a ( / ). (0) It is possible to present the equation (0) in the form Oz or the imaginar hperbola in sstem Oi. ( / ) the equation of the real hperbola in sstem z b a a Letʹs eecute check of reliabilit of the found regularit and coincidence of the accepted technique with mathematical realit. We will check a condition of contact of the isotropic straight passing through the ellipse pole F with the imaginar hperbola. For this purpose we will find two intersection points of an isotropic straight with imaginar hperbola. These two points should coincide with a contact point. The equation of the isotropic straight which is passing through the right focus of ellipse F(,0) c looks like i( c). () 7

5 Journal of Modern Mathematics Frontier, Volume 5 06 Here c a b. i =i(-c) M b O a F FIG. 3. FULL PLOT OF ELLIPSE WITH THE RIGHT IMAGINARY PART Letʹs substitute value from the equation () in the ellipse equation (0), we will gain i ( c) ( b/ a) a Letʹs erect the equation () in square and after conversions we will gain. () The solution of the equation (3) looks like c / a c a 0. (3) a c. (4), / Formula (4) asserts that the point of contact of isotropic straight and ellipse in its imaginar part occurs. In this point two intersection points of straight and ellipse coincide. Letʹs note also that in that specific case at c 0 ellipse is transforming in the circle with r a and abscissa of contact point,. It confirms earlier inferred regularit for a circle and a tangent in its imaginar part. Thus graphical acknowledging of known regularit of pseudo Euclidean geometr is gained. Adequac of the accepted wa of geometrical representation with a mathematical realit is proved. Convertibilit of the Real and Imaginar Parts of Function According to the theorem of transformation of functions proved above the imaginar part of function can be presented in the form of conditional real function and on the contrar b multiplication of the equation of function b imaginar numberi. =-(-с) b O a F(c, 0) -45 FIG. 4. TANGENT TO ELLIPSE PASSING FROM POLE OF IMAGINARY HYPERBOLA UNDER ANGLE " /4" This regularit defines propert of convertibilit of the real and imaginar parts of function. On the basis of 8

6 Journal of Modern Mathematics Frontier, Volume convertibilit of function it is possible to change full geometrical representation of a curve b transformation of the real part in imaginar part and on the contrar. Propert of convertibilit of functions allows formulating brand new regularit: real straight with angular coefficient k (or k ) passing from imaginar curve pole is a tangent to the real curve. On the basis of this statement it is possible to represent in the real plane brand new regularit, for eample, for an ellipse with a small semi ais b (fig. 4). A straight passing under angle " /4" through point F(,0) c tangent to ellipse is. Here F(,0) c focus of the imaginar hperbola, c b. Isolated Point The graphical representation of a curve taking into account its real and imaginar part allows bringing in correction to the description of some theoretical regularit. i - M 0 - FIG. 5. ISOLATED POINT FROM REAL PART OF CURVE For eample, it is possible to correct concept ʺisolated pointʺ [3 p. 44]. According to [3] isolated point M (0, 0) has a place in curve 4. The isolated point does not la on the main curve of the equation (fig. 5). In fig. 5 considered curve is presented b contour line. We will build an imaginar part of this curve in an imaginar plane 0i it is shown b a dot line. The considered curve passes in an imaginar part on intervals 0, 0. Hence the point M (0, 0) is not isolated point. It las on the curve having the real and imaginar parts. Conclusions The new method of a graphical representation of the functions, allowing gaining a composite image of the function containing the real and imaginar parts is offered. It is proved that the offered method reflects real geometr of analtical regularit. Known analtical regularit of contact of isotropic straight with investigated curve has gained a graphical form. Convertibilit of the real and imaginar parts of function is proved. New propert is found: the real straight with angular coefficient, equal «+» or passing from imaginar curve pole is tangent to curve real part. The concept of an isolated point is corrected. The eecuted researches allow graphical presenting of analtic geometr in the real and imaginar planes. The method of continuous representation of functions can be used for the subsequent research of functions. The analtic geometr in an imaginar plane supplements and generalizes the mathematical description of functions on a plane. Parabola research at which the imaginar part will appear asmmetrical in relation to the real part is of interest. 9

7 Journal of Modern Mathematics Frontier, Volume 5 06 Creation of method of the general graphical representation of functions in space with the description of infinit and reticence of space is possible in the long term. REFERENCES [] Laptev G.F. Elements of vector calculus. М: Science. (975). 335 p. [] Walter Noll. Euclidean geometr and Minkowskian chronometr. American Mathematical Monthl. 7:9 44. (964). [3] Christopher Clapham and James Nicholson. Oford Concise Dictionar of Mathematics. Fourth Edition. (009). 50 p. 0

