Stereo. CS 510 May 2 nd, 2014

Size: px
Start display at page:

Download "Stereo. CS 510 May 2 nd, 2014"

Transcription

1 Stereo CS 510 May 2 nd, 2014

2 Where are we? We are done! (essentiay) We covered image matching Correation & Correation Fiters Fourier Anaysis PCA We covered feature-based matching Bag of Features approach Incuding: Feature Extraction Feature Description Custering Not a bad introduction to vision

3 But we skipped a few topics Like 3D vision 3D sensors (e.g. Kinect) Stereo (i.e. mutipe overapping cameras) Structure from Motion Like Video Object tracking Motion segmentation Activity recognition

4 Let s fix one omission: Stereo he abiity to infer 3D structure and distance from two or more overapping images taken simutaneousy from different viewpoints Are these stereo images? Describe the viewpoints

5 Scenarios Most common: perpendicuar optica axes Aso common: converging optica axes (e.g. eyes) More common than you might think: arbitrary axes

6 wo SubProbems: Image Matching (correspondence) identifying which points in image #1 match which points in image #2 note: not a points in image #1 match anything in image #2. Why not? Note: not a matching points can be found. Reconstruction Given point matches, determine their 3D position Requires trianguation (impicit or expicit)

7 Image Matching Find common scene points in two images Occusion Incompete overap of visua fieds Potentiay strong perspective effects Genera Methods: Correation based Cross-correate every pixe in eft image to right image Epipoar geometry can constrain this search Feature based Extract points, edges, ines, etc., and match them across image

8 Reconstruction as rianguation Assume that the positions and baseines of the cameras are known: P = t [ x, y, f ] [ ] P =!" b x, b y, b z # $ + t r x r, y r, f r f f r Sove for t s, compute coordinate of point. Q: Isn t this overconstrained? baseine

9 Epipoar Geometry For any point in image #1, there is a ine of points in image #2 such that its match (if one exists) must ie on that ine. here is a pane defined by the two foca points and the 2D point in image #1. he 3D point must ie in this pane. Aso, the matching point in image #2 must ie in this pane.

10 Epipoar (cont.) Since the intersection of two panes is a ine, there is a ine in image #2 on which the matching point must ie. his is caed the epipoar ine. If you know the vrp and prp of both cameras, you can compute the epipoar ine for any point in image #1. If axes are parae and B z =0, then the epipoar ines are scan ines. he Essentia Matrix (E) aows you to compute epipoar geometry without knowing the camera parameters a priori

11 Getting Forma about Stereo Do not panic about the next N sides; my goa is just to expose you to terms & concepts in case you go to a vision conference Epipoar Line P P P r p Epipoar Pane p r O e e r O r

12 Basic Equations P r = R P ( ) 1:Reation between 3D views of point P P 2:Norma to epipoar pane ( P ) ( P ) = 0 3:Panarity constraint ( R P ) r ( P ) = 0 4:Rewrite of #3, using #1

13 A Cever Equation P = SP You can rewrite a cross product as dot product, so!!! " # $ $ $ % & = x y x z y z S where

14 More Equations ( R P ) r SP = 0 5: Substitute dot for cross in #4 P RSP R P EP R = 0 = 0 6: Appy transpose equivaency 7: Let RS = E E is caed the Essentia Matrix. It is rank 2 (because of S), and shows a inear reationship between the projections of points in two images

15 Or in 2D. P Z f p = 8: Definition of perspective p f Z P = 9: same = 0!! " # $ $ % &!! " # $ $ % & R r r r p f Z E p f Z 10: rewrite of #7, with #8 = 0 R Ep p 11: drop non-zero constants

16 Back to Epipoar So E is a inear reation between p and p r u r =Ep, where u r is the ine of points in R that might match point p If you know E For every image point p : cacuate the ine u r ony cross-correate aong that ine E can be cacuated from 8 image correspondences Why 8? (How many DOF? How many constraints per correspondence?)

17 Stereo Practicum he arger the baseine, the more the perspective distortion he harder it is to match points he smaer the baseine, the smaer the ange between P and P r, the higher the reconstruction error. Errors aways highest in Z

Collinearity and Coplanarity Constraints for Structure from Motion

Collinearity and Coplanarity Constraints for Structure from Motion Coinearity and Copanarity Constraints for Structure from Motion Gang Liu 1, Reinhard Kette 2, and Bodo Rosenhahn 3 1 Institute of Information Sciences and Technoogy, Massey University, New Zeaand, Department

More information

Elements of Computer Vision: Multiple View Geometry. 1 Introduction. 2 Elements of Geometry. Andrea Fusiello

Elements of Computer Vision: Multiple View Geometry. 1 Introduction. 2 Elements of Geometry. Andrea Fusiello Eements of Computer Vision: Mutipe View Geometry. Andrea Fusieo http://www.sci.univr.it/~fusieo June 20, 2005 Fig. 1. Exampe of reconstruction from the five images shown in the top row. 3 1 Introduction

More information

Origami Axioms. O2 Given two marked points P and Q, we can fold a marked line that places P on top of Q.

