4D Crop Analysis for Plant Geometry Estimation in Precision Agriculture

Size: px
Start display at page:

Download "4D Crop Analysis for Plant Geometry Estimation in Precision Agriculture"

Transcription

1 4D Crop Analysis for Plant Geometry Estimation in Precision Agriculture MIT Laboratory for Information & Decision Systems IEEE RAS TC on Agricultural Robotics and Automation Webinar #37

2 Acknowledgements Frank Dellaert Jing Dong Andrew Melim Stefano Fenu 2 Glen Rains Gary McMurray Zsolt Kira David Jensen

3 The Borg Lab at Georgia Tech working at the boundary between robotics and computer vision 3 Inference, Sensor fusion, Simultaneous Localization and Mapping (SLAM) [Carlone, Dong, Dellaert: visual-inertial navigation]

4 The Borg Lab at Georgia Tech theory & algorithms for Simultaneous Localization and Mapping (SLAM) first global convergence results [Carlone & Dellaert: Duality theory for SLAM] first incremental SLAM solver [Kaess & Dellaert: isam - incremental smoothing and mapping] 4

5 The Borg Lab at Georgia Tech 5 Structure from Motion, sparse and dense 3D reconstruction [Beall, Dellaert: dense stereo reconstruction]

6 The Borg Lab at Georgia Tech Distributed estimation in multi robot systems [Choudhary, Carlone, Dong, Indelman, Christensen, Dellaert: distributed mapping, active sensing, exploration] 6

7 Outline Ag Sensing 3D reconstruction 4D crop analysis Current work

8 Outline Ag Sensing 3D reconstruction 4D crop analysis Current work

9 motivations World needs 75% more food by 2050 In North America, yield loss approaches 25% of harvest biotic stresses (pests, insects) abiotic stresses (moisture and nutrients imbalance) In the state of Georgia, yield losses exceed a billion dollars a year 9

10 motivations Crop monitoring is mainly performed by human operators: time and cost prohibitive covers small area of field (average field is 642 acres in Georgia) not consistent between scouting intervals must collect leaf and soil samples to identify source of stress 10

11 Use robotics and computer vision to make monitoring and early disease detection automatic and cost-effective. Deploy relatively cheap robots that: operate for extended time quickly cover large areas have repeatable performance our objective 11

12 challenges What sensing is required to detect biotic and abiotic stresses? How do you collect the data (which robots)? How do you interpret the data (which algorithms)? How do you visualize results / provide situational awareness to farm manager? 12

13 Ag Sensing Project 13 NRI: Mul)purpose robo)c pla2orm for field scou)ng and sampling

14 Ag Sensing Project 4D mapping: ground and aerial robots for monitoring and early disease detection using visual data Soil and leaf sampling: robotic arm to collect soil and leaf samples estimate plant geometry (height, crown radius) and appearance evaluate how geometry evolves over time (growth rate, discoloration) autonomous rover design of leaf sampling system (finger tips, visual servoing for grasping, image processing) design of soil sampling system 14 NRI: Mul)purpose robo)c pla2orm for field scou)ng and sampling

15 4D mapping overview Output: interpreted info to operator Input: sensor data 3D reconstruction week 1 15 week 2 Plant segmentation 4D crop analysis week 3

16 Outline Ag Sensing 3D reconstruction 4D crop analysis Current work

17 why 3D reconstruction? from webinar 32 - Dr. Carrick Detweiler: [slide courtesy of Carrick Detweiler] 2D laser: cost ~ 1k USD power ~ 2.5W weight ~ 160g range ~ 5m sparse data 17

18 our sensors PointGrey Chameleon color camera Inertial Measurement Unit (IMU) GPS (APM autopilot) low cost, low power, dense data 18

19 robotic platforms Data collection for entire growing season (planting through harvest) sensor data from tractor twice a week sensor data from UAV once a month AscTec Pelican 19

20 remote data collection remote control of sensors in Atlanta, Georgia data collection in Tifton, Georgia 20

21 3D reconstruction pipeline GPS & IMU data Simultaneous Localization and Mapping (isam2) Dense multiview stereo (PMVS2) images Feature extraction and matching Three main blocks: Feature extraction and matching: extract visual features and correspondences. SLAM (Simultaneous Localization and Mapping): use isam2 to estimate camera poses. Dense multi-view stereo: use PMVS2 to get a dense 3D reconstruction. [Dong, Carlone, Rains, Coolong, Dellaert, 4D Mapping of fields using autonomous ground and aerial vehicles, CSBE/ASABE Joint Meeting, 2014] 21

22 22

23 Feature extraction and matching 1.Image is converted to gray scale, and rectified: rectification 2.SIFT features are extracted 3.FLANN and 8-point RANSAC are used for matching 23

24 t=0 t=1 SLAM t=2 t=.. SLAM: joint estimation of camera poses over time (robot trajectory) and position of 3D features (map) 24 Challenges: 1.integration of fast and slow data streams 2.want very accurate (and fast) estimation 3.large scale estimation 4. noise, outliers

25 SLAM isam2: Maximum a posteriori estimation - compute trajectory and map via nonlinear optimization GTSAM: Georgia Tech Smoothing and Mapping Library 25 [Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation, RSS, 2015 (best paper finalist)]