THE INVERSE GRAPH. Finding the equation of the inverse. What is a function? LESSON

THE INVERSE GRAPH. Finding the equation of the inverse. What is a function? LESSON LESSON THE INVERSE GRAPH The reflection of a graph in the line = will be the graph of its inverse. f() f () The line = is drawn as the dotted line. Imagine folding the page along the dotted line, the two

More information

Worksheet A GRAPHS OF FUNCTIONS

Worksheet A GRAPHS OF FUNCTIONS C GRAPHS F FUNCTINS Worksheet A Sketch and label each pair of graphs on the same set of aes showing the coordinates of any points where the graphs intersect. Write down the equations of any asymptotes.

More information

1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral

1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral 1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral Show your working and give your answer correct to three decimal places. 2 2.5 3 3.5 4 When When When When When

More information

8.6 Three-Dimensional Cartesian Coordinate System

8.6 Three-Dimensional Cartesian Coordinate System SECTION 8.6 Three-Dimensional Cartesian Coordinate Sstem 69 What ou ll learn about Three-Dimensional Cartesian Coordinates Distance and Midpoint Formulas Equation of a Sphere Planes and Other Surfaces

More information

3 CHAPTER. Coordinate Geometry

3 CHAPTER. Coordinate Geometry 3 CHAPTER We are Starting from a Point but want to Make it a Circle of Infinite Radius Cartesian Plane Ordered pair A pair of numbers a and b instead in a specific order with a at the first place and b

More information

Precalculus, IB Precalculus and Honors Precalculus

Precalculus, IB Precalculus and Honors Precalculus NORTHEAST CONSORTIUM Precalculus, IB Precalculus and Honors Precalculus Summer Pre-View Packet DUE THE FIRST DAY OF SCHOOL The problems in this packet are designed to help ou review topics from previous

More information

Transformation of curve. a. reflect the portion of the curve that is below the x-axis about the x-axis

Transformation of curve. a. reflect the portion of the curve that is below the x-axis about the x-axis Given graph of y f = and sketch:. Linear Transformation cf ( b + a) + d a. translate a along the -ais. f b. scale b along the -ais c. scale c along the y-ais d. translate d along the y-ais Transformation

More information

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1 Solving equations and inequalities graphically and algebraically 1. Plot points on the Cartesian coordinate plane. P.1 2. Represent data graphically using scatter plots, bar graphs, & line graphs. P.1

More information

Derivatives 3: The Derivative as a Function

Derivatives 3: The Derivative as a Function Derivatives : The Derivative as a Function 77 Derivatives : The Derivative as a Function Model : Graph of a Function 9 8 7 6 5 g() - - - 5 6 7 8 9 0 5 6 7 8 9 0 5 - - -5-6 -7 Construct Your Understanding

More information

8.5. Quadratic Function A function f is a quadratic function if f(x) ax 2 bx c, where a, b, and c are real numbers, with a 0.

8.5. Quadratic Function A function f is a quadratic function if f(x) ax 2 bx c, where a, b, and c are real numbers, with a 0. 8.5 Quadratic Functions, Applications, and Models In the previous section we discussed linear functions, those that are defined b firstdegree polnomials. In this section we will look at quadratic functions,

More information

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics:

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics: Chapter Summar Ke Terms standard form of a quadratic function (.1) factored form of a quadratic function (.1) verte form of a quadratic function (.1) concavit of a parabola (.1) reference points (.) transformation

More information

20 Calculus and Structures

20 Calculus and Structures 0 Calculus and Structures CHAPTER FUNCTIONS Calculus and Structures Copright LESSON FUNCTIONS. FUNCTIONS A function f is a relationship between an input and an output and a set of instructions as to how

More information

10.2: Parabolas. Chapter 10: Conic Sections. Conic sections are plane figures formed by the intersection of a double-napped cone and a plane.

