UAV Autonomous Navigation in a GPS-limited Urban Environment

Size: px
Start display at page:

Download "UAV Autonomous Navigation in a GPS-limited Urban Environment"

Transcription

1 UAV Autonomous Navigation in a GPS-limited Urban Environment Yoko Watanabe DCSD/CDIN JSO-Aerial Robotics 2014/10/02-03

2 Introduction 2 Global objective Development of a UAV onboard system to maintain flight security and navigation & guidance capability for urban operation GPS signal occlusion Alternative GPS-independent navigation system Stabilization GN&C functions Mission continuation Automatic return-to-base etc. Path planning with GPS signal occlusion map Safe path plan w.r.t. localization uncertainty Sensor availabilities A. Gorski «Understanding GPS performance in urban environments»

3 GPS-independent navigation system 3 Objective Development of alternative back-up navigation system which estimates UAV absolute state by using onboard sensors other than GPS, given the last GPS-updated state No dedicated sensors No knowledge on environment Low computation Robustness In-flight validation on outdoor UAV helicopter Onboard system integration with flight avionics onboard sensors Closed-loop flight using existing GN&C functions with GPS signal cut-off

4 Vision-aided inertial navigation 4 Stereo vs Monocular visions Pure vision vs INS-fusion actuator input Guidance & Control Visual odometry vs Visual SLAM Filter vs Optimization (BA) Onboard Sensors INS GPS Barometer Laser attitude angular rate acceleration position velocity altitude (MSL) altitude (AGL) UAV states UAV Navigation optical flow Optical Flow Estimation Camera image

5 Vision-aided inertial navigation 5 Visual odometry Stereo vision Monocular vision (motion stereo) actuator input Guidance & Control [Kelly 2007], [Kendoul 2009] and many others. Low computation Estimation drift due to absence of absolute measurement Visual SLAM Loop-closure (memorization of feature points) [Weiss 2012], [Chaudhar 2013] and many others. High computation + memory-use Estimation correction with absolute measurement Keyframe-based SLAM [Klein 2007] and many others. Onboard Sensors INS GPS Barometer Laser Camera attitude angular rate acceleration position velocity altitude (MSL) altitude (AGL) image UAV states UAV Navigation optical flow Optical Flow Estimation

6 Optical flow estimation 6 Robust estimation of Affine model optical flow field (DTIM) Feature point matching on a small window RANSAC approximation ~10Hz x pk = A k x pk + b k Rotational flow Translational flow

7 Optical flow estimation 7 vs. OpenCV Matrix A ~ Rotation Vector b ~ Translation Mean of Estimation Error ~ Bias Std. Deviation of Estimation Error ~ Noise

8 Onboard system architecture 8 Flight avionics Serial com. P/L processor system state AMD 4x1.5GHz Linux Debian Flight Safety safety mode UAV Flight Management flight mode request Decision & Mission Planning operator commands actuator inputs flight mode and/or laser alt.agl Flight Guidance & Control guidance commands Advanced Guidance Law µblox : 4Hz GPS Baro 6 dof state pos./vel. alt.msl filtered acc., angular vel. EKF 6 dof state + sensor measurements 50Hz Perception environment information Camera Lidar SBG : 50Hz INS Low-pass filter

9 Onboard system architecture with GPS-independent navigation 9 Flight avionics system state Serial com. P/L processor AMD dual core 1.6GHz Linux Debian Flight Safety UAV safety mode Flight Management flight mode request Decision & Mission Planning operator commands laser Baro actuator inputs alt.agl 6 dof state pos./vel. alt.msl Flight Guidance & Control filtered acc., angular vel. EKF flight mode guidance commands 6 dof state + sensor measurements and/or Advanced Guidance Law environment information Perception + OF Estimation optical flow alt.agl Camera Lidar INS Low-pass filter EKF pos./vel.

10 Open-loop flight test results 10 OF + INS + Barometer with or w/o laser (alt. AGL) over a slope with laser w/o laser with laser w/o laser

11 Closed-loop loop flight test results 11 GPS cut-off during WP tracking mission Rectangle trajectory 40 x 80 (m) Constant heading into wind NW 40m WP2 10m of WP-reach criteria Flight distance (w/o GPS) ~ 320 (m) Flight time (w/o GPS) ~ 130 (sec) 10m radius for WP-reach WP1 80m WP4 WP3 WP4 WP1 WP2 WP3

12 Closed-loop loop flight test results 12 OF-estimated vs. GPS-estimated position and velocity Position estimation error < 12m Stable altitude estimation by barometer + laser WP miss distance < 12m Position Velocity WP1 WP2 WP3 WP4 WP1

13 Closed-loop loop flight test results (3/3) 13 Position and velocity estimation errors

14 Closed-loop loop flight test results with INS-only navigation 14 Position and velocity estimation errors Stabilization 50 m of drift after 45 sec Divergence in altitude control due to Vz estimation Manual take-back Position 50m miss distance climb WP2 Velocity WP1 divergence

15 Closed-loop loop flight test results with INS-only navigation 15 Position and velocity estimation errors WP2 WP1

16 Summary for GPS-independent navigation system 16 Summary Development and in-flight validation of optical flow-based inertial navigation system WP tracking mission continuation with GPS cut-off (switch navigation modes) Perspectives Performance improvement Different OF estimation algorithms Different VINS algorithms Demonstration of automatic return-to-base w/o GPS Return-to-base by VO Automatic landing with vision-based control Reconfigurable navigation system Sensor failure GPS accuracy

17 Path planning with GPS signal occlusion map 17 Motivation F. Kleijer et al. «Prediction of GNSS availability and accuracy in urban environments» Prediction of PDOP (Positional Dilution of Precision) of GPS at a certain time & location, from 3D obstacle map UAV safe operation planning Avoid zones at high risk of GPS signal loss, if no degraded navigation mode is available Use sensor availability map in path planning task Choice of the best navigation mode Take more safety margin when using degraded navigation mode Obstacle collision risk w.r.t. localization uncertainty

18 3D safe path planning problem 18 Objective = find a safe & short path from A to B Given : Environment model = 3D voxel occupancy map N different UAV localization modes Positional availability Error propagation model Collision criteria Minimum safety distance = ds Uncertainty corridor = (2σ+ds)-ellipsoid evolution Safe path = no interception between the corridor and occupied voxels Minimizing function = Volume of the uncertainty corridor Path length Integrated localization uncertainty Uncertainty corridor Obstacle Goal B Start A Collision!