26 SLAM in action Robot trajectory estimation from isam2 versus GPS >1k camera poses >1 million features 26

27 SLAM in action isam2 produces relatively sparse 3D reconstruction: sparse 3D reconstruction of crops during multiple sessions of data acquisition 27

28 Multi-view Stereo Multi-view stereo takes: a set of images camera parameters (intrinsics, poses) and provides a dense 3D reconstruction of the scene Patch-based Multi-view Stereo Software (PMVS2): state of the art implementation of multi-view stereo isam2 PMVS2 [Furukawa, Ponce, Accurate, Dense, and Robust Multi-View Stereopsis PAMI, 32(8), pp , 2010] 28

29 Multi-view Stereo dense point cloud from PMVS2 29

30 3D reconstruction is not enough We need algorithms to interpret large scale data! 30 Point clouds provide great visualization of large fields, but: they are difficult to manipulate for the non-expert it s difficult to extract patterns (e.g., subnormal growth rates, discoloration) by visual inspection

31 Outline Ag Sensing 3D reconstruction 4D crop analysis Current work

32 what is 4D crop analysis? Set of algorithms that takes as input: dense 3D reconstructions (3D snapshots of the crop at different instants of time) 4D crop analysis and produces as output: high-level statistics describing geometry (height, crown radius) and appearance (color) of each plant over time 32

33 4D crop analysis: overview Input: sequence of 3D reconstructions Preprocessing: ground floor extraction clustering 4D analysis: estimate a bounding box for each plant 33 results: evolution of plants height and size over time

34 Canopy segmentation (1/3) Discard points on the ground and allow treating each canopy in isolation divide field in patches (subset of points) fit a local plane to each patch using RANSAC normalize height of points cluster canopies 34

35 Canopy segmentation (2/3) Discard points on the ground and allow treating each canopy in isolation divide field in patches (subset of points) fit a local plane to each patch using RANSAC normalize height of points cluster canopies 35

36 Canopy segmentation (3/3) Discard points on the ground and allow treating each canopy in isolation divide field in patches (subset of points) fit a local plane to each patch using RANSAC normalize height of points cluster canopies Euclidean clustering, available in the Point Cloud Library (PCL) 36

37 Canopy segmentation A useful byproduct: crop height across the field 37

38 Crop analysis Estimate height and crown radius for each plant over time we fit a bounding box to each plant we use Expectation-Maximization (EM) to perform joint inference over the labels (association of 3D points to plants) and bounding box parameters Expectation: associate each 3D point to a bounding box Maximization: find the bounding box that best fits the selected set of points 38

39 4D Crop analysis example [Carlone, Dong, Fenu, Rains, Dellaert, Towards 4D Crop Analysis in Precision Agriculture: Estimating Plant Height and Crown Radius over Time via Expectation-Maximization, ICRA, Workshop on Robotics in Agriculture, 2015]

40 4D Crop analysis results Simulations Field tests in Tifton, Georgia

41 Outline Ag Sensing 3D reconstruction 4D crop analysis Current work

42 Current work improve quality of sensor suite plant segmentation benchmarking against RTK GPS benchmarking against manual measurements vision-based 4D alignment sensor fusion: 4D mapping + soil and leaf samples active sensing Old System New System CPU 1x ARM A8 1.0 GHz 4x ARM A9 2.0 GHz Video Rate 1.0 Hz (fixed) 7.5 Hz (user-defined) Resolution 1280 x x

43 Current work improve quality of sensor suite plant segmentation benchmarking against RTK GPS benchmarking against manual measurements vision-based 4D alignment sensor fusion: 4D mapping + soil and leaf samples active sensing 43

44 44 Preliminary results on plants segmentation

45 Current work improve quality of sensor suite plant segmentation benchmarking against RTK GPS benchmarking against manual measurements vision-based 4D alignment sensor fusion: 4D mapping + soil and leaf samples active sensing 45 GPS RTK-GPS isam2

46 Current work improve quality of sensor suite plant segmentation benchmarking against RTK GPS benchmarking against manual measurements vision-based 4D alignment sensor fusion: 4D mapping + soil and leaf samples active sensing Manual height measurements for benchmarking: added measuring sticks regularly spaced across the field 46

47 Current work improve quality of sensor suite plant segmentation benchmarking against RTK GPS benchmarking against manual measurements vision-based 4D alignment sensor fusion: 4D mapping + soil and leaf samples active sensing 47

48 Current work improve quality of sensor suite plant segmentation benchmarking against RTK GPS benchmarking against manual measurements vision-based 4D alignment sensor fusion: 4D mapping + soil and leaf samples active sensing 48 red: critical areas with slow growth rate

49 Conclusion We described a robotic system that monitors an agricultural field for early disease detection: ground / aerial robot equipped with camera, IMU, and GPS (low cost, low power, high accuracy) We proposed and demonstrated a set of algorithms to: 1. perform 3D reconstruction of the field combination of state-of-the-art methods from robotics and computer vision (isam2, PMVS2) 2. interpret a set of 3D reconstructions collected over time, to provide high-level statistics about the geometry of each plant and its evolution over time (4D crop analysis) preprocessing + Expectation-Maximization 49 Working solution, with minimal manual intervention Many opportunities for improvement Thank you!

