Incremental Light Bundle Adjustment for Robotics Navigation

Size: px
Start display at page:

Download "Incremental Light Bundle Adjustment for Robotics Navigation"

Transcription

1 Incremental Light Bundle Adjustment for Robotics Vadim Indelman, Andrew Melim, Frank Dellaert Robotics and Intelligent Machines (RIM) Center College of Computing Georgia Institute of Technology

2 Introduction Robot : Recover the state of a moving robot over time through fusion of multiple sensors, including a monocular camera Simultaneous Localization and Mapping (SLAM) Left image courtesy of Georgia Tech Research Institute Right image courtesy of Chris Beall Indelman et al., Incremental Light Bundle Adjustment for Robot 2

3 Vision-Aided Robot Fusion of monocular image measurements and IMU measurements Full joint pdf: Q N p(x, L, B Z) i x i,b i,zi,i IMU Q ) p(zi,j VIS x i,l j ) A i j 2 M i N M i : number of robot states : set of observed 3D points at state i l j x i zi,j VIS zi,i IMU b i : j-th 3D point : Robot state at time i (pose and velocity) : Image observation : IMU measurement : IMU Bias at time i Image from: 3

4 Vision-Aided Robot Fusion of monocular image measurements and IMU measurements Full joint pdf: Q N p(x, L, B Z) i x i,b i,zi,i IMU Q ) p(zi,j VIS x i,l j ) A i j 2 M i N M i : number of robot states : set of observed 3D points at state i Assuming Gaussian distributions: X,Y,B l j x i zi,i IMU : j-th 3D point : Robot state at time i (pose and velocity) : Image observation : IMU measurement MAP estimate is obtained by b i : IMU Bias at time i J(X, L, B). = X,L,B = N P i = arg max X, L, B p(x, L, B x i pred(x i,b i z IMU i,i ) 2 P IMU + P j 2 M z VIS i,j z VIS i,j (x i,l j ) 2 P VIS A Projection of a 3D point into the image plane (x i,l j ). = K i Ri t i lj Mahalanobis squared distance kak 2. = a T a Image from: 4

5 Factor Graph Representation [Kschischang et al. 2 ToIT] Factor graph: a graphical representation of the joint pdf factorization Full SLAM pdf: p(x, L, B Z) /. = {X, L, B} N Q i x i p (X Z) / Y s f s (X s ),b i,z IMU i,i ) p (z i,j x i,l j ) / exp 2 kz i,j (x i,l j )k 2.= f proj (x i,l j ) p(x i x i,b i zi,i IMU ) exp( 2 x i pred(x i,b i,zi,i IMU 2 IMU) =. f IMU (x i,x i,b i ) l f bias (b k+,b k ). =exp 2 b k+ h b (b k ) 2 b f proj f proj Q j 2 M i p(z VIS f proj i,j x i,l j ) A The naïve IMU factor can add a significant number of unnecessary variables! f IMU f IMU f IMU f IMU f IMU x x 2 x 3 x 4 x 5 x 6 b b 2 b 3 b 4 b 5 f bias f bias f bias f bias 5

6 Incremental Light Bundle Adjustment (ilba) for Robot Problems! 3D structure is expensive to compute (and not necessary for navigation): Algebraically eliminate 3D points using multi-view geometry constraints Significantly reduce the number of variables for optimization 3D points can always be reconstructed (if required) based on optimized camera poses High rate sensors introduce large number of variables: Utilize pre-integration of IMU to reduce the number of variables [Lupton et al., TRO 22] Incremental inference requires only partial re-calculation Update factorization rather than compute from scratch 6

7 Three-View Constraints [Indelman et al., TAES 22] Theorem: Algebraic elimination of a 3D point that is observed by 3 views k,l and m leads to: g 2v (x k,x l,z k,z l ). = q k (t k!l q l )= g 2v (x l,x m,z l,z m ). = q l (t l!m q m )= Epipolar constraints t i!j g 3v (x k,x l,x m,z k,z l,z m ). =(q l q k ) (q m t l!m ) (q k t k!l ) (q m q l )= R i. q i = R T i K i z i : translation from view i to view j : rotation from global frame to view i Scale consistency Third equation relates between the magnitudes of t l!m and t k!l Necessary and sufficient conditions LBA cost function: J LBA (X) =. XN h kh i (X, Z)k 2 i h i 2 {g 2v,g 3v } i View k 3D point q k q l q m View m x m x k t k!l View l t l!m V. Indelman, P. Gurfil, E. Rivlin, H. Rotstein, Real-Time Vision-Aided Localization and Based on Three-View Geometry, IEEE Transactions on Aerospace and Electronic Systems, 22 x l 7

8 Vision Only : Light Bundle Adjustment (LBA) LBA cost function: h i : i-th multi-view constraint J LBA (X). = XN h i kh i (X, Z)k 2 i Involves several views and the corresponding image observations i : An equivalent covariance i = A i A T i : Jacobian with respect to image observations A i Number of optimized variables: 6N +3M 6N Multi-view constraints - Different formulations in literature Epipolar geometry, trifocal tensors, quadrifocal tensors etc. Independent relations exist only between up to three cameras [Ma et al., 24] Here, three-view constraints formulation is used Originally developed for navigation aiding [Indelman et al., TAES 22] 8