Origami Axioms. O2 Given two marked points P and Q, we can fold a marked line that places P on top of Q. Origai Axios Given a piece of paper, it is possibe to fod ots of different ines on it. However, ony soe of those ines are constructibe ines, eaning that we can give precise rues for foding the without

More information

Slide 1 Lecture 18 Copyright

Slide 1 Lecture 18 Copyright 5D=@ MI (Georges de a Tour) Side 1 Lecture 18 9DO 5D=@ MI Shadows give us important visua cues about 3D object pacement and motion Movies are from: http://vision.psych.umn.edu /users/kersten/kerstenab/demos/shadows.htm

More information

CS201 Computer Vision Camera Geometry

CS201 Computer Vision Camera Geometry CS201 Computer Vision Camera Geometry John Magee 25 November, 2014 Slides Courtesy of: Diane H. Theriault (deht@bu.edu) Question of the Day: How can we represent the relationships between cameras and the

More information

Computer Graphics. - Shading & Texturing -

Computer Graphics. - Shading & Texturing - Computer Graphics - Shading & Texturing - Empirica BRDF Approximation Purey heuristic mode Initiay without units (vaues [0,1] r = r,a + r,d + r,s ( + r,m + r,t r,a : Ambient term Approximate indirect iumination

More information

CS 231. Inverse Kinematics Intro to Motion Capture. 3D characters. Representation. 1) Skeleton Origin (root) Joint centers/ bones lengths

CS 231. Inverse Kinematics Intro to Motion Capture. 3D characters. Representation. 1) Skeleton Origin (root) Joint centers/ bones lengths CS Inverse Kinematics Intro to Motion Capture Representation D characters ) Skeeton Origin (root) Joint centers/ bones engths ) Keyframes Pos/Rot Root (x) Joint Anges (q) Kinematics study of static movement

More information

DETECTION OF OBSTACLE AND FREESPACE IN AN AUTONOMOUS WHEELCHAIR USING A STEREOSCOPIC CAMERA SYSTEM

DETECTION OF OBSTACLE AND FREESPACE IN AN AUTONOMOUS WHEELCHAIR USING A STEREOSCOPIC CAMERA SYSTEM DETECTION OF OBSTACLE AND FREESPACE IN AN AUTONOMOUS WHEELCHAIR USING A STEREOSCOPIC CAMERA SYSTEM Le Minh 1, Thanh Hai Nguyen 2, Tran Nghia Khanh 2, Vo Văn Toi 2, Ngo Van Thuyen 1 1 University of Technica

More information

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy 1 Machine vision Summary # 11: Stereo vision and epipolar geometry STEREO VISION The goal of stereo vision is to use two cameras to capture 3D scenes. There are two important problems in stereo vision:

More information

Planar homographies. Can we reconstruct another view from one image? vgg/projects/singleview/

Planar homographies. Can we reconstruct another view from one image?   vgg/projects/singleview/ Planar homographies Goal: Introducing 2D Homographies Motivation: What is the relation between a plane in the world and a perspective image of it? Can we reconstruct another view from one image? Readings:

More information

Complex Human Activity Searching in a Video Employing Negative Space Analysis

Complex Human Activity Searching in a Video Employing Negative Space Analysis Compex Human Activity Searching in a Video Empoying Negative Space Anaysis Shah Atiqur Rahman, Siu-Yeung Cho, M.K.H. Leung 3, Schoo of Computer Engineering, Nanyang Technoogica University, Singapore 639798

More information

Lecture outline Graphics and Interaction Scan Converting Polygons and Lines. Inside or outside a polygon? Scan conversion.

Lecture outline Graphics and Interaction Scan Converting Polygons and Lines. Inside or outside a polygon? Scan conversion. Lecture outine 433-324 Graphics and Interaction Scan Converting Poygons and Lines Department of Computer Science and Software Engineering The Introduction Scan conversion Scan-ine agorithm Edge coherence

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometry and Camera Calibration 3D Coordinate Systems Right-handed vs. left-handed x x y z z y 2D Coordinate Systems 3D Geometry Basics y axis up vs. y axis down Origin at center vs. corner Will often

More information

Background Oriented Schlieren technique sensitivity, accuracy, resolution and application to a three-dimensional density field