GTSAM 4.0 Tutorial Theory, Programming, and Applications

GTSAM 4.0 Tutorial Theory, Programming, and Applications GTSAM 4.0 Tutorial Theory, Programming, and Applications GTSAM: https://bitbucket.org/gtborg/gtsam Examples: https://github.com/dongjing3309/gtsam-examples Jing Dong 2016-11-19 License CC BY-NC-SA 3.0

More information

Visual-Inertial Localization and Mapping for Robot Navigation

Visual-Inertial Localization and Mapping for Robot Navigation Visual-Inertial Localization and Mapping for Robot Navigation Dr. Guillermo Gallego Robotics & Perception Group University of Zurich Davide Scaramuzza University of Zurich - http://rpg.ifi.uzh.ch Mocular,

More information

Vol agile avec des micro-robots volants contrôlés par vision

Vol agile avec des micro-robots volants contrôlés par vision Vol agile avec des micro-robots volants contrôlés par vision From Active Perception to Event-based Vision Henri Rebecq from Prof. Davide Scaramuzza s lab GT UAV 17 Novembre 2016, Paris Davide Scaramuzza

More information

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech Dealing with Scale Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline Why care about size? The IMU as scale provider: The

More information

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Arun Das 05/09/2017 Arun Das Waterloo Autonomous Vehicles Lab Introduction What s in a name? Arun Das Waterloo Autonomous

More information

Step-by-Step Model Buidling

Step-by-Step Model Buidling Step-by-Step Model Buidling Review Feature selection Feature selection Feature correspondence Camera Calibration Euclidean Reconstruction Landing Augmented Reality Vision Based Control Sparse Structure

More information

Incremental Light Bundle Adjustment for Robotics Navigation

Incremental Light Bundle Adjustment for Robotics Navigation Incremental Light Bundle Adjustment for Robotics Vadim Indelman, Andrew Melim, Frank Dellaert Robotics and Intelligent Machines (RIM) Center College of Computing Georgia Institute of Technology Introduction

More information

Autonomous navigation in industrial cluttered environments using embedded stereo-vision

Autonomous navigation in industrial cluttered environments using embedded stereo-vision Autonomous navigation in industrial cluttered environments using embedded stereo-vision Julien Marzat ONERA Palaiseau Aerial Robotics workshop, Paris, 8-9 March 2017 1 Copernic Lab (ONERA Palaiseau) Research

More information

Course 23: Multiple-View Geometry For Image-Based Modeling

Course 23: Multiple-View Geometry For Image-Based Modeling Course 23: Multiple-View Geometry For Image-Based Modeling Jana Kosecka (CS, GMU) Yi Ma (ECE, UIUC) Stefano Soatto (CS, UCLA) Rene Vidal (Berkeley, John Hopkins) PRIMARY REFERENCE 1 Multiple-View Geometry

More information

Lecture 13 Visual Inertial Fusion

Lecture 13 Visual Inertial Fusion Lecture 13 Visual Inertial Fusion Davide Scaramuzza Course Evaluation Please fill the evaluation form you received by email! Provide feedback on Exercises: good and bad Course: good and bad How to improve

More information

Graph-based SLAM (Simultaneous Localization And Mapping) for Bridge Inspection Using UAV (Unmanned Aerial Vehicle)

Graph-based SLAM (Simultaneous Localization And Mapping) for Bridge Inspection Using UAV (Unmanned Aerial Vehicle) Graph-based SLAM (Simultaneous Localization And Mapping) for Bridge Inspection Using UAV (Unmanned Aerial Vehicle) Taekjun Oh 1), Sungwook Jung 2), Seungwon Song 3), and Hyun Myung 4) 1), 2), 3), 4) Urban

More information

arxiv: v1 [cs.ro] 8 Oct 2016

arxiv: v1 [cs.ro] 8 Oct 2016 4D Crop Monitoring: Spatio-Temporal Reconstruction for Agriculture arxiv:161.2482v1 [cs.ro] 8 Oct 216 Jing Dong, John Gary Burnham, Byron Boots, Glen C. Rains, Fran Dellaert Abstract Autonomous crop monitoring

More information

Incremental Real-time Bundle Adjustment for Multi-camera Systems with Points at Infinity

Incremental Real-time Bundle Adjustment for Multi-camera Systems with Points at Infinity Incremental Real-time Bundle Adjustment for Multi-camera Systems with Points at Infinity Johannes Schneider, Thomas Läbe, Wolfgang Förstner 1 Department of Photogrammetry Institute of Geodesy and Geoinformation

More information

3D Fusion of Infrared Images with Dense RGB Reconstruction from Multiple Views - with Application to Fire-fighting Robots

3D Fusion of Infrared Images with Dense RGB Reconstruction from Multiple Views - with Application to Fire-fighting Robots 3D Fusion of Infrared Images with Dense RGB Reconstruction from Multiple Views - with Application to Fire-fighting Robots Yuncong Chen 1 and Will Warren 2 1 Department of Computer Science and Engineering,