9 Pre-Integrated IMU Factors Pre-integrate IMU measurements and insert equivalent factors only when inserting new LBA factors into the graph. x i!j = pi!j, v i!j,rj i = Zi!j IMU,b i, f Equiv (x j,x i,b i ) =exp. 2 x j h Equiv (x i,b i, x i!j ) 2 Components of x i!j are expressed in body-frame, not navigation frame, which allows relinearization of the factor without repeated computation Equivalent IMU (non-linear) factor [Lupton et al., TRO 22] Significantly reduces graph size, and subsequently time for elimination. f IMU f IMU f IMU f IMU f IMU x x 2 x 3 x 4 x 5 x 6 f Equiv x x 6 b b 2 b 3 b 4 b 5 f bias f bias f bias f bias Todd Lupton and Salah Sukkarieh, Visual-Inertial-Aided for High-Dynamic Motion in Built Environments Without Initial Conditions, IEEE Transactions on Robotics, 22 b 9

10 Second Component - Incremental Inference [Kaess et al., 22] When adding new variables\factors, calculations can be reused Factorization can be updated (and not re-calculated from scratch) Example: Linearization and elimination Elimination order x,b,x 6,b 2,x 2 2-view factor f Equiv x x 6 b x x 6 b 3-view factor f bias 2-view factor f Equiv x Linearization 2 A = b 2 x 2 b 2 R = Jacobian matrix x x 6 x 2 b b 2 Factorization Factorized Jacobian matrix x b x 6 b 2 x 2 b 2

11 Incremental Inference in ilba (Cont.) Example: New camera and factors are added Linearization 2 3 R = x b x 6 b 2 x 2 b 3 x 2 Nodes in all paths that lead from the last-eliminated node to nodes involved in new factors What should be re-calculated? A = Efficiently calculated using Bayes tree [Kaess et al., 22] x x 6 x 2 b b 2 x 2 b 3

12 ilba for Robotics Monte-Carlo Study Position -sigma errors and sqrt. covariance North [m] 5 True Inertial East [m] Height [m] LBA Full BA Sqrt. Cov. LBA Sqrt. Cov. Full BA 5 5 Time [sec] Euler Angles -sigma errors and sqrt. covariance Height [m] East [m] 5 North [m] 5 Acceleration bias -sigma errors and sqrt. covariance [deg].5 X Axis [mg] [deg] Y Axis [mg] [deg].2 Z Axis [mg] Time [sec] 5 5 Time [sec] 2

13 ilba for Robotics Simulation Results Scenario (GE for illustration) Estimated trajectory Scenario: LBA + IMU 6 BA + IMU 4 Single camera IMU North [m] 64 8 Processing time 25 LBA + IMU BA + IMU East [m] 5 2 Position estimation errors 2 5 Position errors [m] Processing time [sec] IMU only 4 2 Ground Truth Scenario Time [sec] LBA + IMU BA + IMU Scenario Time [sec]

14 Conclusions Algebraic elimination of 3D points significantly reduces the size of the optimization problem and provides speed up to online robot navigation Use of pre-integration methods for high-frequency inertial measurements also reduces the size of the problem Accuracy is similar to full SLAM At least 2-3.5x speed up in computation time Code and datasets are available from the author s website 4

Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry

Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry Distributed Vision-Aided Cooperative Navigation Based on hree-view Geometry Vadim Indelman, Pini Gurfil Distributed Space Systems Lab, Aerospace Engineering, echnion Ehud Rivlin Computer Science, echnion

More information

Incremental Light Bundle Adjustment for Robotics Navigation

Incremental Light Bundle Adjustment for Robotics Navigation Incremental Light Bundle Adjustment for Robotics Navigation Vadim Indelman, Andrew Melim, and Frank Dellaert Abstract This paper presents a new computationallyefficient method for vision-aided navigation

More information

Information Fusion in Navigation Systems via Factor Graph Based Incremental Smoothing

Information Fusion in Navigation Systems via Factor Graph Based Incremental Smoothing Information Fusion in Navigation Systems via Factor Graph Based Incremental Smoothing Vadim Indelman a, Stephen Williams a, Michael Kaess b, Frank Dellaert a a College of Computing, Georgia Institute of

More information

Factor Graph Based Incremental Smoothing in Inertial Navigation Systems

Factor Graph Based Incremental Smoothing in Inertial Navigation Systems Factor Graph Based Incremental in Inertial Navigation Systems Vadim Indelman, Stephen Williams, Michael Kaess and Frank Dellaert College of Computing, Georgia Institute of Technology, Atlanta, GA 3332,

More information

Incremental Light Bundle Adjustment for Structure From Motion and Robotics

Incremental Light Bundle Adjustment for Structure From Motion and Robotics Incremental Light Bundle Adjustment for Structure From Motion and Robotics Vadim Indelman*, Richard Roberts, and Frank Dellaert Abstract Bundle adjustment (BA) is essential in many robotics and structurefrom-motion

More information

Real-Time Vision-Aided Localization and. Navigation Based on Three-View Geometry

Real-Time Vision-Aided Localization and. Navigation Based on Three-View Geometry Real-Time Vision-Aided Localization and 1 Navigation Based on Three-View Geometry Vadim Indelman, Pini Gurfil, Ehud Rivlin and Hector Rotstein Abstract This paper presents a new method for vision-aided