Background Oriented Schlieren technique sensitivity, accuracy, resolution and application to a three-dimensional density field Background Oriented Schieren technique sensitivity, accuracy, resoution and appication to a three-dimensiona density fied Erik Godhahn 1, Jörg Seume 2 1: Institute of Turbomachinery and Fuid-Dynamics,

More information

Stereo. Stereo: 3D from Two Views. Stereo Correspondence. Fundamental Matrix. Fundamental Matrix

Stereo. Stereo: 3D from Two Views. Stereo Correspondence. Fundamental Matrix. Fundamental Matrix Stereo: 3D from wo Views Stereo scene oint otica center image ane Basic rincie: rianguation Gives reconstruction as intersection of two ras equires caibration oint corresondence Stereo Corresondence Determine

More information

CS 664 Slides #9 Multi-Camera Geometry. Prof. Dan Huttenlocher Fall 2003

CS 664 Slides #9 Multi-Camera Geometry. Prof. Dan Huttenlocher Fall 2003 CS 664 Slides #9 Multi-Camera Geometry Prof. Dan Huttenlocher Fall 2003 Pinhole Camera Geometric model of camera projection Image plane I, which rays intersect Camera center C, through which all rays pass

More information

JOINT IMAGE REGISTRATION AND EXAMPLE-BASED SUPER-RESOLUTION ALGORITHM

JOINT IMAGE REGISTRATION AND EXAMPLE-BASED SUPER-RESOLUTION ALGORITHM JOINT IMAGE REGISTRATION AND AMPLE-BASED SUPER-RESOLUTION ALGORITHM Hyo-Song Kim, Jeyong Shin, and Rae-Hong Park Department of Eectronic Engineering, Schoo of Engineering, Sogang University 35 Baekbeom-ro,

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics 13.01.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar in the summer semester

More information

Layout Optimization of Binocular Stereo Vision Measuring System

Layout Optimization of Binocular Stereo Vision Measuring System Sensors & Transducers 013 by IFSA http://www.sensorsporta.com Layout Optimization of Binocuar Stereo Vision Measuring System Zhenyuan JIA, Mingxing LI, Wei LIU, Yang LIU and Zhiiang SHANG Key Laboratory

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Announcements Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics Seminar in the summer semester Current Topics in Computer Vision and Machine Learning Block seminar, presentations in 1 st week

More information

Camera Geometry II. COS 429 Princeton University

Camera Geometry II. COS 429 Princeton University Camera Geometry II COS 429 Princeton University Outline Projective geometry Vanishing points Application: camera calibration Application: single-view metrology Epipolar geometry Application: stereo correspondence

More information

Forgot to compute the new centroids (-1); error in centroid computations (-1); incorrect clustering results (-2 points); more than 2 errors: 0 points.

Forgot to compute the new centroids (-1); error in centroid computations (-1); incorrect clustering results (-2 points); more than 2 errors: 0 points. Probem 1 a. K means is ony capabe of discovering shapes that are convex poygons [1] Cannot discover X shape because X is not convex. [1] DBSCAN can discover X shape. [1] b. K-means is prototype based and

More information

Outline. Parallel Numerical Algorithms. Forward Substitution. Triangular Matrices. Solving Triangular Systems. Back Substitution. Parallel Algorithm

Outline. Parallel Numerical Algorithms. Forward Substitution. Triangular Matrices. Solving Triangular Systems. Back Substitution. Parallel Algorithm Outine Parae Numerica Agorithms Chapter 8 Prof. Michae T. Heath Department of Computer Science University of Iinois at Urbana-Champaign CS 554 / CSE 512 1 2 3 4 Trianguar Matrices Michae T. Heath Parae

More information

Sensitivity Analysis of Hopfield Neural Network in Classifying Natural RGB Color Space

Sensitivity Analysis of Hopfield Neural Network in Classifying Natural RGB Color Space Sensitivity Anaysis of Hopfied Neura Network in Cassifying Natura RGB Coor Space Department of Computer Science University of Sharjah UAE rsammouda@sharjah.ac.ae Abstract: - This paper presents a study

More information

Multiple Plane Phase Retrieval Based On Inverse Regularized Imaging and Discrete Diffraction Transform

Multiple Plane Phase Retrieval Based On Inverse Regularized Imaging and Discrete Diffraction Transform Mutipe Pane Phase Retrieva Based On Inverse Reguaried Imaging and Discrete Diffraction Transform Artem Migukin, Vadimir Katkovnik, and Jaakko Astoa Department of Signa Processing, Tampere University of

More information

TIME of Flight (ToF) cameras are active range sensors

TIME of Flight (ToF) cameras are active range sensors 140 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 7, JULY 014 Stereo Time-of-Fight with Constructive Interference Victor Castañeda, Diana Mateus, and Nassir Navab Abstract