19 Related work 19 Path planning with localization uncertainty Ground mobile robot navigation with Dead-reckoning Landmark detection Collision risk-free minimum distance path A* : [Alami 1994], [Lambert 2003], [Gonzales 2005] etc. Sampling-based (PRM, RRT) : [Peppy 2006], [Luders 2013], [Bopardikar 2014] etc. POMDP : [Candido 2010] etc. The localization mode is imposed Localization uncertainty

20 Related Work (2/2) 20 Path and observation strategy planning A. Yamashita, K. Fujita and K. Kaneko, Path and viewpoint planning of mobile robots with multiple observation strategies, IROS Ground mobile robot navigation with Dead-reckoning Landmark detection - 1 landmark by stereo - 2 landmarks - 3 landmarks Two-stage planning Search for all collision risk-free paths with maximum allowable localization uncertainty Viewpoint (and localization mode) planning on each path

21 3D safe path planner architecture 21 Point cloud data Sensor characteristics 3D voxel occupancy map Sensor availability map Safe path planner node Localization models Mission objective A* Theta* RRT* RRT-Theta* GPS/INS VINS INS-only Landmark localization uncertainty Guidance law Flight plan generation Flight plan

22 Example 1 : No VINS 22 Path planning with GPS availability map No vision-aided navigation mode available onboard Sky-view angle Cube Wall Baffle Safe path planner fly over the obstacles to avoid no GPS zones Shortest path planner collisions due to divergence in localization error covariance

23 Example 2 : with VINS 23 Cube Wall Baffle Cube Baffle Uncertainty corridor Flight plan INS-only GPS / INS VINS Remark : Dependence on optical flow measurement noise

24 Example 3 : with VINS + Landmarks 24 Cube Wall Baffle Cube Baffle Uncertainty corridor Flight plan INS-only GPS / INS Vision / INS Landmark1 Landmark2 Remark : Alternate use of VINS and Landmarks Fusion

25 Summary for 3D safe path planning 25 3D safe path planner Under uncertainty with multiple localization modes Simulation studies with UAV obstacle field navigation benchmark Preliminary flight test to validate onboard mapping and planning Future work Dynamic path re-planning using sampling-based graph search (RRT*) online mapping supervision on real sensor availability and localization performance Path planning with different guidance strategies visual servoing (e.g. wall following etc.)

The AZUR project. Development of autonomous navigation software for urban operation of VTOL-type UAV. Yoko Watanabe

The AZUR project. Development of autonomous navigation software for urban operation of VTOL-type UAV. Yoko Watanabe The AZUR project Development of autonomous navigation software for urban operation of VTOL-type UAV Yoko Watanabe Dept. of Systems Control and Flight Dynalics (DCSD) MAVRC Garden Workshop 02/ 07 / 2015

More information

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech Dealing with Scale Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline Why care about size? The IMU as scale provider: The

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 7.2: Visual Odometry Jürgen Sturm Technische Universität München Cascaded Control Robot Trajectory 0.1 Hz Visual

More information

Autonomous navigation in industrial cluttered environments using embedded stereo-vision

Autonomous navigation in industrial cluttered environments using embedded stereo-vision Autonomous navigation in industrial cluttered environments using embedded stereo-vision Julien Marzat ONERA Palaiseau Aerial Robotics workshop, Paris, 8-9 March 2017 1 Copernic Lab (ONERA Palaiseau) Research

More information

Aerial Robotic Autonomous Exploration & Mapping in Degraded Visual Environments. Kostas Alexis Autonomous Robots Lab, University of Nevada, Reno

Aerial Robotic Autonomous Exploration & Mapping in Degraded Visual Environments. Kostas Alexis Autonomous Robots Lab, University of Nevada, Reno Aerial Robotic Autonomous Exploration & Mapping in Degraded Visual Environments Kostas Alexis Autonomous Robots Lab, University of Nevada, Reno Motivation Aerial robotic operation in GPS-denied Degraded

More information

Unmanned Aerial Vehicles

Unmanned Aerial Vehicles Unmanned Aerial Vehicles Embedded Control Edited by Rogelio Lozano WILEY Table of Contents Chapter 1. Aerodynamic Configurations and Dynamic Models 1 Pedro CASTILLO and Alejandro DZUL 1.1. Aerodynamic

More information

Turning an Automated System into an Autonomous system using Model-Based Design Autonomous Tech Conference 2018

Turning an Automated System into an Autonomous system using Model-Based Design Autonomous Tech Conference 2018 Turning an Automated System into an Autonomous system using Model-Based Design Autonomous Tech Conference 2018 Asaf Moses Systematics Ltd., Technical Product Manager aviasafm@systematics.co.il 1 Autonomous

More information

Visual SLAM for small Unmanned Aerial Vehicles

Visual SLAM for small Unmanned Aerial Vehicles Visual SLAM for small Unmanned Aerial Vehicles Margarita Chli Autonomous Systems Lab, ETH Zurich Simultaneous Localization And Mapping How can a body navigate in a previously unknown environment while

More information

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS Mobile Robotics Mathematics, Models, and Methods Alonzo Kelly Carnegie Mellon University HI Cambridge UNIVERSITY PRESS Contents Preface page xiii 1 Introduction 1 1.1 Applications of Mobile Robots 2 1.2