More information

Vision-based Target Tracking and Ego-Motion Estimation using Incremental Light Bundle Adjustment. Michael Chojnacki

Vision-based Target Tracking and Ego-Motion Estimation using Incremental Light Bundle Adjustment. Michael Chojnacki Vision-based Target Tracking and Ego-Motion Estimation using Incremental Light Bundle Adjustment Michael Chojnacki Vision-based Target Tracking and Ego-Motion Estimation using Incremental Light Bundle

More information

Multiple View Geometry in Computer Vision Second Edition

Multiple View Geometry in Computer Vision Second Edition Multiple View Geometry in Computer Vision Second Edition Richard Hartley Australian National University, Canberra, Australia Andrew Zisserman University of Oxford, UK CAMBRIDGE UNIVERSITY PRESS Contents

More information

Removing Scale Biases and Ambiguity from 6DoF Monocular SLAM Using Inertial

Removing Scale Biases and Ambiguity from 6DoF Monocular SLAM Using Inertial 28 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, May 9-23, 28 Removing Scale Biases and Ambiguity from 6DoF Monocular SLAM Using Inertial Todd Lupton and Salah Sukkarieh Abstract

More information

CVPR 2014 Visual SLAM Tutorial Efficient Inference

CVPR 2014 Visual SLAM Tutorial Efficient Inference CVPR 2014 Visual SLAM Tutorial Efficient Inference kaess@cmu.edu The Robotics Institute Carnegie Mellon University The Mapping Problem (t=0) Robot Landmark Measurement Onboard sensors: Wheel odometry Inertial

More information

4D Crop Analysis for Plant Geometry Estimation in Precision Agriculture

4D Crop Analysis for Plant Geometry Estimation in Precision Agriculture 4D Crop Analysis for Plant Geometry Estimation in Precision Agriculture MIT Laboratory for Information & Decision Systems IEEE RAS TC on Agricultural Robotics and Automation Webinar #37 Acknowledgements

More information

L15. POSE-GRAPH SLAM. NA568 Mobile Robotics: Methods & Algorithms

L15. POSE-GRAPH SLAM. NA568 Mobile Robotics: Methods & Algorithms L15. POSE-GRAPH SLAM NA568 Mobile Robotics: Methods & Algorithms Today s Topic Nonlinear Least Squares Pose-Graph SLAM Incremental Smoothing and Mapping Feature-Based SLAM Filtering Problem: Motion Prediction

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: EKF-based SLAM Dr. Kostas Alexis (CSE) These slides have partially relied on the course of C. Stachniss, Robot Mapping - WS 2013/14 Autonomous Robot Challenges Where

More information

High-precision, consistent EKF-based visual-inertial odometry

High-precision, consistent EKF-based visual-inertial odometry High-precision, consistent EKF-based visual-inertial odometry Mingyang Li and Anastasios I. Mourikis, IJRR 2013 Ao Li Introduction What is visual-inertial odometry (VIO)? The problem of motion tracking

More information

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz Humanoid Robotics Monte Carlo Localization Maren Bennewitz 1 Basis Probability Rules (1) If x and y are independent: Bayes rule: Often written as: The denominator is a normalizing constant that ensures

More information

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS Mobile Robotics Mathematics, Models, and Methods Alonzo Kelly Carnegie Mellon University HI Cambridge UNIVERSITY PRESS Contents Preface page xiii 1 Introduction 1 1.1 Applications of Mobile Robots 2 1.2

More information

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech Dealing with Scale Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline Why care about size? The IMU as scale provider: The

More information

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models Introduction ti to Embedded dsystems EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping Gabe Hoffmann Ph.D. Candidate, Aero/Astro Engineering Stanford University Statistical Models

More information

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Arun Das 05/09/2017 Arun Das Waterloo Autonomous Vehicles Lab Introduction What s in a name? Arun Das Waterloo Autonomous

More information

CS201 Computer Vision Camera Geometry

CS201 Computer Vision Camera Geometry CS201 Computer Vision Camera Geometry John Magee 25 November, 2014 Slides Courtesy of: Diane H. Theriault (deht@bu.edu) Question of the Day: How can we represent the relationships between cameras and the

More information

Active Online Visual-Inertial Navigation and Sensor Calibration via Belief Space Planning and Factor Graph Based Incremental Smoothing

Active Online Visual-Inertial Navigation and Sensor Calibration via Belief Space Planning and Factor Graph Based Incremental Smoothing Active Online Visual-Inertial Navigation and Sensor Calibration via Belief Space Planning and Factor Graph Based Incremental Smoothing Yair Ben Elisha* and Vadim Indelman* Abstract High accuracy navigation

More information

Geometry for Computer Vision

Geometry for Computer Vision Geometry for Computer Vision Lecture 5b Calibrated Multi View Geometry Per-Erik Forssén 1 Overview The 5-point Algorithm Structure from Motion Bundle Adjustment 2 Planar degeneracy In the uncalibrated

More information

Dense visual odometry and sensor fusion for UAV navigation

Dense visual odometry and sensor fusion for UAV navigation U NIVERSITA DI P ISA Master s Thesis in Aerospace Engineering University of Pisa Year 2013/2014 Dense visual odometry and sensor fusion for UAV navigation Nicolò Valigi University of Pisa tutor: Prof.