More information

Visual Pose Estimation System for Autonomous Rendezvous of Spacecraft

Visual Pose Estimation System for Autonomous Rendezvous of Spacecraft Visual Pose Estimation System for Autonomous Rendezvous of Spacecraft Mark A. Post1, Junquan Li2, and Craig Clark2 Space Mechatronic Systems Technology Laboratory Dept. of Design, Manufacture & Engineering

More information

4D Crop Monitoring: Spatio-Temporal Reconstruction for Agriculture

4D Crop Monitoring: Spatio-Temporal Reconstruction for Agriculture 4D Crop Monitoring: Spatio-Temporal Reconstruction for Agriculture Jing Dong, John Gary Burnham, Byron Boots, Glen Rains, Fran Dellaert Abstract Autonomous crop monitoring at high spatial and temporal

More information

W4. Perception & Situation Awareness & Decision making

W4. Perception & Situation Awareness & Decision making W4. Perception & Situation Awareness & Decision making Robot Perception for Dynamic environments: Outline & DP-Grids concept Dynamic Probabilistic Grids Bayesian Occupancy Filter concept Dynamic Probabilistic

More information

Measuring the World: Designing Robust Vehicle Localization for Autonomous Driving. Frank Schuster, Dr. Martin Haueis

Measuring the World: Designing Robust Vehicle Localization for Autonomous Driving. Frank Schuster, Dr. Martin Haueis Measuring the World: Designing Robust Vehicle Localization for Autonomous Driving Frank Schuster, Dr. Martin Haueis Agenda Motivation: Why measure the world for autonomous driving? Map Content: What do

More information

Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) Simultaneous Localization and Mapping (SLAM) RSS Lecture 16 April 8, 2013 Prof. Teller Text: Siegwart and Nourbakhsh S. 5.8 SLAM Problem Statement Inputs: No external coordinate reference Time series of

More information

The Use and Applications of Unmanned- Aerial Systems (UAS) In Agriculture

The Use and Applications of Unmanned- Aerial Systems (UAS) In Agriculture The Use and Applications of Unmanned- Aerial Systems (UAS) In Agriculture R O B E R T A U S T I N, D E P A R T M E N T O F S O I L S C I E N C E N C S T A T E U N I V E R S I T Y DJI Inspire Photo Credit:

More information

Visual Odometry. Features, Tracking, Essential Matrix, and RANSAC. Stephan Weiss Computer Vision Group NASA-JPL / CalTech

Visual Odometry. Features, Tracking, Essential Matrix, and RANSAC. Stephan Weiss Computer Vision Group NASA-JPL / CalTech Visual Odometry Features, Tracking, Essential Matrix, and RANSAC Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline The

More information

Bundle Adjustment. Frank Dellaert CVPR 2014 Visual SLAM Tutorial

Bundle Adjustment. Frank Dellaert CVPR 2014 Visual SLAM Tutorial Bundle Adjustment Frank Dellaert CVPR 2014 Visual SLAM Tutorial Mo@va@on VO: just two frames - > R,t using 5- pt or 3- pt Can we do bener? SFM, SLAM - > VSLAM Later: integrate IMU, other sensors Objec@ve

More information

Simultaneous Localization

Simultaneous Localization Simultaneous Localization and Mapping (SLAM) RSS Technical Lecture 16 April 9, 2012 Prof. Teller Text: Siegwart and Nourbakhsh S. 5.8 Navigation Overview Where am I? Where am I going? Localization Assumed

More information

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm Computer Vision Group Prof. Daniel Cremers Dense Tracking and Mapping for Autonomous Quadrocopters Jürgen Sturm Joint work with Frank Steinbrücker, Jakob Engel, Christian Kerl, Erik Bylow, and Daniel Cremers

More information

Planetary Rover Absolute Localization by Combining Visual Odometry with Orbital Image Measurements

Planetary Rover Absolute Localization by Combining Visual Odometry with Orbital Image Measurements Planetary Rover Absolute Localization by Combining Visual Odometry with Orbital Image Measurements M. Lourakis and E. Hourdakis Institute of Computer Science Foundation for Research and Technology Hellas

More information

Lecture 10 Multi-view Stereo (3D Dense Reconstruction) Davide Scaramuzza

Lecture 10 Multi-view Stereo (3D Dense Reconstruction) Davide Scaramuzza Lecture 10 Multi-view Stereo (3D Dense Reconstruction) Davide Scaramuzza REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time, ICRA 14, by Pizzoli, Forster, Scaramuzza [M. Pizzoli, C. Forster,

More information

Asynchronous Multi-Sensor Fusion for 3D Mapping and Localization

Asynchronous Multi-Sensor Fusion for 3D Mapping and Localization Asynchronous Multi-Sensor Fusion for 3D Mapping and Localization Patrick Geneva, Kevin Eckenhoff, and Guoquan Huang Abstract In this paper, we address the problem of 3D mapping and localization of autonomous

More information

Target Shape Identification for Nanosatellites using Monocular Point Cloud Techniques

Target Shape Identification for Nanosatellites using Monocular Point Cloud Techniques Target Shape Identification for Nanosatellites using Monocular Point Cloud Techniques 6th European CubeSat Symposium Oct. 16, 2014 Mark A. Post and Xiu.T. Yan Space Mechatronic Systems Technology (SMeSTech)