More information

W4. Perception & Situation Awareness & Decision making

W4. Perception & Situation Awareness & Decision making W4. Perception & Situation Awareness & Decision making Robot Perception for Dynamic environments: Outline & DP-Grids concept Dynamic Probabilistic Grids Bayesian Occupancy Filter concept Dynamic Probabilistic

More information

Lecture 13 Visual Inertial Fusion

Lecture 13 Visual Inertial Fusion Lecture 13 Visual Inertial Fusion Davide Scaramuzza Course Evaluation Please fill the evaluation form you received by email! Provide feedback on Exercises: good and bad Course: good and bad How to improve

More information

MULTI-MODAL MAPPING. Robotics Day, 31 Mar Frank Mascarich, Shehryar Khattak, Tung Dang

MULTI-MODAL MAPPING. Robotics Day, 31 Mar Frank Mascarich, Shehryar Khattak, Tung Dang MULTI-MODAL MAPPING Robotics Day, 31 Mar 2017 Frank Mascarich, Shehryar Khattak, Tung Dang Application-Specific Sensors Cameras TOF Cameras PERCEPTION LiDAR IMU Localization Mapping Autonomy Robotic Perception

More information

Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles

Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles Shaojie Shen Dept. of Electrical and Systems Engineering & GRASP Lab, University of Pennsylvania Committee: Daniel

More information

ASTRIUM Space Transportation

ASTRIUM Space Transportation SIMU-LANDER Hazard avoidance & advanced GNC for interplanetary descent and soft-landing S. Reynaud, E. Ferreira, S. Trinh, T. Jean-marius 3rd International Workshop on Astrodynamics Tools and Techniques

More information

Tightly-Integrated Visual and Inertial Navigation for Pinpoint Landing on Rugged Terrains

Tightly-Integrated Visual and Inertial Navigation for Pinpoint Landing on Rugged Terrains Tightly-Integrated Visual and Inertial Navigation for Pinpoint Landing on Rugged Terrains PhD student: Jeff DELAUNE ONERA Director: Guy LE BESNERAIS ONERA Advisors: Jean-Loup FARGES Clément BOURDARIAS

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: EKF-based SLAM Dr. Kostas Alexis (CSE) These slides have partially relied on the course of C. Stachniss, Robot Mapping - WS 2013/14 Autonomous Robot Challenges Where

More information

Perspective Sensing for Inertial Stabilization

Perspective Sensing for Inertial Stabilization Perspective Sensing for Inertial Stabilization Dr. Bernard A. Schnaufer Jeremy Nadke Advanced Technology Center Rockwell Collins, Inc. Cedar Rapids, IA Agenda Rockwell Collins & the Advanced Technology

More information

This is an author-deposited version published in : Eprints ID : 15091

This is an author-deposited version published in :   Eprints ID : 15091 Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

Simultaneous Visual Target Tracking and Navigation in a GPS-Denied Environment

Simultaneous Visual Target Tracking and Navigation in a GPS-Denied Environment Simultaneous Visual Target Tracking and Navigation in a GPS-Denied Environment Yoko Watanabe and Patrick Fabiani ONERA/DCSD 3155 Toulouse, France Email: {Yoko.Watanabe, Patrick.Fabiani}@onera.fr Guy Le

More information

Stable Vision-Aided Navigation for Large-Area Augmented Reality

Stable Vision-Aided Navigation for Large-Area Augmented Reality Stable Vision-Aided Navigation for Large-Area Augmented Reality Taragay Oskiper, Han-Pang Chiu, Zhiwei Zhu Supun Samarasekera, Rakesh Teddy Kumar Vision and Robotics Laboratory SRI-International Sarnoff,

More information

Spring 2016 :: :: Robot Autonomy :: Team 7 Motion Planning for Autonomous All-Terrain Vehicle

Spring 2016 :: :: Robot Autonomy :: Team 7 Motion Planning for Autonomous All-Terrain Vehicle Spring 2016 :: 16662 :: Robot Autonomy :: Team 7 Motion Planning for Autonomous All-Terrain Vehicle Guan-Horng Liu, Samuel Wang, Shu-Kai Lin, Chris Wang, Tiffany May Advisor : Mr. George Kantor OUTLINE

More information

Sensor Fusion: Potential, Challenges and Applications. Presented by KVH Industries and Geodetics, Inc. December 2016

Sensor Fusion: Potential, Challenges and Applications. Presented by KVH Industries and Geodetics, Inc. December 2016 Sensor Fusion: Potential, Challenges and Applications Presented by KVH Industries and Geodetics, Inc. December 2016 1 KVH Industries Overview Innovative technology company 600 employees worldwide Focused

More information

TEST RESULTS OF A GPS/INERTIAL NAVIGATION SYSTEM USING A LOW COST MEMS IMU

TEST RESULTS OF A GPS/INERTIAL NAVIGATION SYSTEM USING A LOW COST MEMS IMU TEST RESULTS OF A GPS/INERTIAL NAVIGATION SYSTEM USING A LOW COST MEMS IMU Alison K. Brown, Ph.D.* NAVSYS Corporation, 1496 Woodcarver Road, Colorado Springs, CO 891 USA, e-mail: abrown@navsys.com Abstract

More information

Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter

Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter Przemys law G asior, Stanis law Gardecki, Jaros law Gośliński and Wojciech Giernacki Poznan University of

More information

Data Association for SLAM

Data Association for SLAM CALIFORNIA INSTITUTE OF TECHNOLOGY ME/CS 132a, Winter 2011 Lab #2 Due: Mar 10th, 2011 Part I Data Association for SLAM 1 Introduction For this part, you will experiment with a simulation of an EKF SLAM

More information

Davide Scaramuzza. University of Zurich

Davide Scaramuzza. University of Zurich Davide Scaramuzza University of Zurich Robotics and Perception Group http://rpg.ifi.uzh.ch/ Scaramuzza, D., Fraundorfer, F., Visual Odometry: Part I - The First 30 Years and Fundamentals, IEEE Robotics