More information

Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles

Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles Shaojie Shen Dept. of Electrical and Systems Engineering & GRASP Lab, University of Pennsylvania Committee: Daniel

More information

A Sample of Monte Carlo Methods in Robotics and Vision. Credits. Outline. Structure from Motion. without Correspondences

A Sample of Monte Carlo Methods in Robotics and Vision. Credits. Outline. Structure from Motion. without Correspondences A Sample of Monte Carlo Methods in Robotics and Vision Frank Dellaert College of Computing Georgia Institute of Technology Credits Zia Khan Tucker Balch Michael Kaess Rafal Zboinski Ananth Ranganathan

More information

Data Association for SLAM

Data Association for SLAM CALIFORNIA INSTITUTE OF TECHNOLOGY ME/CS 132a, Winter 2011 Lab #2 Due: Mar 10th, 2011 Part I Data Association for SLAM 1 Introduction For this part, you will experiment with a simulation of an EKF SLAM

More information

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Carsten Rother 09/12/2013 Computer Vision I: Multi-View 3D reconstruction Roadmap this lecture Computer Vision I: Multi-View

More information

Asynchronous Multi-Sensor Fusion for 3D Mapping and Localization

Asynchronous Multi-Sensor Fusion for 3D Mapping and Localization Asynchronous Multi-Sensor Fusion for 3D Mapping and Localization Patrick Geneva, Kevin Eckenhoff, and Guoquan Huang Abstract In this paper, we address the problem of 3D mapping and localization of autonomous

More information

navigation Isaac Skog

navigation Isaac Skog Foot-mounted zerovelocity aided inertial navigation Isaac Skog skog@kth.se Course Outline 1. Foot-mounted inertial navigation a. Basic idea b. Pros and cons 2. Inertial navigation a. The inertial sensors

More information

Humanoid Robotics. Least Squares. Maren Bennewitz

Humanoid Robotics. Least Squares. Maren Bennewitz Humanoid Robotics Least Squares Maren Bennewitz Goal of This Lecture Introduction into least squares Use it yourself for odometry calibration, later in the lecture: camera and whole-body self-calibration

More information

Methods for Localization and Mapping Using Vision and Inertial Sensors

Methods for Localization and Mapping Using Vision and Inertial Sensors AIAA Guidance, Navigation and Control Conference and Exhibit 8 - August 8, Honolulu, Hawaii AIAA 8-744 Methods for Localization and Mapping Using Vision and Inertial Sensors Allen D. Wu and Eric N. Johnson

More information

GTSAM 4.0 Tutorial Theory, Programming, and Applications

GTSAM 4.0 Tutorial Theory, Programming, and Applications GTSAM 4.0 Tutorial Theory, Programming, and Applications GTSAM: https://bitbucket.org/gtborg/gtsam Examples: https://github.com/dongjing3309/gtsam-examples Jing Dong 2016-11-19 License CC BY-NC-SA 3.0

More information

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s CENG 732 Computer Animation This week Inverse Kinematics (continued) Rigid Body Simulation Bodies in free fall Bodies in contact Spring 2006-2007 Week 5 Inverse Kinematics Physically Based Rigid Body Simulation

More information

Navigation Aiding Based on Coupled Online Mosaicking and Camera Scanning

Navigation Aiding Based on Coupled Online Mosaicking and Camera Scanning Navigation Aiding Based on Coupled Online Mosaicking and Camera Scanning Vadim Indelman Pini Gurfil Ehud Rivlin Technion - Israel Institute of Technology Haifa 3, Israel Hector Rotstein RAFAEL - Advanced

More information

Lecture 13 Visual Inertial Fusion

Lecture 13 Visual Inertial Fusion Lecture 13 Visual Inertial Fusion Davide Scaramuzza Course Evaluation Please fill the evaluation form you received by email! Provide feedback on Exercises: good and bad Course: good and bad How to improve

More information

Incremental Real-time Bundle Adjustment for Multi-camera Systems with Points at Infinity

Incremental Real-time Bundle Adjustment for Multi-camera Systems with Points at Infinity Incremental Real-time Bundle Adjustment for Multi-camera Systems with Points at Infinity Johannes Schneider, Thomas Läbe, Wolfgang Förstner 1 Department of Photogrammetry Institute of Geodesy and Geoinformation

More information

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm Computer Vision Group Prof. Daniel Cremers Dense Tracking and Mapping for Autonomous Quadrocopters Jürgen Sturm Joint work with Frank Steinbrücker, Jakob Engel, Christian Kerl, Erik Bylow, and Daniel Cremers

More information

Camera Drones Lecture 3 3D data generation

Camera Drones Lecture 3 3D data generation Camera Drones Lecture 3 3D data generation Ass.Prof. Friedrich Fraundorfer WS 2017 Outline SfM introduction SfM concept Feature matching Camera pose estimation Bundle adjustment Dense matching Data products

More information

3D Model Acquisition by Tracking 2D Wireframes

3D Model Acquisition by Tracking 2D Wireframes 3D Model Acquisition by Tracking 2D Wireframes M. Brown, T. Drummond and R. Cipolla {96mab twd20 cipolla}@eng.cam.ac.uk Department of Engineering University of Cambridge Cambridge CB2 1PZ, UK Abstract