More information

Optimization and Application of Support Vector Machine Based on SVM Algorithm Parameters

Optimization and Application of Support Vector Machine Based on SVM Algorithm Parameters Optimization and Appication of Support Vector Machine Based on SVM Agorithm Parameters YAN Hui-feng 1, WANG Wei-feng 1, LIU Jie 2 1 ChongQing University of Posts and Teecom 400065, China 2 Schoo Of Civi

More information

Image Rectification (Stereo) (New book: 7.2.1, old book: 11.1)

Image Rectification (Stereo) (New book: 7.2.1, old book: 11.1) Image Rectification (Stereo) (New book: 7.2.1, old book: 11.1) Guido Gerig CS 6320 Spring 2013 Credits: Prof. Mubarak Shah, Course notes modified from: http://www.cs.ucf.edu/courses/cap6411/cap5415/, Lecture

More information

Discrete elastica model for shape design of grid shells

Discrete elastica model for shape design of grid shells Abstracts for IASS Annua Symposium 017 5 8th September, 017, Hamburg, Germany Annette Böge, Manfred Grohmann (eds.) Discrete eastica mode for shape design of grid shes Yusuke SAKAI* and Makoto OHSAKI a

More information

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 2009 Today From 2D to 3D using multiple views Introduction Geometry of two views Stereo matching Other applications Multiview geometry

More information

3D Viewing. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 9

3D Viewing. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 9 3D Viewing CS 46 Lecture 9 Cornell CS46 Spring 18 Lecture 9 18 Steve Marschner 1 Viewing, backward and forward So far have used the backward approach to viewing start from pixel ask what part of scene

More information

arxiv: v1 [math.qa] 31 Aug 2018

arxiv: v1 [math.qa] 31 Aug 2018 arxiv:808.0575v [math.qa] 3 Aug 208 A new approach to the SL n spider Stephen Bigeow September 3, 208 Abstract The SL n spider gives adiagrammatic way toencode therepresentation category of the quantum

More information

Computer Graphics (CS 543) Lecture 9b: Shadows and Shadow Maps. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics (CS 543) Lecture 9b: Shadows and Shadow Maps. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics (CS 543) Lecture 9b: Shadows and Shadow Maps Prof Emmanue Agu Computer Science Dept. Worcester Poytechnic Institute (WPI) Introduction to Shadows Shadows give information on reative positions

More information

Construction and refinement of panoramic mosaics with global and local alignment

Construction and refinement of panoramic mosaics with global and local alignment Construction and refinement of panoramic mosaics with goba and oca aignment Heung-Yeung Shum and Richard Szeisi Microsoft Research Abstract This paper presents techniques for constructing fu view panoramic

More information

Lecture 9: Epipolar Geometry

Lecture 9: Epipolar Geometry Lecture 9: Epipolar Geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Why is stereo useful? Epipolar constraints Essential and fundamental matrix Estimating F (Problem Set 2

More information

GPU Implementation of Parallel SVM as Applied to Intrusion Detection System

GPU Implementation of Parallel SVM as Applied to Intrusion Detection System GPU Impementation of Parae SVM as Appied to Intrusion Detection System Sudarshan Hiray Research Schoar, Department of Computer Engineering, Vishwakarma Institute of Technoogy, Pune, India sdhiray7@gmai.com

More information

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman Stereo 11/02/2012 CS129, Brown James Hays Slides by Kristen Grauman Multiple views Multi-view geometry, matching, invariant features, stereo vision Lowe Hartley and Zisserman Why multiple views? Structure

More information

Epipolar Geometry and the Essential Matrix

Epipolar Geometry and the Essential Matrix Epipolar Geometry and the Essential Matrix Carlo Tomasi The epipolar geometry of a pair of cameras expresses the fundamental relationship between any two corresponding points in the two image planes, and

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

the Extended Kalman Filter, the update requires an O(N 3 ) matrix inversion, where N is the number of and a good review can be found in [3].

the Extended Kalman Filter, the update requires an O(N 3 ) matrix inversion, where N is the number of and a good review can be found in [3]. Invariant Fitering for Simutaneous Locaization and Mapping Matthew C. Deans The Robotics Institute Carnegie Meon University Pittsburgh, PA, 7, USA Abstract This paper presents an agorithm for simutaneous

More information

3D Viewing. CS 4620 Lecture 8

3D Viewing. CS 4620 Lecture 8 3D Viewing CS 46 Lecture 8 13 Steve Marschner 1 Viewing, backward and forward So far have used the backward approach to viewing start from pixel ask what part of scene projects to pixel explicitly construct