More information

EE5110/6110 Special Topics in Automation and Control. Autonomous Systems: Unmanned Aerial Vehicles. UAV Platform Design

EE5110/6110 Special Topics in Automation and Control. Autonomous Systems: Unmanned Aerial Vehicles. UAV Platform Design EE5110/6110 Special Topics in Automation and Control Autonomous Systems: Unmanned Aerial Vehicles UAV Platform Design Dr. Lin Feng (tsllinf@nus.edu.sg) Unmanned Systems Research Group, Dept of Electrical

More information

Simultaneous Localization

Simultaneous Localization Simultaneous Localization and Mapping (SLAM) RSS Technical Lecture 16 April 9, 2012 Prof. Teller Text: Siegwart and Nourbakhsh S. 5.8 Navigation Overview Where am I? Where am I going? Localization Assumed

More information

CSE 527: Introduction to Computer Vision

CSE 527: Introduction to Computer Vision CSE 527: Introduction to Computer Vision Week 10 Class 2: Visual Odometry November 2nd, 2017 Today Visual Odometry Intro Algorithm SLAM Visual Odometry Input Output Images, Video Camera trajectory, motion

More information

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Arun Das 05/09/2017 Arun Das Waterloo Autonomous Vehicles Lab Introduction What s in a name? Arun Das Waterloo Autonomous

More information

SAE Aerospace Control & Guidance Systems Committee #97 March 1-3, 2006 AFOSR, AFRL. Georgia Tech, MIT, UCLA, Virginia Tech

SAE Aerospace Control & Guidance Systems Committee #97 March 1-3, 2006 AFOSR, AFRL. Georgia Tech, MIT, UCLA, Virginia Tech Systems for Aircraft SAE Aerospace Control & Guidance Systems Committee #97 March 1-3, 2006 AFOSR, AFRL Georgia Tech, MIT, UCLA, Virginia Tech controls.ae.gatech.edu/avcs Systems Systems MURI Development

More information

Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) Simultaneous Localization and Mapping (SLAM) RSS Lecture 16 April 8, 2013 Prof. Teller Text: Siegwart and Nourbakhsh S. 5.8 SLAM Problem Statement Inputs: No external coordinate reference Time series of

More information

GPS-Aided Inertial Navigation Systems (INS) for Remote Sensing

GPS-Aided Inertial Navigation Systems (INS) for Remote Sensing GPS-Aided Inertial Navigation Systems (INS) for Remote Sensing www.inertiallabs.com 1 EVOLUTION OF REMOTE SENSING The latest progress in Remote sensing emerged more than 150 years ago, as balloonists took

More information

Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry

Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry Distributed Vision-Aided Cooperative Navigation Based on hree-view Geometry Vadim Indelman, Pini Gurfil Distributed Space Systems Lab, Aerospace Engineering, echnion Ehud Rivlin Computer Science, echnion

More information

Hybrids Mixed Approaches

Hybrids Mixed Approaches Hybrids Mixed Approaches Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline Why mixing? Parallel Tracking and Mapping Benefits

More information

Outline Sensors. EE Sensors. H.I. Bozma. Electric Electronic Engineering Bogazici University. December 13, 2017

Outline Sensors. EE Sensors. H.I. Bozma. Electric Electronic Engineering Bogazici University. December 13, 2017 Electric Electronic Engineering Bogazici University December 13, 2017 Absolute position measurement Outline Motion Odometry Inertial systems Environmental Tactile Proximity Sensing Ground-Based RF Beacons

More information

Camera and Inertial Sensor Fusion

Camera and Inertial Sensor Fusion January 6, 2018 For First Robotics 2018 Camera and Inertial Sensor Fusion David Zhang david.chao.zhang@gmail.com Version 4.1 1 My Background Ph.D. of Physics - Penn State Univ. Research scientist at SRI

More information

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models Introduction ti to Embedded dsystems EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping Gabe Hoffmann Ph.D. Candidate, Aero/Astro Engineering Stanford University Statistical Models

More information

Mobile Robots Summery. Autonomous Mobile Robots

Mobile Robots Summery. Autonomous Mobile Robots Mobile Robots Summery Roland Siegwart Mike Bosse, Marco Hutter, Martin Rufli, Davide Scaramuzza, (Margarita Chli, Paul Furgale) Mobile Robots Summery 1 Introduction probabilistic map-based localization

More information

Introduction to Autonomous Mobile Robots

Introduction to Autonomous Mobile Robots Introduction to Autonomous Mobile Robots second edition Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza The MIT Press Cambridge, Massachusetts London, England Contents Acknowledgments xiii

More information

Guidance, Navigation and Control issues for Hayabusa follow-on missions F. Terui, N. Ogawa, O. Mori JAXA (Japan Aerospace Exploration Agency )

Guidance, Navigation and Control issues for Hayabusa follow-on missions F. Terui, N. Ogawa, O. Mori JAXA (Japan Aerospace Exploration Agency ) 18-20th May 2009 Guidance, Navigation and Control issues for Hayabusa follow-on missions F. Terui, N. Ogawa, O. Mori JAXA (Japan Aerospace Exploration Agency ) Lessons and Learned & heritage from Proximity

More information

Advanced Driver Assistance: Modular Image Sensor Concept

Advanced Driver Assistance: Modular Image Sensor Concept Vision Advanced Driver Assistance: Modular Image Sensor Concept Supplying value. Integrated Passive and Active Safety Systems Active Safety Passive Safety Scope Reduction of accident probability Get ready

More information

Test Report iµvru. (excerpt) Commercial-in-Confidence. imar Navigation GmbH Im Reihersbruch 3 D St. Ingbert Germany.