More information

Computer Vision I - Appearance-based Matching and Projective Geometry

Computer Vision I - Appearance-based Matching and Projective Geometry Computer Vision I - Appearance-based Matching and Projective Geometry Carsten Rother 05/11/2015 Computer Vision I: Image Formation Process Roadmap for next four lectures Computer Vision I: Image Formation

More information

Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features

Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features Stephen Se, David Lowe, Jim Little Department of Computer Science University of British Columbia Presented by Adam Bickett

More information

Bias Reduction and Filter Convergence for Long Range Stereo

Bias Reduction and Filter Convergence for Long Range Stereo Bias Reduction and Filter Convergence for Long Range Stereo Gabe Sibley, Larry Matthies and Gaurav Sukhatme Robotic Embedded Systems Laboratory, University of Southern California, Los Angeles, CA 90089

More information

Vision-Aided Inertial Navigation with Line Features and a Rolling-Shutter Camera

Vision-Aided Inertial Navigation with Line Features and a Rolling-Shutter Camera Vision-Aided Inertial Navigation with Line Features and a Rolling-Shutter Camera Hongsheng Yu, Anastasios I. Mourikis Dept. of Electrical and Computer Engineering, University of California, Riverside E-mail:

More information

(W: 12:05-1:50, 50-N202)

(W: 12:05-1:50, 50-N202) 2016 School of Information Technology and Electrical Engineering at the University of Queensland Schedule of Events Week Date Lecture (W: 12:05-1:50, 50-N202) 1 27-Jul Introduction 2 Representing Position

More information

Geometry of Multiple views

Geometry of Multiple views 1 Geometry of Multiple views CS 554 Computer Vision Pinar Duygulu Bilkent University 2 Multiple views Despite the wealth of information contained in a a photograph, the depth of a scene point along the

More information

Robotic Perception and Action: Vehicle SLAM Assignment

Robotic Perception and Action: Vehicle SLAM Assignment Robotic Perception and Action: Vehicle SLAM Assignment Mariolino De Cecco Mariolino De Cecco, Mattia Tavernini 1 CONTENTS Vehicle SLAM Assignment Contents Assignment Scenario 3 Odometry Localization...........................................

More information

A Loosely-Coupled Approach for Metric Scale Estimation in Monocular Vision-Inertial Systems

A Loosely-Coupled Approach for Metric Scale Estimation in Monocular Vision-Inertial Systems A Loosely-Coupled Approach for Metric Scale Estimation in Monocular Vision-Inertial Systems Ariane Spaenlehauer Vincent Frémont Y. Ahmet Şekercioğlu Isabelle Fantoni Abstract In monocular vision systems,

More information

CHAPTER 2 SENSOR DATA SIMULATION: A KINEMATIC APPROACH

CHAPTER 2 SENSOR DATA SIMULATION: A KINEMATIC APPROACH 27 CHAPTER 2 SENSOR DATA SIMULATION: A KINEMATIC APPROACH 2.1 INTRODUCTION The standard technique of generating sensor data for navigation is the dynamic approach. As revealed in the literature (John Blakelock

More information

Robotics. Lecture 5: Monte Carlo Localisation. See course website for up to date information.

Robotics. Lecture 5: Monte Carlo Localisation. See course website  for up to date information. Robotics Lecture 5: Monte Carlo Localisation See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College London Review:

More information

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric Parallel Robots Mechanics and Control H AMID D TAG HI RAD CRC Press Taylor & Francis Group Boca Raton London NewYoric CRC Press Is an Imprint of the Taylor & Francis Croup, an informs business Contents

More information

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu

More information

INCREMENTAL SMOOTHING AND MAPPING

INCREMENTAL SMOOTHING AND MAPPING INCREMENTAL SMOOTHING AND MAPPING A Dissertation Presented to The Academic Faculty by Michael Kaess In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the College of Computing

More information

Tightly-Integrated Visual and Inertial Navigation for Pinpoint Landing on Rugged Terrains

Tightly-Integrated Visual and Inertial Navigation for Pinpoint Landing on Rugged Terrains Tightly-Integrated Visual and Inertial Navigation for Pinpoint Landing on Rugged Terrains PhD student: Jeff DELAUNE ONERA Director: Guy LE BESNERAIS ONERA Advisors: Jean-Loup FARGES Clément BOURDARIAS

More information

Initialisation and Estimation Methods for Batch Optimisation of Inertial/Visual SLAM

Initialisation and Estimation Methods for Batch Optimisation of Inertial/Visual SLAM Technical report from Automatic Control at Linköpings universitet Initialisation and Estimation Methods for Batch Optimisation of Inertial/Visual SLAM Martin A. Skoglund, Zoran Sjanic, Fredrik Gustafsson

More information

INCREMENTAL SMOOTHING AND MAPPING

INCREMENTAL SMOOTHING AND MAPPING INCREMENTAL SMOOTHING AND MAPPING A Dissertation Presented to The Academic Faculty by Michael Kaess In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the College of Computing