More information

Visual SLAM. An Overview. L. Freda. ALCOR Lab DIAG University of Rome La Sapienza. May 3, 2016

Visual SLAM. An Overview. L. Freda. ALCOR Lab DIAG University of Rome La Sapienza. May 3, 2016 An Overview L. Freda ALCOR Lab DIAG University of Rome La Sapienza May 3, 2016 L. Freda (University of Rome La Sapienza ) Visual SLAM May 3, 2016 1 / 39 Outline 1 Introduction What is SLAM Motivations

More information

Visual Pose Estimation and Identification for Satellite Rendezvous Operations

Visual Pose Estimation and Identification for Satellite Rendezvous Operations Post, Mark A. and Yan, Xiu T. (2015) Visual pose estimation and identification for satellite rendezvous operations. In: Sixth China- Scotland SIPRA workshop "Recent Advances in Signal and Image Processing",

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 7.2: Visual Odometry Jürgen Sturm Technische Universität München Cascaded Control Robot Trajectory 0.1 Hz Visual

More information

Scanning and Printing Objects in 3D Jürgen Sturm

Scanning and Printing Objects in 3D Jürgen Sturm Scanning and Printing Objects in 3D Jürgen Sturm Metaio (formerly Technical University of Munich) My Research Areas Visual navigation for mobile robots RoboCup Kinematic Learning Articulated Objects Quadrocopters

More information

L15. POSE-GRAPH SLAM. NA568 Mobile Robotics: Methods & Algorithms

L15. POSE-GRAPH SLAM. NA568 Mobile Robotics: Methods & Algorithms L15. POSE-GRAPH SLAM NA568 Mobile Robotics: Methods & Algorithms Today s Topic Nonlinear Least Squares Pose-Graph SLAM Incremental Smoothing and Mapping Feature-Based SLAM Filtering Problem: Motion Prediction

More information

Data Mining on Agriculture Data using Neural Networks

Data Mining on Agriculture Data using Neural Networks Data Mining on Agriculture Data using Neural Networks June 26th, 28 Outline Data Details Data Overview precision farming cheap data collection GPS-based technology divide field into small-scale parts treat

More information

Jakob Engel, Thomas Schöps, Daniel Cremers Technical University Munich. LSD-SLAM: Large-Scale Direct Monocular SLAM

Jakob Engel, Thomas Schöps, Daniel Cremers Technical University Munich. LSD-SLAM: Large-Scale Direct Monocular SLAM Computer Vision Group Technical University of Munich Jakob Engel LSD-SLAM: Large-Scale Direct Monocular SLAM Jakob Engel, Thomas Schöps, Daniel Cremers Technical University Munich Monocular Video Engel,

More information

Introduction to Autonomous Mobile Robots

Introduction to Autonomous Mobile Robots Introduction to Autonomous Mobile Robots second edition Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza The MIT Press Cambridge, Massachusetts London, England Contents Acknowledgments xiii

More information

Chaplin, Modern Times, 1936

Chaplin, Modern Times, 1936 Chaplin, Modern Times, 1936 [A Bucket of Water and a Glass Matte: Special Effects in Modern Times; bonus feature on The Criterion Collection set] Multi-view geometry problems Structure: Given projections

More information

Visual SLAM for small Unmanned Aerial Vehicles

Visual SLAM for small Unmanned Aerial Vehicles Visual SLAM for small Unmanned Aerial Vehicles Margarita Chli Autonomous Systems Lab, ETH Zurich Simultaneous Localization And Mapping How can a body navigate in a previously unknown environment while

More information

Intelligent Cutting of the Bird Shoulder Joint

Intelligent Cutting of the Bird Shoulder Joint Intelligent Cutting of the Bird Shoulder Joint Ai-Ping Hu, Sergio Grullon, Debao Zhou, Jonathan Holmes, Wiley Holcombe, Wayne Daley and Gary McMurray Food Processing Technology Division, ATAS Laboratory,

More information

Live Metric 3D Reconstruction on Mobile Phones ICCV 2013

Live Metric 3D Reconstruction on Mobile Phones ICCV 2013 Live Metric 3D Reconstruction on Mobile Phones ICCV 2013 Main Contents 1. Target & Related Work 2. Main Features of This System 3. System Overview & Workflow 4. Detail of This System 5. Experiments 6.

More information

Direct Methods in Visual Odometry

Direct Methods in Visual Odometry Direct Methods in Visual Odometry July 24, 2017 Direct Methods in Visual Odometry July 24, 2017 1 / 47 Motivation for using Visual Odometry Wheel odometry is affected by wheel slip More accurate compared

More information

Real-Time Vision-Based State Estimation and (Dense) Mapping

Real-Time Vision-Based State Estimation and (Dense) Mapping Real-Time Vision-Based State Estimation and (Dense) Mapping Stefan Leutenegger IROS 2016 Workshop on State Estimation and Terrain Perception for All Terrain Mobile Robots The Perception-Action Cycle in

More information

Cluster-based 3D Reconstruction of Aerial Video

Cluster-based 3D Reconstruction of Aerial Video Cluster-based 3D Reconstruction of Aerial Video Scott Sawyer (scott.sawyer@ll.mit.edu) MIT Lincoln Laboratory HPEC 12 12 September 2012 This work is sponsored by the Assistant Secretary of Defense for

More information

Lecture 10 Dense 3D Reconstruction

Lecture 10 Dense 3D Reconstruction Institute of Informatics Institute of Neuroinformatics Lecture 10 Dense 3D Reconstruction Davide Scaramuzza 1 REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time M. Pizzoli, C. Forster,

More information

What is computer vision?