Test Report iµvru. (excerpt) Commercial-in-Confidence. imar Navigation GmbH Im Reihersbruch 3 D St. Ingbert Germany. 1 of 11 (excerpt) Commercial-in-Confidence imar Navigation GmbH Im Reihersbruch 3 D-66386 St. Ingbert Germany www.imar-navigation.de sales@imar-navigation.de 2 of 11 CHANGE RECORD Date Issue Paragraph

More information

Technical Paper of HITCSC Team for The International Aerial Robotics Competition

Technical Paper of HITCSC Team for The International Aerial Robotics Competition Technical Paper of HITCSC Team for The International Aerial Robotics Competition Qingtao Yu, Yuanhong Li, Hang Yu, Haodi Yao, Rui Xing, Qi Zhao, Xiaowei Xing Harbin Institute of Tecnology ABSTRACT This

More information

Monocular Visual-Inertial SLAM. Shaojie Shen Assistant Professor, HKUST Director, HKUST-DJI Joint Innovation Laboratory

Monocular Visual-Inertial SLAM. Shaojie Shen Assistant Professor, HKUST Director, HKUST-DJI Joint Innovation Laboratory Monocular Visual-Inertial SLAM Shaojie Shen Assistant Professor, HKUST Director, HKUST-DJI Joint Innovation Laboratory Why Monocular? Minimum structural requirements Widely available sensors Applications:

More information

BBR Progress Report 006: Autonomous 2-D Mapping of a Building Floor

BBR Progress Report 006: Autonomous 2-D Mapping of a Building Floor BBR Progress Report 006: Autonomous 2-D Mapping of a Building Floor Andy Sayler & Constantin Berzan November 30, 2010 Abstract In the past two weeks, we implemented and tested landmark extraction based

More information

Camera Drones Lecture 2 Control and Sensors

Camera Drones Lecture 2 Control and Sensors Camera Drones Lecture 2 Control and Sensors Ass.Prof. Friedrich Fraundorfer WS 2017 1 Outline Quadrotor control principles Sensors 2 Quadrotor control - Hovering Hovering means quadrotor needs to hold

More information

State Estimation for Continuous-Time Systems with Perspective Outputs from Discrete Noisy Time-Delayed Measurements

State Estimation for Continuous-Time Systems with Perspective Outputs from Discrete Noisy Time-Delayed Measurements State Estimation for Continuous-Time Systems with Perspective Outputs from Discrete Noisy Time-Delayed Measurements António Pedro Aguiar aguiar@ece.ucsb.edu João Pedro Hespanha hespanha@ece.ucsb.edu Dept.

More information

Zürich. Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza. ETH Master Course: L Autonomous Mobile Robots Summary

Zürich. Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza. ETH Master Course: L Autonomous Mobile Robots Summary Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza ETH Master Course: 151-0854-00L Autonomous Mobile Robots Summary 2 Lecture Overview Mobile Robot Control Scheme knowledge, data base mission

More information

Master Automática y Robótica. Técnicas Avanzadas de Vision: Visual Odometry. by Pascual Campoy Computer Vision Group

Master Automática y Robótica. Técnicas Avanzadas de Vision: Visual Odometry. by Pascual Campoy Computer Vision Group Master Automática y Robótica Técnicas Avanzadas de Vision: by Pascual Campoy Computer Vision Group www.vision4uav.eu Centro de Automá

More information

POTENTIAL ACTIVE-VISION CONTROL SYSTEMS FOR UNMANNED AIRCRAFT

POTENTIAL ACTIVE-VISION CONTROL SYSTEMS FOR UNMANNED AIRCRAFT 26 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES POTENTIAL ACTIVE-VISION CONTROL SYSTEMS FOR UNMANNED AIRCRAFT Eric N. Johnson* *Lockheed Martin Associate Professor of Avionics Integration, Georgia

More information

Inertial Systems. Ekinox Series TACTICAL GRADE MEMS. Motion Sensing & Navigation IMU AHRS MRU INS VG

Inertial Systems. Ekinox Series TACTICAL GRADE MEMS. Motion Sensing & Navigation IMU AHRS MRU INS VG Ekinox Series TACTICAL GRADE MEMS Inertial Systems IMU AHRS MRU INS VG ITAR Free 0.05 RMS Motion Sensing & Navigation AEROSPACE GROUND MARINE Ekinox Series R&D specialists usually compromise between high

More information

Visual Odometry. Features, Tracking, Essential Matrix, and RANSAC. Stephan Weiss Computer Vision Group NASA-JPL / CalTech

Visual Odometry. Features, Tracking, Essential Matrix, and RANSAC. Stephan Weiss Computer Vision Group NASA-JPL / CalTech Visual Odometry Features, Tracking, Essential Matrix, and RANSAC Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline The

More information

OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps

OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps Georgios Floros, Benito van der Zander and Bastian Leibe RWTH Aachen University, Germany http://www.vision.rwth-aachen.de floros@vision.rwth-aachen.de

More information

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm Computer Vision Group Prof. Daniel Cremers Dense Tracking and Mapping for Autonomous Quadrocopters Jürgen Sturm Joint work with Frank Steinbrücker, Jakob Engel, Christian Kerl, Erik Bylow, and Daniel Cremers

More information

Localization, Where am I?

Localization, Where am I? 5.1 Localization, Where am I?? position Position Update (Estimation?) Encoder Prediction of Position (e.g. odometry) YES matched observations Map data base predicted position Matching Odometry, Dead Reckoning

More information

Motion estimation of unmanned marine vehicles Massimo Caccia

Motion estimation of unmanned marine vehicles Massimo Caccia Motion estimation of unmanned marine vehicles Massimo Caccia Consiglio Nazionale delle Ricerche Istituto di Studi sui Sistemi Intelligenti per l Automazione Via Amendola 122 D/O, 70126, Bari, Italy massimo.caccia@ge.issia.cnr.it

More information

Video integration in a GNSS/INS hybridization architecture for approach and landing

Video integration in a GNSS/INS hybridization architecture for approach and landing Author manuscript, published in "IEEE/ION PLANS 2014, Position Location and Navigation Symposium, Monterey : United States (2014)" Video integration in a GNSS/INS hybridization architecture for approach