10.2: Parabolas. Chapter 10: Conic Sections. Conic sections are plane figures formed by the intersection of a double-napped cone and a plane. Conic sections are plane figures formed b the intersection of a double-napped cone and a plane. Chapter 10: Conic Sections Ellipse Hperbola The conic sections ma be defined as the sets of points in the

More information

ORTHOGONAL FAMILIES OF CURVES

ORTHOGONAL FAMILIES OF CURVES 8 ORTHOGONAL CURVES Spring her winning the car is the probability of her initially choosing a door with a goat behind it, that is 66%! There is a very nice, complete discussion of this topic, and the controversy

More information

0 COORDINATE GEOMETRY

0 COORDINATE GEOMETRY 0 COORDINATE GEOMETRY Coordinate Geometr 0-1 Equations of Lines 0- Parallel and Perpendicular Lines 0- Intersecting Lines 0- Midpoints, Distance Formula, Segment Lengths 0- Equations of Circles 0-6 Problem

More information

A New Concept on Automatic Parking of an Electric Vehicle

A New Concept on Automatic Parking of an Electric Vehicle A New Concept on Automatic Parking of an Electric Vehicle C. CAMUS P. COELHO J.C. QUADRADO Instituto Superior de Engenharia de Lisboa Rua Conselheiro Emídio Navarro PORTUGAL Abstract: - A solution to perform

More information

Beecher J.A, Penna J.A., Bittinger M.L. Algebra and Trigonometry (3ed, Addison Wesley, 2007) 58 Chapter 1 Graphs, Functions, and Models

Beecher J.A, Penna J.A., Bittinger M.L. Algebra and Trigonometry (3ed, Addison Wesley, 2007) 58 Chapter 1 Graphs, Functions, and Models Beecher J.A, Penna J.A., Bittinger M.L. Algebra and Trigonometr (ed, Addison Wesle, 007) 8 Chapter Graphs, Functions, and Models.. Introduction Polnomial to Functions Graphing and Modeling Plot points.

More information

The Graph of an Equation

The Graph of an Equation 60_0P0.qd //0 :6 PM Page CHAPTER P Preparation for Calculus Archive Photos Section P. RENÉ DESCARTES (96 60) Descartes made man contributions to philosoph, science, and mathematics. The idea of representing

More information

(0, 2) y = x 1 2. y = x (2, 2) y = 2x + 2

(0, 2) y = x 1 2. y = x (2, 2) y = 2x + 2 .5 Equations of Parallel and Perpendicular Lines COMMON CORE Learning Standards HSG-GPE.B.5 HSG-GPE.B. Essential Question How can ou write an equation of a line that is parallel or perpendicular to a given

More information

Name: Date: Practice Final Exam Part II covering sections a108. As you try these problems, keep referring to your formula sheet.

Name: Date: Practice Final Exam Part II covering sections a108. As you try these problems, keep referring to your formula sheet. Name: Date: Practice Final Eam Part II covering sections 9.1-9.4 a108 As ou tr these problems, keep referring to our formula sheet. 1. Find the standard form of the equation of the circle with center at

More information

Section 9.3: Functions and their Graphs

Section 9.3: Functions and their Graphs Section 9.: Functions and their Graphs Graphs provide a wa of displaing, interpreting, and analzing data in a visual format. In man problems, we will consider two variables. Therefore, we will need to

More information

Math 20C. Lecture Examples.

Math 20C. Lecture Examples. Math 0C. Lecture Eamples. (8/30/08) Section 14.1, Part 1. Functions of two variables Definition 1 A function f of the two variables and is a rule = f(,) that assigns a number denoted f(,), to each point

More information

SECTION 3-4 Rational Functions

SECTION 3-4 Rational Functions 20 3 Polnomial and Rational Functions 0. Shipping. A shipping bo is reinforced with steel bands in all three directions (see the figure). A total of 20. feet of steel tape is to be used, with 6 inches

More information

Polar Functions Polar coordinates

Polar Functions Polar coordinates 548 Chapter 1 Parametric, Vector, and Polar Functions 1. What ou ll learn about Polar Coordinates Polar Curves Slopes of Polar Curves Areas Enclosed b Polar Curves A Small Polar Galler... and wh Polar

More information

Glossary alternate interior angles absolute value function Example alternate exterior angles Example angle of rotation Example

Glossary alternate interior angles absolute value function Example alternate exterior angles Example angle of rotation Example Glossar A absolute value function An absolute value function is a function that can be written in the form, where is an number or epression. alternate eterior angles alternate interior angles Alternate

More information

Making Graphs from a Table of Values and Understanding the Graphs of Horizontal and Vertical Lines Blue Level Problems

Making Graphs from a Table of Values and Understanding the Graphs of Horizontal and Vertical Lines Blue Level Problems Making Graphs from a Table of Values and Understanding the Graphs of Horizontal and Vertical Lines Blue Level Problems. Coordinate Triangle? We have a triangle ABC, and it has an area of units^. Point

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technolog c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations Chapter Transformations of Functions TOPICS.5.. Shifting, reflecting, and stretching graphs Smmetr of functions and equations TOPIC Horizontal Shifting/ Translation Horizontal Shifting/ Translation Shifting,