More information

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz Epipolar Geometry Prof. D. Stricker With slides from A. Zisserman, S. Lazebnik, Seitz 1 Outline 1. Short introduction: points and lines 2. Two views geometry: Epipolar geometry Relation point/line in two

More information

Revisions for VISRAD

Revisions for VISRAD Revisions for VISRAD 16.0.0 Support has been added for the SLAC MEC target chamber: 4 beams have been added to the Laser System: X-ray beam (fixed in Port P 90-180), 2 movabe Nd:Gass (ong-puse) beams,

More information

Multi-View Geometry Part II (Ch7 New book. Ch 10/11 old book)

Multi-View Geometry Part II (Ch7 New book. Ch 10/11 old book) Multi-View Geometry Part II (Ch7 New book. Ch 10/11 old book) Guido Gerig CS-GY 6643, Spring 2016 gerig@nyu.edu Credits: M. Shah, UCF CAP5415, lecture 23 http://www.cs.ucf.edu/courses/cap6411/cap5415/,

More information

Factorization for Probabilistic Local Appearance Models

Factorization for Probabilistic Local Appearance Models MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.mer.com Factorization for Probabiistic Loca Appearance Modes Baback Moghaddam Xiang Zhou TR2002-50 June 2002 Abstract We propose a nove oca appearance

More information

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few...

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few... STEREO VISION The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Bill Freeman and Antonio Torralba (MIT), including their own

More information

MERGING POINT CLOUDS FROM MULTIPLE KINECTS. Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia

MERGING POINT CLOUDS FROM MULTIPLE KINECTS. Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia MERGING POINT CLOUDS FROM MULTIPLE KINECTS Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia Introduction What do we want to do? : Use information (point clouds) from multiple (2+) Kinects

More information

Image formation. Thanks to Peter Corke and Chuck Dyer for the use of some slides

Image formation. Thanks to Peter Corke and Chuck Dyer for the use of some slides Image formation Thanks to Peter Corke and Chuck Dyer for the use of some slides Image Formation Vision infers world properties form images. How do images depend on these properties? Two key elements Geometry

More information

Announcements. Hough Transform [ Patented 1962 ] Generalized Hough Transform, line fitting. Assignment 2: Due today Midterm: Thursday, May 5 in class

Announcements. Hough Transform [ Patented 1962 ] Generalized Hough Transform, line fitting. Assignment 2: Due today Midterm: Thursday, May 5 in class Announcements Generalized Hough Transform, line fitting Assignment 2: Due today Midterm: Thursday, May 5 in class Introduction to Computer Vision CSE 152 Lecture 11a What is region like if: 1. λ 1 = 0?

More information

M. Badent 1, E. Di Giacomo 2, G. Liotta 2

M. Badent 1, E. Di Giacomo 2, G. Liotta 2 DIEI Dipartimento di Ingegneria Eettronica e de informazione RT 005-06 Drawing Coored Graphs on Coored Points M. Badent 1, E. Di Giacomo 2, G. Liotta 2 1 University of Konstanz 2 Università di Perugia

More information

CHAPTER 3. Single-view Geometry. 1. Consequences of Projection

CHAPTER 3. Single-view Geometry. 1. Consequences of Projection CHAPTER 3 Single-view Geometry When we open an eye or take a photograph, we see only a flattened, two-dimensional projection of the physical underlying scene. The consequences are numerous and startling.

More information

A Memory Grouping Method for Sharing Memory BIST Logic

A Memory Grouping Method for Sharing Memory BIST Logic A Memory Grouping Method for Sharing Memory BIST Logic Masahide Miyazai, Tomoazu Yoneda, and Hideo Fuiwara Graduate Schoo of Information Science, Nara Institute of Science and Technoogy (NAIST), 8916-5

More information

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful.

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful. Project 4 Results Representation SIFT and HoG are popular and successful. Data Hugely varying results from hard mining. Learning Non-linear classifier usually better. Zachary, Hung-I, Paul, Emanuel Project

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t 2 R 3,t 3 Camera 1 Camera

More information

Unit 3 Multiple View Geometry

Unit 3 Multiple View Geometry Unit 3 Multiple View Geometry Relations between images of a scene Recovering the cameras Recovering the scene structure http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1.html 3D structure from images Recover

More information

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10 Structure from Motion CSE 152 Lecture 10 Announcements Homework 3 is due May 9, 11:59 PM Reading: Chapter 8: Structure from Motion Optional: Multiple View Geometry in Computer Vision, 2nd edition, Hartley

More information

Fastest-Path Computation

Fastest-Path Computation Fastest-Path Computation DONGHUI ZHANG Coege of Computer & Information Science Northeastern University Synonyms fastest route; driving direction Definition In the United states, ony 9.% of the househods