What is computer vision? What is computer vision? Computer vision (image understanding) is a discipline that studies how to reconstruct, interpret and understand a 3D scene from its 2D images in terms of the properties of the

More information

Camera Drones Lecture 3 3D data generation

Camera Drones Lecture 3 3D data generation Camera Drones Lecture 3 3D data generation Ass.Prof. Friedrich Fraundorfer WS 2017 Outline SfM introduction SfM concept Feature matching Camera pose estimation Bundle adjustment Dense matching Data products

More information

Uncertainties: Representation and Propagation & Line Extraction from Range data

Uncertainties: Representation and Propagation & Line Extraction from Range data 41 Uncertainties: Representation and Propagation & Line Extraction from Range data 42 Uncertainty Representation Section 4.1.3 of the book Sensing in the real world is always uncertain How can uncertainty

More information

Pervasive Computing. OpenLab Jan 14 04pm L Institute of Networked and Embedded Systems

Pervasive Computing. OpenLab Jan 14 04pm L Institute of Networked and Embedded Systems Pervasive Computing Institute of Networked and Embedded Systems OpenLab 2010 Jan 14 04pm L4.1.01 MISSION STATEMENT Founded in 2007, the Pervasive Computing Group at Klagenfurt University is part of the

More information

Photogrammetry for forest inventory.

Photogrammetry for forest inventory. Photogrammetry for forest inventory. Marc Pierrot Deseilligny. IGN/ENSG, France. Jonathan Lisein. Ulg Gembloux Agro-Bio Tech, Belgium. 1- Photogrammetry 2- Application to forestry 3- Tools and proposed

More information

Computationally Efficient Visual-inertial Sensor Fusion for GPS-denied Navigation on a Small Quadrotor

Computationally Efficient Visual-inertial Sensor Fusion for GPS-denied Navigation on a Small Quadrotor Computationally Efficient Visual-inertial Sensor Fusion for GPS-denied Navigation on a Small Quadrotor Chang Liu & Stephen D. Prior Faculty of Engineering and the Environment, University of Southampton,

More information

Learning Semantic Environment Perception for Cognitive Robots

Learning Semantic Environment Perception for Cognitive Robots Learning Semantic Environment Perception for Cognitive Robots Sven Behnke University of Bonn, Germany Computer Science Institute VI Autonomous Intelligent Systems Some of Our Cognitive Robots Equipped

More information

UAV Autonomous Navigation in a GPS-limited Urban Environment

UAV Autonomous Navigation in a GPS-limited Urban Environment UAV Autonomous Navigation in a GPS-limited Urban Environment Yoko Watanabe DCSD/CDIN JSO-Aerial Robotics 2014/10/02-03 Introduction 2 Global objective Development of a UAV onboard system to maintain flight

More information

3D object recognition used by team robotto

3D object recognition used by team robotto 3D object recognition used by team robotto Workshop Juliane Hoebel February 1, 2016 Faculty of Computer Science, Otto-von-Guericke University Magdeburg Content 1. Introduction 2. Depth sensor 3. 3D object

More information

CVPR 2014 Visual SLAM Tutorial Kintinuous

CVPR 2014 Visual SLAM Tutorial Kintinuous CVPR 2014 Visual SLAM Tutorial Kintinuous kaess@cmu.edu The Robotics Institute Carnegie Mellon University Recap: KinectFusion [Newcombe et al., ISMAR 2011] RGB-D camera GPU 3D/color model RGB TSDF (volumetric

More information

STEREO IMAGE POINT CLOUD AND LIDAR POINT CLOUD FUSION FOR THE 3D STREET MAPPING

STEREO IMAGE POINT CLOUD AND LIDAR POINT CLOUD FUSION FOR THE 3D STREET MAPPING STEREO IMAGE POINT CLOUD AND LIDAR POINT CLOUD FUSION FOR THE 3D STREET MAPPING Yuan Yang, Ph.D. Student Zoltan Koppanyi, Post-Doctoral Researcher Charles K Toth, Research Professor SPIN Lab The University

More information

Master Automática y Robótica. Técnicas Avanzadas de Vision: Visual Odometry. by Pascual Campoy Computer Vision Group

Master Automática y Robótica. Técnicas Avanzadas de Vision: Visual Odometry. by Pascual Campoy Computer Vision Group Master Automática y Robótica Técnicas Avanzadas de Vision: by Pascual Campoy Computer Vision Group www.vision4uav.eu Centro de Automá

More information

Hybrids Mixed Approaches

Hybrids Mixed Approaches Hybrids Mixed Approaches Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline Why mixing? Parallel Tracking and Mapping Benefits

More information

CVPR 2014 Visual SLAM Tutorial Efficient Inference

CVPR 2014 Visual SLAM Tutorial Efficient Inference CVPR 2014 Visual SLAM Tutorial Efficient Inference kaess@cmu.edu The Robotics Institute Carnegie Mellon University The Mapping Problem (t=0) Robot Landmark Measurement Onboard sensors: Wheel odometry Inertial