More information

Vision-based GNC and Decision Making for an Unmanned Helicopter. presented by Frank Thielecke

Vision-based GNC and Decision Making for an Unmanned Helicopter. presented by Frank Thielecke Vision-based GNC and Decision Making for an Unmanned Helicopter presented by Frank Thielecke Outline The ARTIS Family System Concept for More Autonomy - On-Board Components for Supervisory Control - Route

More information

Monocular Visual Odometry

Monocular Visual Odometry Elective in Robotics coordinator: Prof. Giuseppe Oriolo Monocular Visual Odometry (slides prepared by Luca Ricci) Monocular vs. Stereo: eamples from Nature Predator Predators eyes face forward. The field

More information

Computationally Efficient Visual-inertial Sensor Fusion for GPS-denied Navigation on a Small Quadrotor

Computationally Efficient Visual-inertial Sensor Fusion for GPS-denied Navigation on a Small Quadrotor Computationally Efficient Visual-inertial Sensor Fusion for GPS-denied Navigation on a Small Quadrotor Chang Liu & Stephen D. Prior Faculty of Engineering and the Environment, University of Southampton,

More information

Vision-based navigation

Vision-based navigation Vision-based navigation Simon Lacroix To cite this version: Simon Lacroix. Vision-based navigation. Doctoral. Spring School on Location-Based Services, École Nationale d Aviation Civile, Toulouse (France),

More information

Unmanned Vehicle Technology Researches for Outdoor Environments. *Ju-Jang Lee 1)

Unmanned Vehicle Technology Researches for Outdoor Environments. *Ju-Jang Lee 1) Keynote Paper Unmanned Vehicle Technology Researches for Outdoor Environments *Ju-Jang Lee 1) 1) Department of Electrical Engineering, KAIST, Daejeon 305-701, Korea 1) jjlee@ee.kaist.ac.kr ABSTRACT The

More information

Lecture: Autonomous micro aerial vehicles

Lecture: Autonomous micro aerial vehicles Lecture: Autonomous micro aerial vehicles Friedrich Fraundorfer Remote Sensing Technology TU München 1/41 Autonomous operation@eth Zürich Start 2/41 Autonomous operation@eth Zürich 3/41 Outline MAV system

More information

An Experimental Exploration of Low-Cost Solutions for Precision Ground Vehicle Navigation

An Experimental Exploration of Low-Cost Solutions for Precision Ground Vehicle Navigation An Experimental Exploration of Low-Cost Solutions for Precision Ground Vehicle Navigation Daniel Cody Salmon David M. Bevly Auburn University GPS and Vehicle Dynamics Laboratory 1 Introduction Motivation

More information

A Reactive Bearing Angle Only Obstacle Avoidance Technique for Unmanned Ground Vehicles

A Reactive Bearing Angle Only Obstacle Avoidance Technique for Unmanned Ground Vehicles Proceedings of the International Conference of Control, Dynamic Systems, and Robotics Ottawa, Ontario, Canada, May 15-16 2014 Paper No. 54 A Reactive Bearing Angle Only Obstacle Avoidance Technique for

More information

VALIDATION OF 3D ENVIRONMENT PERCEPTION FOR LANDING ON SMALL BODIES USING UAV PLATFORMS

VALIDATION OF 3D ENVIRONMENT PERCEPTION FOR LANDING ON SMALL BODIES USING UAV PLATFORMS ASTRA 2015 VALIDATION OF 3D ENVIRONMENT PERCEPTION FOR LANDING ON SMALL BODIES USING UAV PLATFORMS Property of GMV All rights reserved PERIGEO PROJECT The work presented here is part of the PERIGEO project

More information

Safe Prediction-Based Local Path Planning using Obstacle Probability Sections

Safe Prediction-Based Local Path Planning using Obstacle Probability Sections Slide 1 Safe Prediction-Based Local Path Planning using Obstacle Probability Sections Tanja Hebecker and Frank Ortmeier Chair of Software Engineering, Otto-von-Guericke University of Magdeburg, Germany

More information

SLAM II: SLAM for robotic vision-based perception

SLAM II: SLAM for robotic vision-based perception SLAM II: SLAM for robotic vision-based perception Margarita Chli Martin Rufli, Roland Siegwart Margarita Chli, Martin Rufli, Roland Siegwart SLAM II today s lecture Last time: how to do SLAM? Today: what

More information

Survey on Computer Vision for UAVs: Current Developments and Trends

Survey on Computer Vision for UAVs: Current Developments and Trends J Intell Robot Syst (2017) 87:141 168 DOI 10.1007/s10846-017-0483-z Survey on Computer Vision for UAVs: Current Developments and Trends Christoforos Kanellakis George Nikolakopoulos Received: 28 April

More information

Towards Fully-automated Driving. tue-mps.org. Challenges and Potential Solutions. Dr. Gijs Dubbelman Mobile Perception Systems EE-SPS/VCA

Towards Fully-automated Driving. tue-mps.org. Challenges and Potential Solutions. Dr. Gijs Dubbelman Mobile Perception Systems EE-SPS/VCA Towards Fully-automated Driving Challenges and Potential Solutions Dr. Gijs Dubbelman Mobile Perception Systems EE-SPS/VCA Mobile Perception Systems 6 PhDs, 1 postdoc, 1 project manager, 2 software engineers

More information

Use of Image aided Navigation for UAV Navigation and Target Geolocation in Urban and GPS denied Environments

Use of Image aided Navigation for UAV Navigation and Target Geolocation in Urban and GPS denied Environments Use of Image aided Navigation for UAV Navigation and Target Geolocation in Urban and GPS denied Environments Precision Strike Technology Symposium Alison K. Brown, Ph.D. NAVSYS Corporation, Colorado Phone:

More information

AUTONOMOUS NAVIGATION IN COMPLEX INDOOR AND OUTDOOR ENVIRONMENTS WITH MICRO AERIAL VEHICLES. Shaojie Shen A DISSERTATION

AUTONOMOUS NAVIGATION IN COMPLEX INDOOR AND OUTDOOR ENVIRONMENTS WITH MICRO AERIAL VEHICLES. Shaojie Shen A DISSERTATION AUTONOMOUS NAVIGATION IN COMPLEX INDOOR AND OUTDOOR ENVIRONMENTS WITH MICRO AERIAL VEHICLES Shaojie Shen A DISSERTATION in Electrical and Systems Engineering Presented to the Faculties of the University

More information

Qadeer Baig, Mathias Perrollaz, Jander Botelho Do Nascimento, Christian Laugier

Qadeer Baig, Mathias Perrollaz, Jander Botelho Do Nascimento, Christian Laugier Using Fast Classification of Static and Dynamic Environment for Improving Bayesian Occupancy Filter (BOF) and Tracking Qadeer Baig, Mathias Perrollaz, Jander Botelho Do Nascimento, Christian Laugier e-motion

More information

Autonomous Landing of an Unmanned Aerial Vehicle

Autonomous Landing of an Unmanned Aerial Vehicle Autonomous Landing of an Unmanned Aerial Vehicle Joel Hermansson, Andreas Gising Cybaero AB SE-581 12 Linköping, Sweden Email: {joel.hermansson, andreas.gising}@cybaero.se Martin Skoglund and Thomas B.

More information

다중센서기반자율시스템의모델설계및개발 이제훈차장 The MathWorks, Inc. 2

다중센서기반자율시스템의모델설계및개발 이제훈차장 The MathWorks, Inc. 2 1 다중센서기반자율시스템의모델설계및개발 이제훈차장 2017 The MathWorks, Inc. 2 What we will see today 3 Functional Segmentation of Autonomous System Aircraft/ Platform Sense Perceive Plan & Decide Control Connect/ Communicate

More information

Chapters 1 9: Overview

Chapters 1 9: Overview Chapters 1 9: Overview Chapter 1: Introduction Chapters 2 4: Data acquisition Chapters 5 9: Data manipulation Chapter 5: Vertical imagery Chapter 6: Image coordinate measurements and refinements Chapters

More information

NAVIGATION SYSTEM OF AN OUTDOOR SERVICE ROBOT WITH HYBRID LOCOMOTION SYSTEM

NAVIGATION SYSTEM OF AN OUTDOOR SERVICE ROBOT WITH HYBRID LOCOMOTION SYSTEM NAVIGATION SYSTEM OF AN OUTDOOR SERVICE ROBOT WITH HYBRID LOCOMOTION SYSTEM Jorma Selkäinaho, Aarne Halme and Janne Paanajärvi Automation Technology Laboratory, Helsinki University of Technology, Espoo,

More information

Seminar Dept. Automação e Sistemas - UFSC Scan-to-Map Matching Using the Hausdorff Distance for Robust Mobile Robot Localization

Seminar Dept. Automação e Sistemas - UFSC Scan-to-Map Matching Using the Hausdorff Distance for Robust Mobile Robot Localization Seminar Dept. Automação e Sistemas - UFSC Scan-to-Map Matching Using the Hausdorff Distance for Robust Mobile Robot Localization Work presented at ICRA 2008, jointly with ANDRES GUESALAGA PUC Chile Miguel

More information

LibrePilot GCS Tutorial

LibrePilot GCS Tutorial LibrePilot GCS Tutorial BY Wirginia Tomczyk page 1 of 13 Introduction The first dron of Drone Team project use Open Pilot Copter Control (CC). It is the flight controller supported by LibrePilot firmware.

More information

ME 597/747 Autonomous Mobile Robots. Mid Term Exam. Duration: 2 hour Total Marks: 100

ME 597/747 Autonomous Mobile Robots. Mid Term Exam. Duration: 2 hour Total Marks: 100 ME 597/747 Autonomous Mobile Robots Mid Term Exam Duration: 2 hour Total Marks: 100 Instructions: Read the exam carefully before starting. Equations are at the back, but they are NOT necessarily valid

More information

3D Simultaneous Localization and Mapping and Navigation Planning for Mobile Robots in Complex Environments

3D Simultaneous Localization and Mapping and Navigation Planning for Mobile Robots in Complex Environments 3D Simultaneous Localization and Mapping and Navigation Planning for Mobile Robots in Complex Environments Sven Behnke University of Bonn, Germany Computer Science Institute VI Autonomous Intelligent Systems

More information

Aerial and Ground-based Collaborative Mapping: An Experimental Study

Aerial and Ground-based Collaborative Mapping: An Experimental Study Aerial and Ground-based Collaborative Mapping: An Experimental Study Ji Zhang and Sanjiv Singh Abstract We here present studies to enable aerial and ground-based collaborative mapping in GPS-denied environments.

More information

COMBINING MEMS-BASED IMU DATA AND VISION-BASED TRAJECTORY ESTIMATION

COMBINING MEMS-BASED IMU DATA AND VISION-BASED TRAJECTORY ESTIMATION COMBINING MEMS-BASED IMU DATA AND VISION-BASED TRAJECTORY ESTIMATION F. Tsai a*, H. Chang b and A. Y. S. Su c a Center for Space and Remote Sensing Research b Department of Civil Engineering c Research

More information

Low Cost solution for Pose Estimation of Quadrotor

Low Cost solution for Pose Estimation of Quadrotor Low Cost solution for Pose Estimation of Quadrotor mangal@iitk.ac.in https://www.iitk.ac.in/aero/mangal/ Intelligent Guidance and Control Laboratory Indian Institute of Technology, Kanpur Mangal Kothari

More information

ROBOT TEAMS CH 12. Experiments with Cooperative Aerial-Ground Robots

ROBOT TEAMS CH 12. Experiments with Cooperative Aerial-Ground Robots ROBOT TEAMS CH 12 Experiments with Cooperative Aerial-Ground Robots Gaurav S. Sukhatme, James F. Montgomery, and Richard T. Vaughan Speaker: Jeff Barnett Paper Focus Heterogeneous Teams for Surveillance