More information

INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

INTRODUCTION TO THREE DIMENSIONAL GEOMETRY Introduction to Three Dimensiona Geometry 33 INTRODUCTION TO THREE DIMENSIONAL GEOMETRY You have read in your earier essons that given a point in a pane, it is possibe to find two numbers, caed its co-ordinates

More information

CHAPTER 5 EXPERIMENTAL RESULTS. 5.1 Boresight Calibration

CHAPTER 5 EXPERIMENTAL RESULTS. 5.1 Boresight Calibration CHAPTER 5 EXPERIMENTAL RESULTS 5. Boresight Caibration To compare the accuracy of determined boresight misaignment parameters, both the manua tie point seections and the tie points detected with image

More information

Reference trajectory tracking for a multi-dof robot arm

Reference trajectory tracking for a multi-dof robot arm Archives of Contro Sciences Voume 5LXI, 5 No. 4, pages 53 57 Reference trajectory tracking for a muti-dof robot arm RÓBERT KRASŇANSKÝ, PETER VALACH, DÁVID SOÓS, JAVAD ZARBAKHSH This paper presents the

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Today: dense 3D reconstruction The matching problem

More information

Miniature faking. In close-up photo, the depth of field is limited.

Miniature faking. In close-up photo, the depth of field is limited. Miniature faking In close-up photo, the depth of field is limited. http://en.wikipedia.org/wiki/file:jodhpur_tilt_shift.jpg Miniature faking Miniature faking http://en.wikipedia.org/wiki/file:oregon_state_beavers_tilt-shift_miniature_greg_keene.jpg

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision CS 1674: Intro to Computer Vision Epipolar Geometry and Stereo Vision Prof. Adriana Kovashka University of Pittsburgh October 5, 2016 Announcement Please send me three topics you want me to review next

More information

Mobile App Recommendation: Maximize the Total App Downloads

Mobile App Recommendation: Maximize the Total App Downloads Mobie App Recommendation: Maximize the Tota App Downoads Zhuohua Chen Schoo of Economics and Management Tsinghua University chenzhh3.12@sem.tsinghua.edu.cn Yinghui (Catherine) Yang Graduate Schoo of Management

More information

Digital Image Watermarking Algorithm Based on Fast Curvelet Transform

Digital Image Watermarking Algorithm Based on Fast Curvelet Transform J. Software Engineering & Appications, 010, 3, 939-943 doi:10.436/jsea.010.310111 Pubished Onine October 010 (http://www.scirp.org/journa/jsea) 939 igita Image Watermarking Agorithm Based on Fast Curveet

More information

Human Action Recognition Using Key Points Displacement

Human Action Recognition Using Key Points Displacement Human Action Recognition Using Key Points Dispacement Kuan-Ting Lai,, Chaur-Heh Hsieh 3, Mao-Fu Lai 4, and Ming-Syan Chen, Research Center for Information Technoogy Innovation, Academia Sinica, Taiwan

More information

Joint disparity and motion eld estimation in. stereoscopic image sequences. Ioannis Patras, Nikos Alvertos and Georgios Tziritas y.

Joint disparity and motion eld estimation in. stereoscopic image sequences. Ioannis Patras, Nikos Alvertos and Georgios Tziritas y. FORTH-ICS / TR-157 December 1995 Joint disparity and motion ed estimation in stereoscopic image sequences Ioannis Patras, Nikos Avertos and Georgios Tziritas y Abstract This work aims at determining four

More information

Grating cell operator features for oriented texture segmentation

Grating cell operator features for oriented texture segmentation Appeared in in: Proc. of the 14th Int. Conf. on Pattern Recognition, Brisbane, Austraia, August 16-20, 1998, pp.1010-1014. Grating ce operator features for oriented texture segmentation P. Kruizinga and

More information

Why is computer vision difficult?

Why is computer vision difficult? Why is computer vision difficult? Viewpoint variation Illumination Scale Why is computer vision difficult? Intra-class variation Motion (Source: S. Lazebnik) Background clutter Occlusion Challenges: local

More information

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009 Model s Lecture 3 Sections 2.2, 4.4 World s Eye s Clip s s s Window s Hampden-Sydney College Mon, Aug 31, 2009 Outline Model s World s Eye s Clip s s s Window s 1 2 3 Model s World s Eye s Clip s s s Window

More information

LUMS Mine Detector Project

LUMS Mine Detector Project LUMS Mine Detector Project Using visual information to control a robot (Hutchinson et al. 1996). Vision may or may not be used in the feedback loop. Visual (image based) features such as points, lines

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry CS 6320, Spring 2013 Guest Lecture Marcel Prastawa adapted from Pollefeys, Shah, and Zisserman Single view computer vision Projective actions of cameras Camera callibration Photometric