More information

Error Simulation and Multi-Sensor Data Fusion

Error Simulation and Multi-Sensor Data Fusion Error Simulation and Multi-Sensor Data Fusion AERO4701 Space Engineering 3 Week 6 Last Week Looked at the problem of attitude determination for satellites Examined several common methods such as inertial

More information

ORB SLAM 2 : an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras

ORB SLAM 2 : an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras ORB SLAM 2 : an OpenSource SLAM System for Monocular, Stereo and RGBD Cameras Raul urartal and Juan D. Tardos Presented by: Xiaoyu Zhou Bolun Zhang Akshaya Purohit Lenord Melvix 1 Outline Background Introduction

More information

Relating Local Vision Measurements to Global Navigation Satellite Systems Using Waypoint Based Maps

Relating Local Vision Measurements to Global Navigation Satellite Systems Using Waypoint Based Maps Relating Local Vision Measurements to Global Navigation Satellite Systems Using Waypoint Based Maps John W. Allen Samuel Gin College of Engineering GPS and Vehicle Dynamics Lab Auburn University Auburn,

More information

Automatic 3D Model Construction for Turn-Table Sequences - a simplification

Automatic 3D Model Construction for Turn-Table Sequences - a simplification Automatic 3D Model Construction for Turn-Table Sequences - a simplification Fredrik Larsson larsson@isy.liu.se April, Background This report introduces some simplifications to the method by Fitzgibbon

More information

Vision 3D articielle Multiple view geometry

Vision 3D articielle Multiple view geometry Vision 3D articielle Multiple view geometry Pascal Monasse monasse@imagine.enpc.fr IMAGINE, École des Ponts ParisTech Contents Multi-view constraints Multi-view calibration Incremental calibration Global

More information

Calibration and Noise Identification of a Rolling Shutter Camera and a Low-Cost Inertial Measurement Unit

Calibration and Noise Identification of a Rolling Shutter Camera and a Low-Cost Inertial Measurement Unit sensors Article Calibration and Noise Identification of a Rolling Shutter Camera and a Low-Cost Inertial Measurement Unit Chang-Ryeol Lee 1 ID, Ju Hong Yoon 2 and Kuk-Jin Yoon 3, * 1 School of Electrical

More information

POME A mobile camera system for accurate indoor pose

POME A mobile camera system for accurate indoor pose POME A mobile camera system for accurate indoor pose Paul Montgomery & Andreas Winter November 2 2016 2010. All rights reserved. 1 ICT Intelligent Construction Tools A 50-50 joint venture between Trimble

More information

Indoor Positioning System Based on Distributed Camera Sensor Networks for Mobile Robot

Indoor Positioning System Based on Distributed Camera Sensor Networks for Mobile Robot Indoor Positioning System Based on Distributed Camera Sensor Networks for Mobile Robot Yonghoon Ji 1, Atsushi Yamashita 1, and Hajime Asama 1 School of Engineering, The University of Tokyo, Japan, t{ji,

More information

2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

Introduction to Inertial Navigation (INS tutorial short)

Introduction to Inertial Navigation (INS tutorial short) Introduction to Inertial Navigation (INS tutorial short) Note 1: This is a short (20 pages) tutorial. An extended (57 pages) tutorial that also includes Kalman filtering is available at http://www.navlab.net/publications/introduction_to

More information

Smoothing and Mapping using Multiple Robots

Smoothing and Mapping using Multiple Robots Smoothing and Mapping using Multiple Robots Karthik Paga (kpaga), Joe Phaneuf (jphaneuf), Adam Driscoll (jdriscol), David Evans (dje1) @cs.cmu.edu arxiv:1805.02141v1 [cs.ro 6 May 2018 Abstract Mapping

More information

Table of Contents. Chapter 1. Modeling and Identification of Serial Robots... 1 Wisama KHALIL and Etienne DOMBRE

Table of Contents. Chapter 1. Modeling and Identification of Serial Robots... 1 Wisama KHALIL and Etienne DOMBRE Chapter 1. Modeling and Identification of Serial Robots.... 1 Wisama KHALIL and Etienne DOMBRE 1.1. Introduction... 1 1.2. Geometric modeling... 2 1.2.1. Geometric description... 2 1.2.2. Direct geometric

More information

SAE Aerospace Control & Guidance Systems Committee #97 March 1-3, 2006 AFOSR, AFRL. Georgia Tech, MIT, UCLA, Virginia Tech

SAE Aerospace Control & Guidance Systems Committee #97 March 1-3, 2006 AFOSR, AFRL. Georgia Tech, MIT, UCLA, Virginia Tech Systems for Aircraft SAE Aerospace Control & Guidance Systems Committee #97 March 1-3, 2006 AFOSR, AFRL Georgia Tech, MIT, UCLA, Virginia Tech controls.ae.gatech.edu/avcs Systems Systems MURI Development

More information

VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem

VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem Presented by: Justin Gorgen Yen-ting Chen Hao-en Sung Haifeng Huang University of California, San Diego May 23, 2017 Original

More information

Marker Based Localization of a Quadrotor. Akshat Agarwal & Siddharth Tanwar

Marker Based Localization of a Quadrotor. Akshat Agarwal & Siddharth Tanwar Marker Based Localization of a Quadrotor Akshat Agarwal & Siddharth Tanwar Objective Introduction Objective: To implement a high level control pipeline on a quadrotor which could autonomously take-off,