More information

Dense 3D Reconstruction from Autonomous Quadrocopters

Dense 3D Reconstruction from Autonomous Quadrocopters Dense 3D Reconstruction from Autonomous Quadrocopters Computer Science & Mathematics TU Munich Martin Oswald, Jakob Engel, Christian Kerl, Frank Steinbrücker, Jan Stühmer & Jürgen Sturm Autonomous Quadrocopters

More information

Plant and Canopy Reconstruction User Documentation. The University of Nottingham

Plant and Canopy Reconstruction User Documentation. The University of Nottingham Plant and Canopy Reconstruction User Documentation The University of Nottingham 2014 Table of Contents Overview... 2 Introduction... 2 Program Input... 3 Point Clouds... 3 Image Sets and Camera Geometries...

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Today: dense 3D reconstruction The matching problem

More information

Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles

Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles Shaojie Shen Dept. of Electrical and Systems Engineering & GRASP Lab, University of Pennsylvania Committee: Daniel

More information

Computer Vision I. Announcements. Random Dot Stereograms. Stereo III. CSE252A Lecture 16

Computer Vision I. Announcements. Random Dot Stereograms. Stereo III. CSE252A Lecture 16 Announcements Stereo III CSE252A Lecture 16 HW1 being returned HW3 assigned and due date extended until 11/27/12 No office hours today No class on Thursday 12/6 Extra class on Tuesday 12/4 at 6:30PM in

More information

OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps

OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps Georgios Floros, Benito van der Zander and Bastian Leibe RWTH Aachen University, Germany http://www.vision.rwth-aachen.de floros@vision.rwth-aachen.de

More information

Scanning and Printing Objects in 3D

Scanning and Printing Objects in 3D Scanning and Printing Objects in 3D Dr. Jürgen Sturm metaio GmbH (formerly Technical University of Munich) My Research Areas Visual navigation for mobile robots RoboCup Kinematic Learning Articulated Objects

More information

Zürich. Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza. ETH Master Course: L Autonomous Mobile Robots Summary

Zürich. Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza. ETH Master Course: L Autonomous Mobile Robots Summary Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza ETH Master Course: 151-0854-00L Autonomous Mobile Robots Summary 2 Lecture Overview Mobile Robot Control Scheme knowledge, data base mission

More information

Topology Estimation and Global Alignment

Topology Estimation and Global Alignment Topology Estimation and Global Alignment Ricard Campos Nuno Gracias Rafael Garcia VICOROB http://vicorob.udg.edu/ COMPUTER VISION AND ROBOTICS GROUP UNDERWATER VISION LABORATORY Introduction Photomosaic

More information

CHAPTER 3 DISPARITY AND DEPTH MAP COMPUTATION

CHAPTER 3 DISPARITY AND DEPTH MAP COMPUTATION CHAPTER 3 DISPARITY AND DEPTH MAP COMPUTATION In this chapter we will discuss the process of disparity computation. It plays an important role in our caricature system because all 3D coordinates of nodes

More information

FLaME: Fast Lightweight Mesh Estimation using Variational Smoothing on Delaunay Graphs

FLaME: Fast Lightweight Mesh Estimation using Variational Smoothing on Delaunay Graphs FLaME: Fast Lightweight Mesh Estimation using Variational Smoothing on Delaunay Graphs W. Nicholas Greene Robust Robotics Group, MIT CSAIL LPM Workshop IROS 2017 September 28, 2017 with Nicholas Roy 1

More information

Davide Scaramuzza. University of Zurich

Davide Scaramuzza. University of Zurich Davide Scaramuzza University of Zurich Robotics and Perception Group http://rpg.ifi.uzh.ch/ Scaramuzza, D., Fraundorfer, F., Visual Odometry: Part I - The First 30 Years and Fundamentals, IEEE Robotics

More information

Monocular Visual-Inertial SLAM. Shaojie Shen Assistant Professor, HKUST Director, HKUST-DJI Joint Innovation Laboratory

Monocular Visual-Inertial SLAM. Shaojie Shen Assistant Professor, HKUST Director, HKUST-DJI Joint Innovation Laboratory Monocular Visual-Inertial SLAM Shaojie Shen Assistant Professor, HKUST Director, HKUST-DJI Joint Innovation Laboratory Why Monocular? Minimum structural requirements Widely available sensors Applications:

More information

A Sample of Monte Carlo Methods in Robotics and Vision. Credits. Outline. Structure from Motion. without Correspondences

A Sample of Monte Carlo Methods in Robotics and Vision. Credits. Outline. Structure from Motion. without Correspondences A Sample of Monte Carlo Methods in Robotics and Vision Frank Dellaert College of Computing Georgia Institute of Technology Credits Zia Khan Tucker Balch Michael Kaess Rafal Zboinski Ananth Ranganathan

More information

H2020 Space Robotic SRC- OG4

H2020 Space Robotic SRC- OG4 H2020 Space Robotic SRC- OG4 CCT/COMET ORB Workshop on Space Rendezvous 05/12/2017 «Smart Sensors for Smart Missions» Contacts: Sabrina Andiappane, sabrina.andiappane@thalesaleniaspace.com Vincent Dubanchet,