More information

BIL Computer Vision Apr 16, 2014

BIL Computer Vision Apr 16, 2014 BIL 719 - Computer Vision Apr 16, 2014 Binocular Stereo (cont d.), Structure from Motion Aykut Erdem Dept. of Computer Engineering Hacettepe University Slide credit: S. Lazebnik Basic stereo matching algorithm

More information

Multiview Stereo COSC450. Lecture 8

Multiview Stereo COSC450. Lecture 8 Multiview Stereo COSC450 Lecture 8 Stereo Vision So Far Stereo and epipolar geometry Fundamental matrix captures geometry 8-point algorithm Essential matrix with calibrated cameras 5-point algorithm Intersect

More information

CS 325 Computer Graphics

CS 325 Computer Graphics CS 325 Computer Graphics 02 / 29 / 2012 Instructor: Michael Eckmann Today s Topics Questions? Comments? Specifying arbitrary views Transforming into Canonical view volume View Volumes Assuming a rectangular

More information

PART IV: RS & the Kinect

PART IV: RS & the Kinect Computer Vision on Rolling Shutter Cameras PART IV: RS & the Kinect Per-Erik Forssén, Erik Ringaby, Johan Hedborg Computer Vision Laboratory Dept. of Electrical Engineering Linköping University Tutorial

More information

Stereo Vision. MAN-522 Computer Vision

Stereo Vision. MAN-522 Computer Vision Stereo Vision MAN-522 Computer Vision What is the goal of stereo vision? The recovery of the 3D structure of a scene using two or more images of the 3D scene, each acquired from a different viewpoint in

More information

Ceilbot vision and mapping system

Ceilbot vision and mapping system Ceilbot vision and mapping system Provide depth and camera data from the robot's environment Keep a map of the environment based on the received data Keep track of the robot's location on the map Recognize

More information

A Comparison of a Second-Order versus a Fourth- Order Laplacian Operator in the Multigrid Algorithm

A Comparison of a Second-Order versus a Fourth- Order Laplacian Operator in the Multigrid Algorithm A Comparison of a Second-Order versus a Fourth- Order Lapacian Operator in the Mutigrid Agorithm Kaushik Datta (kdatta@cs.berkeey.edu Math Project May 9, 003 Abstract In this paper, the mutigrid agorithm

More information

l A program is a set of instructions that the l It must be translated l Variable: portion of memory that stores a value char

l A program is a set of instructions that the l It must be translated l Variable: portion of memory that stores a value char Week 1 Operators, Data Types & I/O Gaddis: Chapters 1, 2, 3 CS 5301 Fa 2018 Ji Seaman Programming A program is a set of instructions that the computer foows to perform a task It must be transated from

More information

Crossing Minimization Problems of Drawing Bipartite Graphs in Two Clusters

Crossing Minimization Problems of Drawing Bipartite Graphs in Two Clusters Crossing Minimiation Probems o Drawing Bipartite Graphs in Two Custers Lanbo Zheng, Le Song, and Peter Eades Nationa ICT Austraia, and Schoo o Inormation Technoogies, University o Sydney,Austraia Emai:

More information

Recap: Features and filters. Recap: Grouping & fitting. Now: Multiple views 10/29/2008. Epipolar geometry & stereo vision. Why multiple views?

Recap: Features and filters. Recap: Grouping & fitting. Now: Multiple views 10/29/2008. Epipolar geometry & stereo vision. Why multiple views? Recap: Features and filters Epipolar geometry & stereo vision Tuesday, Oct 21 Kristen Grauman UT-Austin Transforming and describing images; textures, colors, edges Recap: Grouping & fitting Now: Multiple

More information

Computer Vision cmput 428/615

Computer Vision cmput 428/615 Computer Vision cmput 428/615 Basic 2D and 3D geometry and Camera models Martin Jagersand The equation of projection Intuitively: How do we develop a consistent mathematical framework for projection calculations?

More information

Other approaches to obtaining 3D structure

Other approaches to obtaining 3D structure Other approaches to obtaining 3D structure Active stereo with structured light Project structured light patterns onto the object simplifies the correspondence problem Allows us to use only one camera camera

More information

Nearest Neighbor Learning

Nearest Neighbor Learning Nearest Neighbor Learning Cassify based on oca simiarity Ranges from simpe nearest neighbor to case-based and anaogica reasoning Use oca information near the current query instance to decide the cassification

More information

Relational Model. Lecture #6 Autumn, Fall, 2001, LRX

Relational Model. Lecture #6 Autumn, Fall, 2001, LRX Reationa Mode Lecture #6 Autumn, 2001 #06 Reationa Mode HUST,Wuhan,China 121 Reationa Mode Tabe = reation. Coumn headers = attributes. Row = tupe Reation schema = name(attributes). Exampe: Beers(name,