More information

LOAM: LiDAR Odometry and Mapping in Real Time

LOAM: LiDAR Odometry and Mapping in Real Time LOAM: LiDAR Odometry and Mapping in Real Time Aayush Dwivedi (14006), Akshay Sharma (14062), Mandeep Singh (14363) Indian Institute of Technology Kanpur 1 Abstract This project deals with online simultaneous

More information

Low Cost solution for Pose Estimation of Quadrotor

Low Cost solution for Pose Estimation of Quadrotor Low Cost solution for Pose Estimation of Quadrotor mangal@iitk.ac.in https://www.iitk.ac.in/aero/mangal/ Intelligent Guidance and Control Laboratory Indian Institute of Technology, Kanpur Mangal Kothari

More information

Unmanned Aerial Vehicles

Unmanned Aerial Vehicles Unmanned Aerial Vehicles Embedded Control Edited by Rogelio Lozano WILEY Table of Contents Chapter 1. Aerodynamic Configurations and Dynamic Models 1 Pedro CASTILLO and Alejandro DZUL 1.1. Aerodynamic

More information

Visual Odometry. Features, Tracking, Essential Matrix, and RANSAC. Stephan Weiss Computer Vision Group NASA-JPL / CalTech

Visual Odometry. Features, Tracking, Essential Matrix, and RANSAC. Stephan Weiss Computer Vision Group NASA-JPL / CalTech Visual Odometry Features, Tracking, Essential Matrix, and RANSAC Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline The

More information

Graph-based SLAM (Simultaneous Localization And Mapping) for Bridge Inspection Using UAV (Unmanned Aerial Vehicle)

Graph-based SLAM (Simultaneous Localization And Mapping) for Bridge Inspection Using UAV (Unmanned Aerial Vehicle) Graph-based SLAM (Simultaneous Localization And Mapping) for Bridge Inspection Using UAV (Unmanned Aerial Vehicle) Taekjun Oh 1), Sungwook Jung 2), Seungwon Song 3), and Hyun Myung 4) 1), 2), 3), 4) Urban

More information

The end of affine cameras

The end of affine cameras The end of affine cameras Affine SFM revisited Epipolar geometry Two-view structure from motion Multi-view structure from motion Planches : http://www.di.ens.fr/~ponce/geomvis/lect3.pptx http://www.di.ens.fr/~ponce/geomvis/lect3.pdf

More information

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization Wolfram Burgard 1 Motivation Recall: Discrete filter Discretize the continuous state space High memory complexity

More information

Optimization-Based Estimator Design for Vision-Aided Inertial Navigation

Optimization-Based Estimator Design for Vision-Aided Inertial Navigation Robotics: Science and Systems 2012 Sydney, NSW, Australia, July 09-13, 2012 Optimization-Based Estimator Design for Vision-Aided Inertial Navigation Mingyang Li and Anastasios I. Mourikis Dept. of Electrical

More information

Weighted Local Bundle Adjustment and Application to Odometry and Visual SLAM Fusion

Weighted Local Bundle Adjustment and Application to Odometry and Visual SLAM Fusion EUDES,NAUDET,LHUILLIER,DHOME: WEIGHTED LBA & ODOMETRY FUSION 1 Weighted Local Bundle Adjustment and Application to Odometry and Visual SLAM Fusion Alexandre Eudes 12 alexandre.eudes@lasmea.univ-bpclermont.fr

More information

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss Robot Mapping Least Squares Approach to SLAM Cyrill Stachniss 1 Three Main SLAM Paradigms Kalman filter Particle filter Graphbased least squares approach to SLAM 2 Least Squares in General Approach for

More information

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General Robot Mapping Three Main SLAM Paradigms Least Squares Approach to SLAM Kalman filter Particle filter Graphbased Cyrill Stachniss least squares approach to SLAM 1 2 Least Squares in General! Approach for

More information

Chapter 13. Vision Based Guidance. Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 2012,

Chapter 13. Vision Based Guidance. Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 2012, Chapter 3 Vision Based Guidance Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 22, Chapter 3: Slide Architecture w/ Camera targets to track/avoid vision-based guidance waypoints status

More information

Where s the Boss? : Monte Carlo Localization for an Autonomous Ground Vehicle using an Aerial Lidar Map

Where s the Boss? : Monte Carlo Localization for an Autonomous Ground Vehicle using an Aerial Lidar Map Where s the Boss? : Monte Carlo Localization for an Autonomous Ground Vehicle using an Aerial Lidar Map Sebastian Scherer, Young-Woo Seo, and Prasanna Velagapudi October 16, 2007 Robotics Institute Carnegie

More information

3D Magnetic Field Mapping in Large-Scale Indoor Environment Using Measurement Robot and Gaussian Processes

3D Magnetic Field Mapping in Large-Scale Indoor Environment Using Measurement Robot and Gaussian Processes 3D Magnetic Field Mapping in Large-Scale Indoor Environment Using Measurement Robot and Gaussian Processes Naoki Akai 1 and Koichi Ozaki 2 Abstract Magnetic fields are used for localization and navigation

More information

Estimating Pose and Motion using Bundle Adjustment and Digital Elevation Model Constraints. Gil Briskin