More information

This lesson gives students practice in graphing

This lesson gives students practice in graphing NATIONAL MATH + SCIENCE INITIATIVE Mathematics 9 7 5 1 1 5 7 LEVEL Grade, Algebra 1, or Math 1 in a unit on solving sstems of equations MODULE/CONNECTION TO AP* Areas and Volumes *Advanced Placement and

More information

Mathematics 6 12 Section 26

Mathematics 6 12 Section 26 Mathematics 6 12 Section 26 1 Knowledge of algebra 1. Apply the properties of real numbers: closure, commutative, associative, distributive, transitive, identities, and inverses. 2. Solve linear equations

More information

Lecture 34: Curves defined by Parametric equations

Lecture 34: Curves defined by Parametric equations Curves defined by Parametric equations When the path of a particle moving in the plane is not the graph of a function, we cannot describe it using a formula that express y directly in terms of x, or x

More information

2.8 Distance and Midpoint Formulas; Circles

2.8 Distance and Midpoint Formulas; Circles Section.8 Distance and Midpoint Formulas; Circles 9 Eercises 89 90 are based on the following cartoon. B.C. b permission of Johnn Hart and Creators Sndicate, Inc. 89. Assuming that there is no such thing

More information

of Straight Lines 1. The straight line with gradient 3 which passes through the point,2

of Straight Lines 1. The straight line with gradient 3 which passes through the point,2 Learning Enhancement Team Model answers: Finding Equations of Straight Lines Finding Equations of Straight Lines stud guide The straight line with gradient 3 which passes through the point, 4 is 3 0 Because

More information

STRAND G: Relations, Functions and Graphs

STRAND G: Relations, Functions and Graphs UNIT G Using Graphs to Solve Equations: Tet STRAND G: Relations, Functions and Graphs G Using Graphs to Solve Equations Tet Contents * * Section G. Solution of Simultaneous Equations b Graphs G. Graphs

More information

Rational functions and graphs. Section 2: Graphs of rational functions

Rational functions and graphs. Section 2: Graphs of rational functions Rational functions and graphs Section : Graphs of rational functions Notes and Eamples These notes contain subsections on Graph sketching Turning points and restrictions on values Graph sketching You can

More information

GRAPHS AND GRAPHICAL SOLUTION OF EQUATIONS

GRAPHS AND GRAPHICAL SOLUTION OF EQUATIONS GRAPHS AND GRAPHICAL SOLUTION OF EQUATIONS 1.1 DIFFERENT TYPES AND SHAPES OF GRAPHS: A graph can be drawn to represent are equation connecting two variables. There are different tpes of equations which

More information

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 8 Complex Numbers, Polar Equations, and Parametric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 8.5 Polar Equations and Graphs Polar Coordinate System Graphs of Polar Equations Conversion

More information

LESSON 3.1 INTRODUCTION TO GRAPHING

LESSON 3.1 INTRODUCTION TO GRAPHING LESSON 3.1 INTRODUCTION TO GRAPHING LESSON 3.1 INTRODUCTION TO GRAPHING 137 OVERVIEW Here s what ou ll learn in this lesson: Plotting Points a. The -plane b. The -ais and -ais c. The origin d. Ordered

More information

New perspectives on conic sections

New perspectives on conic sections New perspectives on conic sections Abstract Giora Mann, Nurit Zehavi and Thierry Dana-Picard* Weizmann Institute of Science, Israel, *Jerusalem College of Technology For a given hyperbola, what are the

More information

Making Graphs from Tables and Graphing Horizontal and Vertical Lines - Black Level Problems

Making Graphs from Tables and Graphing Horizontal and Vertical Lines - Black Level Problems Making Graphs from Tables and Graphing Horizontal and Vertical Lines - Black Level Problems Black Level Hperbola. Give the graph and find the range and domain for. EXPONENTIAL Functions - The following

More information

Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 2 4 x 0

Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 2 4 x 0 Pre-Calculus Section 1.1 Completing the Square Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 4 x 0. 3x 3y

More information

GPR Objects Hyperbola Region Feature Extraction

GPR Objects Hyperbola Region Feature Extraction Advances in Computational Sciences and Technolog ISSN 973-617 Volume 1, Number 5 (17) pp. 789-84 Research India Publications http://www.ripublication.com GPR Objects Hperbola Region Feature Etraction K.