More information

InFuse: A Comprehensive Framework for Data Fusion in Space Robotics

InFuse: A Comprehensive Framework for Data Fusion in Space Robotics InFuse InFuse: A Comprehensive Framework for Data Fusion in Space Robotics June 20 th, 2017 Shashank Govindaraj (Space Applications Services, Belgium) Overview 1. Motivations & Objectives 2. InFuse within

More information

Servosila Robotic Heads

Servosila Robotic Heads Servosila Robotic Heads www.servosila.com TABLE OF CONTENTS SERVOSILA ROBOTIC HEADS 2 SOFTWARE-DEFINED FUNCTIONS OF THE ROBOTIC HEADS 2 SPECIFICATIONS: ROBOTIC HEADS 4 DIMENSIONS OF ROBOTIC HEAD 5 DIMENSIONS

More information

Advanced Robotics Path Planning & Navigation

Advanced Robotics Path Planning & Navigation Advanced Robotics Path Planning & Navigation 1 Agenda Motivation Basic Definitions Configuration Space Global Planning Local Planning Obstacle Avoidance ROS Navigation Stack 2 Literature Choset, Lynch,

More information

Autonomous Corridor Flight of a UAV Using alow-costandlight-weightrgb-dcamera

Autonomous Corridor Flight of a UAV Using alow-costandlight-weightrgb-dcamera Autonomous Corridor Flight of a UAV Using alow-costandlight-weightrgb-dcamera Sven Lange, Niko Sünderhauf,Peer Neubert,Sebastian Drews, and Peter Protzel Abstract. We describe the first application of

More information

High Accuracy Navigation Using Laser Range Sensors in Outdoor Applications

High Accuracy Navigation Using Laser Range Sensors in Outdoor Applications Proceedings of the 2000 IEEE International Conference on Robotics & Automation San Francisco, CA April 2000 High Accuracy Navigation Using Laser Range Sensors in Outdoor Applications Jose Guivant, Eduardo

More information

Visual Navigation for Flying Robots Exploration, Multi-Robot Coordination and Coverage

Visual Navigation for Flying Robots Exploration, Multi-Robot Coordination and Coverage Computer Vision Group Prof. Daniel Cremers Visual Navigation for Flying Robots Exploration, Multi-Robot Coordination and Coverage Dr. Jürgen Sturm Agenda for Today Exploration with a single robot Coordinated

More information

View Planning and Navigation Algorithms for Autonomous Bridge Inspection with UAVs

View Planning and Navigation Algorithms for Autonomous Bridge Inspection with UAVs View Planning and Navigation Algorithms for Autonomous Bridge Inspection with UAVs Prajwal Shanthakumar, Kevin Yu, Mandeep Singh, Jonah Orevillo, Eric Bianchi, Matthew Hebdon, Pratap Tokekar 1 Introduction

More information

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 2, NO. 1, JANUARY Robust and Accurate Monocular Visual Navigation Combining IMU for a Quadrotor

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 2, NO. 1, JANUARY Robust and Accurate Monocular Visual Navigation Combining IMU for a Quadrotor IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 2, NO. 1, JANUARY 2015 33 Robust and Accurate Monocular Visual Navigation Combining IMU for a Quadrotor Wei Zheng, Fan Zhou, and Zengfu Wang Abstract In this

More information

Path and Viewpoint Planning of Mobile Robots with Multiple Observation Strategies

Path and Viewpoint Planning of Mobile Robots with Multiple Observation Strategies Path and Viewpoint Planning of Mobile s with Multiple Observation Strategies Atsushi Yamashita Kazutoshi Fujita Toru Kaneko Department of Mechanical Engineering Shizuoka University 3 5 1 Johoku, Hamamatsu-shi,

More information

Jo-Car2 Autonomous Mode. Path Planning (Cost Matrix Algorithm)

Jo-Car2 Autonomous Mode. Path Planning (Cost Matrix Algorithm) Chapter 8.2 Jo-Car2 Autonomous Mode Path Planning (Cost Matrix Algorithm) Introduction: In order to achieve its mission and reach the GPS goal safely; without crashing into obstacles or leaving the lane,

More information

Case Study for Long- Range Beyond Visual Line of Sight Project. March 15, 2018 RMEL Transmission and Planning Conference

Case Study for Long- Range Beyond Visual Line of Sight Project. March 15, 2018 RMEL Transmission and Planning Conference Case Study for Long- Range Beyond Visual Line of Sight Project March 15, 2018 RMEL Transmission and Planning Conference 2014 HDR Architecture, 2016 2014 HDR, Inc., all all rights reserved. Helicopters

More information

Mobile Robotics. Mathematics, Models, and Methods

Mobile Robotics. Mathematics, Models, and Methods Mobile Robotics Mathematics, Models, and Methods Mobile Robotics offers comprehensive coverage of the essentials of the field suitable for both students and practitioners. Adapted from the author's graduate

More information

Fast Local Planner for Autonomous Helicopter

Fast Local Planner for Autonomous Helicopter Fast Local Planner for Autonomous Helicopter Alexander Washburn talexan@seas.upenn.edu Faculty advisor: Maxim Likhachev April 22, 2008 Abstract: One challenge of autonomous flight is creating a system

More information

12 June Flight Testing a Vision-Based Navigation and Hazard Detection and Avoidance (VN&HDA) Experiment over a Mars-Representative Terrain

12 June Flight Testing a Vision-Based Navigation and Hazard Detection and Avoidance (VN&HDA) Experiment over a Mars-Representative Terrain Flight Testing a Vision-Based Navigation and Hazard Detection and Avoidance (VN&HDA) Experiment over a Mars-Representative Terrain IPPW 2018: 15th International Planetary Probe Workshop 12 June 2018 Spin.Works,

More information