Estimating Pose and Motion using Bundle Adjustment and Digital Elevation Model Constraints. Gil Briskin Estimating Pose and Motion using Bundle Adjustment and Digital Elevation Model Constraints Gil Briskin Estimating Pose and Motion using Bundle Adjustment and Digital Elevation Model Constraints Research

More information

A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models

A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models Emanuele Ruffaldi Lorenzo Peppoloni Alessandro Filippeschi Carlo Alberto Avizzano 2014 IEEE International

More information

Monte Carlo Localization for Mobile Robots

Monte Carlo Localization for Mobile Robots Monte Carlo Localization for Mobile Robots Frank Dellaert 1, Dieter Fox 2, Wolfram Burgard 3, Sebastian Thrun 4 1 Georgia Institute of Technology 2 University of Washington 3 University of Bonn 4 Carnegie

More information

UAV Autonomous Navigation in a GPS-limited Urban Environment

UAV Autonomous Navigation in a GPS-limited Urban Environment UAV Autonomous Navigation in a GPS-limited Urban Environment Yoko Watanabe DCSD/CDIN JSO-Aerial Robotics 2014/10/02-03 Introduction 2 Global objective Development of a UAV onboard system to maintain flight

More information

Camera and Inertial Sensor Fusion

Camera and Inertial Sensor Fusion January 6, 2018 For First Robotics 2018 Camera and Inertial Sensor Fusion David Zhang david.chao.zhang@gmail.com Version 4.1 1 My Background Ph.D. of Physics - Penn State Univ. Research scientist at SRI

More information

Mysteries of Parameterizing Camera Motion - Part 1

Mysteries of Parameterizing Camera Motion - Part 1 Mysteries of Parameterizing Camera Motion - Part 1 Instructor - Simon Lucey 16-623 - Advanced Computer Vision Apps Today Motivation SO(3) Convex? Exponential Maps SL(3) Group. Adapted from: Computer vision:

More information

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10 Structure from Motion CSE 152 Lecture 10 Announcements Homework 3 is due May 9, 11:59 PM Reading: Chapter 8: Structure from Motion Optional: Multiple View Geometry in Computer Vision, 2nd edition, Hartley

More information

Revising Stereo Vision Maps in Particle Filter Based SLAM using Localisation Confidence and Sample History

Revising Stereo Vision Maps in Particle Filter Based SLAM using Localisation Confidence and Sample History Revising Stereo Vision Maps in Particle Filter Based SLAM using Localisation Confidence and Sample History Simon Thompson and Satoshi Kagami Digital Human Research Center National Institute of Advanced

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.2: Sensors Jürgen Sturm Technische Universität München Sensors IMUs (inertial measurement units) Accelerometers

More information

Image Augmented Laser Scan Matching for Indoor Localization

Image Augmented Laser Scan Matching for Indoor Localization Image Augmented Laser Scan Matching for Indoor Localization Nikhil Naikal Avideh Zakhor John Kua Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2009-35

More information

Augmented Reality, Advanced SLAM, Applications

Augmented Reality, Advanced SLAM, Applications Augmented Reality, Advanced SLAM, Applications Prof. Didier Stricker & Dr. Alain Pagani alain.pagani@dfki.de Lecture 3D Computer Vision AR, SLAM, Applications 1 Introduction Previous lectures: Basics (camera,

More information

Self-calibration of a pair of stereo cameras in general position

Self-calibration of a pair of stereo cameras in general position Self-calibration of a pair of stereo cameras in general position Raúl Rojas Institut für Informatik Freie Universität Berlin Takustr. 9, 14195 Berlin, Germany Abstract. This paper shows that it is possible

More information

Multiview Stereo COSC450. Lecture 8

Multiview Stereo COSC450. Lecture 8 Multiview Stereo COSC450 Lecture 8 Stereo Vision So Far Stereo and epipolar geometry Fundamental matrix captures geometry 8-point algorithm Essential matrix with calibrated cameras 5-point algorithm Intersect

More information

Fast 3D Pose Estimation With Out-of-Sequence Measurements

Fast 3D Pose Estimation With Out-of-Sequence Measurements Fast 3D Pose Estimation With Out-of-Sequence Measurements Ananth Ranganathan, Michael Kaess, and Frank Dellaert Georgia Institute of Technology {ananth,kaess,dellaert}@cc.gatech.edu Abstract We present

More information

Monocular Visual-Inertial SLAM: Continuous Preintegration and Reliable Initialization

Monocular Visual-Inertial SLAM: Continuous Preintegration and Reliable Initialization sensors Article Monocular Visual-Inertial SLAM: Continuous Preintegration and Reliable Initialization Yi Liu 1, Zhong Chen 1, *, Wenjuan Zheng 2, Hao Wang 2 and Jianguo Liu 1 1 National Key Laboratory

More information

Simuntaneous Localisation and Mapping with a Single Camera. Abhishek Aneja and Zhichao Chen

Simuntaneous Localisation and Mapping with a Single Camera. Abhishek Aneja and Zhichao Chen Simuntaneous Localisation and Mapping with a Single Camera Abhishek Aneja and Zhichao Chen 3 December, Simuntaneous Localisation and Mapping with asinglecamera 1 Abstract Image reconstruction is common

More information