More information

Cecil Jones Academy Mathematics Fundamentals

Cecil Jones Academy Mathematics Fundamentals Year 10 Fundamentals Core Knowledge Unit 1 Unit 2 Estimate with powers and roots Calculate with powers and roots Explore the impact of rounding Investigate similar triangles Explore trigonometry in right-angled

More information

7 Fractions. Number Sense and Numeration Measurement Geometry and Spatial Sense Patterning and Algebra Data Management and Probability

7 Fractions. Number Sense and Numeration Measurement Geometry and Spatial Sense Patterning and Algebra Data Management and Probability 7 Fractions GRADE 7 FRACTIONS continue to develop proficiency by using fractions in mental strategies and in selecting and justifying use; develop proficiency in adding and subtracting simple fractions;

More information

PATTERNS AND ALGEBRA. He opened mathematics to many discoveries and exciting applications.

PATTERNS AND ALGEBRA. He opened mathematics to many discoveries and exciting applications. PATTERNS AND ALGEBRA The famous French philosopher and mathematician René Descartes (596 65) made a great contribution to mathematics in 67 when he published a book linking algebra and geometr for the

More information

Introduction to Trigonometric Functions. Peggy Adamson and Jackie Nicholas

Introduction to Trigonometric Functions. Peggy Adamson and Jackie Nicholas Mathematics Learning Centre Introduction to Trigonometric Functions Pegg Adamson and Jackie Nicholas c 998 Universit of Sdne Acknowledgements A significant part of this manuscript has previousl appeared

More information

volume & surface area of a right circular cone cut by a plane parallel to symmetrical axis (Hyperbolic section)

volume & surface area of a right circular cone cut by a plane parallel to symmetrical axis (Hyperbolic section) From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot Winter December 25, 2016 volume & surface area of a right circular cone cut by a plane parallel to symmetrical axis (Hyperbolic section) Harish

More information

Answers. Investigation 4. ACE Assignment Choices. Applications

Answers. Investigation 4. ACE Assignment Choices. Applications Answers Investigation ACE Assignment Choices Problem. Core Other Connections, ; Etensions ; unassigned choices from previous problems Problem. Core, 7 Other Applications, ; Connections ; Etensions ; unassigned

More information

Chapter 11. Parametric Equations And Polar Coordinates

Chapter 11. Parametric Equations And Polar Coordinates Instructor: Prof. Dr. Ayman H. Sakka Chapter 11 Parametric Equations And Polar Coordinates In this chapter we study new ways to define curves in the plane, give geometric definitions of parabolas, ellipses,

More information

TANGENTS AND NORMALS

TANGENTS AND NORMALS Mathematics Revision Guides Tangents and Normals Page 1 of 8 MK HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C1 Edecel: C OCR: C1 OCR MEI: C TANGENTS AND NORMALS Version : 1 Date:

More information

Module 1 Session 1 HS. Critical Areas for Traditional Geometry Page 1 of 6

Module 1 Session 1 HS. Critical Areas for Traditional Geometry Page 1 of 6 Critical Areas for Traditional Geometry Page 1 of 6 There are six critical areas (units) for Traditional Geometry: Critical Area 1: Congruence, Proof, and Constructions In previous grades, students were

More information

round decimals to the nearest decimal place and order negative numbers in context

round decimals to the nearest decimal place and order negative numbers in context 6 Numbers and the number system understand and use proportionality use the equivalence of fractions, decimals and percentages to compare proportions use understanding of place value to multiply and divide

More information

2. Find the equation of the normal to the curve with equation y = x at the point (1, 2). (Total 4 marks)

2. Find the equation of the normal to the curve with equation y = x at the point (1, 2). (Total 4 marks) CHAPTER 3 REVIEW FOR SLs ONLY 1. Find the coordinates of the point on the graph of = 2 at which the tangent is parallel to the line = 5. (Total 4 marks) 2. Find the equation of the normal to the curve

More information

ADDITIONAL MATHEMATICS

ADDITIONAL MATHEMATICS 00-CE A MATH HONG KONG EXAMINATIONS AUTHORITY HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 00 ADDITIONAL MATHEMATICS 8.0 am.00 am ½ hours This paper must be answered in English. Answer ALL questions

More information

Chislehurst and Sidcup Grammar School Mathematics Department Year 9 Programme of Study

Chislehurst and Sidcup Grammar School Mathematics Department Year 9 Programme of Study Chislehurst and Sidcup Grammar School Mathematics Department Year 9 Programme of Study Timings Topics Autumn Term - 1 st half (7 weeks - 21 lessons) 1. Algebra 1: Expressions, Formulae, Equations and Inequalities

More information

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions 76 CHAPTER Graphs and Functions Find the equation of each line. Write the equation in the form = a, = b, or = m + b. For Eercises through 7, write the equation in the form f = m + b.. Through (, 6) and