More information

Relative Positioning from Model Indexing

Relative Positioning from Model Indexing Reative Positioning from Mode Indexing Stefan Carsson Computationa Vision and Active Perception Laboratory (CVAP)* Roya Institute of Technoogy (KTH), Stockhom, Sweden Abstract We show how to determine

More information

CPSC 425: Computer Vision

CPSC 425: Computer Vision 1 / 45 CPSC 425: Computer Vision Instructor: Fred Tung ftung@cs.ubc.ca Department of Computer Science University of British Columbia Lecture Notes 2015/2016 Term 2 2 / 45 Menu March 3, 2016 Topics: Hough

More information

3.1 The cin Object. Expressions & I/O. Console Input. Example program using cin. Unit 2. Sections 2.14, , 5.1, CS 1428 Spring 2018

3.1 The cin Object. Expressions & I/O. Console Input. Example program using cin. Unit 2. Sections 2.14, , 5.1, CS 1428 Spring 2018 Expressions & I/O Unit 2 Sections 2.14, 3.1-10, 5.1, 5.11 CS 1428 Spring 2018 Ji Seaman 1 3.1 The cin Object cin: short for consoe input a stream object: represents the contents of the screen that are

More information

Computer Graphics. P05 Viewing in 3D. Part 1. Aleksandra Pizurica Ghent University

Computer Graphics. P05 Viewing in 3D. Part 1. Aleksandra Pizurica Ghent University Computer Graphics P05 Viewing in 3D Part 1 Aleksandra Pizurica Ghent University Telecommunications and Information Processing Image Processing and Interpretation Group Viewing in 3D: context Create views

More information

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 Forward Projection (Reminder) u v 1 KR ( I t ) X m Y m Z m 1 Backward Projection (Reminder) Q K 1 q Presentation Outline 1 2 3 Sample Problem

More information

Stereo Vision A simple system. Dr. Gerhard Roth Winter 2012

Stereo Vision A simple system. Dr. Gerhard Roth Winter 2012 Stereo Vision A simple system Dr. Gerhard Roth Winter 2012 Stereo Stereo Ability to infer information on the 3-D structure and distance of a scene from two or more images taken from different viewpoints

More information

CS 231A Computer Vision (Winter 2015) Problem Set 2

CS 231A Computer Vision (Winter 2015) Problem Set 2 CS 231A Computer Vision (Winter 2015) Problem Set 2 Due Feb 9 th 2015 11:59pm 1 Fundamental Matrix (20 points) In this question, you will explore some properties of fundamental matrix and derive a minimal

More information

Three-Dimensional Viewing Hearn & Baker Chapter 7

Three-Dimensional Viewing Hearn & Baker Chapter 7 Three-Dimensional Viewing Hearn & Baker Chapter 7 Overview 3D viewing involves some tasks that are not present in 2D viewing: Projection, Visibility checks, Lighting effects, etc. Overview First, set up

More information

Type Appearance (mm in) Sensing range (Note) Model No. Hysteresis. Maximum operation distance. Stable sensing range. 4.0 mm 0.

Type Appearance (mm in) Sensing range (Note) Model No. Hysteresis. Maximum operation distance. Stable sensing range. 4.0 mm 0. 8 Compact Inductive Proximity Sensor GA- SERIES ORDER GUIDE separated IT FOW PARTICUAR SIMPE CONTRO Sensor heads Type Appearance (mm in) Sensing range (Note) Hysteresis Cyindrica type Spatterresistant

More information

CHAPTER 13 FINITE ELEMENTS: STIFFNESS MATRICES

CHAPTER 13 FINITE ELEMENTS: STIFFNESS MATRICES 4 5 CHAPTER FINITE ELEMENTS: STIFFNESS MATRICES. Introduction The purpose of this chapter is to use two simpe exampes to expain the asics of how finite eement stiffness matrices are formuated and how static

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

Jacobian Range Space

Jacobian Range Space Kinematic Redundanc A manipuator ma have more DOFs than are necessar to contro a desired variabe What do ou do w/ the etra DOFs? However, even if the manipuator has enough DOFs, it ma sti be unabe to contro

More information

Improving image quality in low snr parallel acquisition using a weighted least squares GRAPPA reconstruction

Improving image quality in low snr parallel acquisition using a weighted least squares GRAPPA reconstruction RESEARCH Improving image quait in ow snr parae acquisition using a weighted east squares GRAPPA reconstruction We anaze the performance of a Weighted Least Squares (W) GRAPPA caibration for improving the

More information