More information

Main axonometric system related views as tilt of the coordinate planes

Main axonometric system related views as tilt of the coordinate planes International conference on Innovative Methods in Product Design June 15 th 17 th, 2011, Venice, Ital Main aonometric sstem related views as tilt of the coordinate planes Láaro Gimena (a), Pedro Gonaga

More information

Conic Sections. College Algebra

Conic Sections. College Algebra Conic Sections College Algebra Conic Sections A conic section, or conic, is a shape resulting from intersecting a right circular cone with a plane. The angle at which the plane intersects the cone determines

More information

Section 10.1 Polar Coordinates

Section 10.1 Polar Coordinates Section 10.1 Polar Coordinates Up until now, we have always graphed using the rectangular coordinate system (also called the Cartesian coordinate system). In this section we will learn about another system,

More information

Integrating ICT into mathematics at KS4&5

Integrating ICT into mathematics at KS4&5 Integrating ICT into mathematics at KS4&5 Tom Button tom.button@mei.org.uk www.mei.org.uk/ict/ This session will detail the was in which ICT can currentl be used in the teaching and learning of Mathematics

More information

3.5 Rational Functions

3.5 Rational Functions 0 Chapter Polnomial and Rational Functions Rational Functions For a rational function, find the domain and graph the function, identifing all of the asmptotes Solve applied problems involving rational

More information

Mastery. PRECALCULUS Student Learning Targets

Mastery. PRECALCULUS Student Learning Targets PRECALCULUS Student Learning Targets Big Idea: Sequences and Series 1. I can describe a sequence as a function where the domain is the set of natural numbers. Connections (Pictures, Vocabulary, Definitions,

More information

Graph and Write Equations of Hyperbolas

Graph and Write Equations of Hyperbolas TEKS 9.5 a.5, 2A.5.B, 2A.5.C Graph and Write Equations of Hperbolas Before You graphed and wrote equations of parabolas, circles, and ellipses. Now You will graph and write equations of hperbolas. Wh?

More information

9 CARTESIAN SYSTEM OF COORDINATES You must have searched for our seat in a cinema hall, a stadium, or a train. For eample, seat H-4 means the fourth seat in the H th row. In other words, H and 4 are the

More information

GRAPHICS OUTPUT PRIMITIVES

GRAPHICS OUTPUT PRIMITIVES CHAPTER 3 GRAPHICS OUTPUT PRIMITIVES LINE DRAWING ALGORITHMS DDA Line Algorithm Bresenham Line Algorithm Midpoint Circle Algorithm Midpoint Ellipse Algorithm CG - Chapter-3 LINE DRAWING Line drawing is

More information

9.1 Exercises. Section 9.1 The Square Root Function 879. In Exercises 1-10, complete each of the following tasks.

9.1 Exercises. Section 9.1 The Square Root Function 879. In Exercises 1-10, complete each of the following tasks. Section 9. The Square Root Function 879 9. Eercises In Eercises -, complete each of the following tasks. i. Set up a coordinate sstem on a sheet of graph paper. Label and scale each ais. ii. Complete the

More information

The Graph Scale-Change Theorem

The Graph Scale-Change Theorem Lesson 3-5 Lesson 3-5 The Graph Scale-Change Theorem Vocabular horizontal and vertical scale change, scale factor size change BIG IDEA The graph of a function can be scaled horizontall, verticall, or in

More information

Parabolas Section 11.1

Parabolas Section 11.1 Conic Sections Parabolas Section 11.1 Verte=(, ) Verte=(, ) Verte=(, ) 1 3 If the equation is =, then the graph opens in the direction. If the equation is =, then the graph opens in the direction. Parabola---

More information

SPECIAL TECHNIQUES-II

SPECIAL TECHNIQUES-II SPECIAL TECHNIQUES-II Lecture 19: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Method of Images for a spherical conductor Example :A dipole near aconducting sphere The

More information

Relations and Functions

Relations and Functions Relations and Functions. RELATION Mathematical Concepts Any pair of elements (, y) is called an ordered pair where is the first component (abscissa) and y is the second component (ordinate). Relations

More information

MATHEMATICS 105 Plane Trigonometry

MATHEMATICS 105 Plane Trigonometry Chapter I THE TRIGONOMETRIC FUNCTIONS MATHEMATICS 105 Plane Trigonometry INTRODUCTION The word trigonometry literally means triangle measurement. It is concerned with the measurement of the parts, sides,

More information

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P.

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P. Lecture 7, Part I: Section 1.1 Rectangular Coordinates Rectangular or Cartesian coordinate system Pythagorean theorem Distance formula Midpoint formula Lecture 7, Part II: Section 1.2 Graph of Equations

More information

OUTPUT PRIMITIVES. CEng 477 Introduction to Computer Graphics METU, 2007

OUTPUT PRIMITIVES. CEng 477 Introduction to Computer Graphics METU, 2007 OUTPUT PRIMITIVES CEng 477 Introduction to Computer Graphics METU, 007 Recap: The basic forward projection pipeline: MCS Model Model Modeling Transformations M M 3D World Scene Viewing Transformations

More information

Three-Dimensional Coordinates

Three-Dimensional Coordinates CHAPTER Three-Dimensional Coordinates Three-dimensional movies superimpose two slightl different images, letting viewers with polaried eeglasses perceive depth (the third dimension) on a two-dimensional

More information

Multivariable Calculus

Multivariable Calculus Multivariable Calculus Chapter 10 Topics in Analytic Geometry (Optional) 1. Inclination of a line p. 5. Circles p. 4 9. Determining Conic Type p. 13. Angle between lines p. 6. Parabolas p. 5 10. Rotation

More information

Graphing Polynomial Functions

Graphing Polynomial Functions LESSON 7 Graphing Polnomial Functions Graphs of Cubic and Quartic Functions UNDERSTAND A parent function is the most basic function of a famil of functions. It preserves the shape of the entire famil.

More information

Graphing square root functions. What would be the base graph for the square root function? What is the table of values?

Graphing square root functions. What would be the base graph for the square root function? What is the table of values? Unit 3 (Chapter 2) Radical Functions (Square Root Functions Sketch graphs of radical functions b appling translations, stretches and reflections to the graph of Analze transformations to identif the of

More information

( ) 2. Integration. 1. Calculate (a) x2 (x 5) dx (b) y = x 2 6x. 2. Calculate the shaded area in the diagram opposite.

( ) 2. Integration. 1. Calculate (a) x2 (x 5) dx (b) y = x 2 6x. 2. Calculate the shaded area in the diagram opposite. Integration 1. Calculate (a) ( 5) d (b) 4 + 3 1 d (c) ( ) + d 1 = 6. Calculate the shaded area in the diagram opposite. 3. The diagram shows part of the graph of = 7 10. 5 = + 0 4. Find the area between

More information

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time.

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time. Module 15 : Vector fields, Gradient, Divergence and Curl Lecture 45 : Curves in space [Section 45.1] Objectives In this section you will learn the following : Concept of curve in space. Parametrization

More information

Appendix A.6 Functions

Appendix A.6 Functions A. Functions 539 RELATIONS: DOMAIN AND RANGE Appendi A. Functions A relation is a set of ordered pairs. A relation can be a simple set of just a few ordered pairs, such as {(0, ), (1, 3), (, )}, or it

More information

9.1 Parametric Curves

9.1 Parametric Curves Math 172 Chapter 9A notes Page 1 of 20 9.1 Parametric Curves So far we have discussed equations in the form. Sometimes and are given as functions of a parameter. Example. Projectile Motion Sketch and axes,

More information

Chapter 1 Notes, Calculus I with Precalculus 3e Larson/Edwards

Chapter 1 Notes, Calculus I with Precalculus 3e Larson/Edwards Contents 1.1 Functions.............................................. 2 1.2 Analzing Graphs of Functions.................................. 5 1.3 Shifting and Reflecting Graphs..................................

More information

Surfaces and Partial Derivatives

Surfaces and Partial Derivatives Surfaces and James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 15, 2017 Outline 1 2 Tangent Planes Let s go back to our simple surface

More information

Substituting a 2 b 2 for c 2 and using a little algebra, we can then derive the standard equation for an ellipse centred at the origin,

Substituting a 2 b 2 for c 2 and using a little algebra, we can then derive the standard equation for an ellipse centred at the origin, Conics onic sections are the curves which result from the intersection of a plane with a cone. These curves were studied and revered by the ancient Greeks, and were written about extensively by both Euclid

More information

Lines and Their Slopes

Lines and Their Slopes 8.2 Lines and Their Slopes Linear Equations in Two Variables In the previous chapter we studied linear equations in a single variable. The solution of such an equation is a real number. A linear equation

More information

Dr. Del's Tiers 1 6 Syllabus

Dr. Del's Tiers 1 6 Syllabus Tier 1 28 SCIENTIC CALCULATOR & PRE-ALGEBRA LESSONS Using a Scientific Calculator: Introduction plus 16 lessons CI: Introduction (5 Min.) C1: Basic Operations (6 Min.) C2: Real Numbers (6 Min.) C3: Negative

More information

KEMATH1 Calculus for Chemistry and Biochemistry Students. Francis Joseph H. Campeña, De La Salle University Manila

KEMATH1 Calculus for Chemistry and Biochemistry Students. Francis Joseph H. Campeña, De La Salle University Manila KEMATH1 Calculus for Chemistry and Biochemistry Students Francis Joseph H Campeña, De La Salle University Manila January 26, 2015 Contents 1 Conic Sections 2 11 A review of the coordinate system 2 12 Conic

More information

Mathematics. Year 7. Autumn Term

Mathematics. Year 7. Autumn Term Mathematics Year 7 Autumn Term Decimals o Use place value with decimals o Add and subtract, multiply and divide decimal numbers Basic Arithmetic o Multiply by a two or three digit number o Divide by a

More information

Module 3: Stand Up Conics

Module 3: Stand Up Conics MATH55 Module 3: Stand Up Conics Main Math concepts: Conic Sections (i.e. Parabolas, Ellipses, Hyperbolas), nd degree equations Auxilliary ideas: Analytic vs. Co-ordinate-free Geometry, Parameters, Calculus.

More information

Elaborations Example Exam 1 Wiskunde B 2018

Elaborations Example Exam 1 Wiskunde B 2018 Elaborations Example Exam 1 Wiskunde B 2018 Question 1a 4 points yields ; yields so in point A we have ;, so and This yields Question 1b 4 points ( ) ( ) ( ) Question 1c 4 points ( ). This is the normal

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES A coordinate system represents a point in the plane by an ordered pair of numbers called coordinates. PARAMETRIC EQUATIONS

More information

Digging deeper using GeoGebra: An exploration of quadratics and more.

Digging deeper using GeoGebra: An exploration of quadratics and more. Digging deeper using GeoGebra: An exploration of quadratics and more. Abstract Using GeoGebra students can explore in far more depth topics that have until recently been given a standard treatment. One

More information

Appendix C: Review of Graphs, Equations, and Inequalities

Appendix C: Review of Graphs, Equations, and Inequalities Appendi C: Review of Graphs, Equations, and Inequalities C. What ou should learn Just as ou can represent real numbers b points on a real number line, ou can represent ordered pairs of real numbers b points

More information

MATHEMATICS SYLLABUS SECONDARY 4th YEAR

MATHEMATICS SYLLABUS SECONDARY 4th YEAR European Schools Office of the Secretary-General Pedagogical Development Unit Ref.: 2010-D-581-en-2 Orig.: EN MATHEMATICS SYLLABUS SECONDARY 4th YEAR 4 period/week course APPROVED BY THE JOINT TEACHING

More information

g(x) h(x) f (x) = Examples sin x +1 tan x!

g(x) h(x) f (x) = Examples sin x +1 tan x! Lecture 4-5A: An Introduction to Rational Functions A Rational Function f () is epressed as a fraction with a functiong() in the numerator and a function h() in the denominator. f () = g() h() Eamples

More information

Inclination of a Line

Inclination of a Line 0_00.qd 78 /8/05 Chapter 0 8:5 AM Page 78 Topics in Analtic Geometr 0. Lines What ou should learn Find the inclination of a line. Find the angle between two lines. Find the distance between a point and

More information

A Transformation Based on the Cubic Parabola y = x 3

A Transformation Based on the Cubic Parabola y = x 3 Journal for Geometry and Graphics Volume 10 (2006), No. 1, 15 21. A Transformation Based on the Cubic Parabola y = x 3 Eugeniusz Korczak ul. św. Rocha 6B m. 5, PL 61-142 Poznań, Poland email: ekorczak@math.put.poznan.pl

More information

Applications of Differentiation

Applications of Differentiation Contents 1 Applications of Differentiation 1.1 Tangents and Normals 1. Maima and Minima 14 1. The Newton-Raphson Method 8 1.4 Curvature 47 1.5 Differentiation of Vectors 54 1.6 Case Stud: Comple Impedance

More information

ENTIRELY CIRCULAR QUARTICS IN THE PSEUDO-EUCLIDEAN PLANE

ENTIRELY CIRCULAR QUARTICS IN THE PSEUDO-EUCLIDEAN PLANE Acta Math. Hungar., 134 (4) (2012), 571 582 DOI: 10.1007/s10474-011-0174-3 First published online November 29, 2011 ENTIRELY CIRCULAR QUARTICS IN THE PSEUDO-EUCLIDEAN PLANE E. JURKIN and N. KOVAČEVIĆ Faculty

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical descriptions of geometric changes,

More information