More information

EECS 442 Computer vision. Stereo systems. Stereo vision Rectification Correspondence problem Active stereo vision systems

EECS 442 Computer vision. Stereo systems. Stereo vision Rectification Correspondence problem Active stereo vision systems EECS 442 Computer vision Stereo systems Stereo vision Rectification Correspondence problem Active stereo vision systems Reading: [HZ] Chapter: 11 [FP] Chapter: 11 Stereo vision P p p O 1 O 2 Goal: estimate

More information

Mapping Contoured Terrain Using SLAM with a Radio- Controlled Helicopter Platform. Project Proposal. Cognitive Robotics, Spring 2005

Mapping Contoured Terrain Using SLAM with a Radio- Controlled Helicopter Platform. Project Proposal. Cognitive Robotics, Spring 2005 Mapping Contoured Terrain Using SLAM with a Radio- Controlled Helicopter Platform Project Proposal Cognitive Robotics, Spring 2005 Kaijen Hsiao Henry de Plinval Jason Miller Introduction In the context

More information

Studying Phenotypic Variability in Crops using a Hand-held Sensor Platform

Studying Phenotypic Variability in Crops using a Hand-held Sensor Platform Studying Phenotypic Variability in Crops using a Hand-held Sensor Platform Raghav Khanna, Joern Rehder, Martin Mo ller, Enric Galceran and Roland Siegwart Abstract Recent developments in visual-inertial

More information

Development of Unmanned Aircraft System (UAS) for Agricultural Applications. Quarterly Progress Report

Development of Unmanned Aircraft System (UAS) for Agricultural Applications. Quarterly Progress Report Development of Unmanned Aircraft System (UAS) for Agricultural Applications Quarterly Progress Report Reporting Period: October December 2016 January 30, 2017 Prepared by: Lynn Fenstermaker and Jayson

More information

3D reconstruction how accurate can it be?

3D reconstruction how accurate can it be? Performance Metrics for Correspondence Problems 3D reconstruction how accurate can it be? Pierre Moulon, Foxel CVPR 2015 Workshop Boston, USA (June 11, 2015) We can capture large environments. But for

More information

Multi-View Stereo for Static and Dynamic Scenes

Multi-View Stereo for Static and Dynamic Scenes Multi-View Stereo for Static and Dynamic Scenes Wolfgang Burgard Jan 6, 2010 Main references Yasutaka Furukawa and Jean Ponce, Accurate, Dense and Robust Multi-View Stereopsis, 2007 C.L. Zitnick, S.B.

More information

Towards Fully-automated Driving. tue-mps.org. Challenges and Potential Solutions. Dr. Gijs Dubbelman Mobile Perception Systems EE-SPS/VCA

Towards Fully-automated Driving. tue-mps.org. Challenges and Potential Solutions. Dr. Gijs Dubbelman Mobile Perception Systems EE-SPS/VCA Towards Fully-automated Driving Challenges and Potential Solutions Dr. Gijs Dubbelman Mobile Perception Systems EE-SPS/VCA Mobile Perception Systems 6 PhDs, 1 postdoc, 1 project manager, 2 software engineers

More information

Announcements. Stereo

Announcements. Stereo Announcements Stereo Homework 2 is due today, 11:59 PM Homework 3 will be assigned today Reading: Chapter 7: Stereopsis CSE 152 Lecture 8 Binocular Stereopsis: Mars Given two images of a scene where relative

More information

ROS-Industrial Basic Developer s Training Class

ROS-Industrial Basic Developer s Training Class ROS-Industrial Basic Developer s Training Class Southwest Research Institute 1 Session 4: More Advanced Topics (Descartes and Perception) Southwest Research Institute 2 MOVEIT! CONTINUED 3 Motion Planning

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Wide baseline matching (SIFT) Today: dense 3D reconstruction

More information

Static Scene Reconstruction

Static Scene Reconstruction GPU supported Real-Time Scene Reconstruction with a Single Camera Jan-Michael Frahm, 3D Computer Vision group, University of North Carolina at Chapel Hill Static Scene Reconstruction 1 Capture on campus

More information

Multi-view stereo. Many slides adapted from S. Seitz

Multi-view stereo. Many slides adapted from S. Seitz Multi-view stereo Many slides adapted from S. Seitz Beyond two-view stereo The third eye can be used for verification Multiple-baseline stereo Pick a reference image, and slide the corresponding window

More information

3D Point Cloud Processing

3D Point Cloud Processing 3D Point Cloud Processing The image depicts how our robot Irma3D sees itself in a mirror. The laser looking into itself creates distortions as well as changes in intensity that give the robot a single

More information

Egomotion Estimation by Point-Cloud Back-Mapping

Egomotion Estimation by Point-Cloud Back-Mapping Egomotion Estimation by Point-Cloud Back-Mapping Haokun Geng, Radu Nicolescu, and Reinhard Klette Department of Computer Science, University of Auckland, New Zealand hgen001@aucklanduni.ac.nz Abstract.

More information

Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry

Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry Distributed Vision-Aided Cooperative Navigation Based on hree-view Geometry Vadim Indelman, Pini Gurfil Distributed Space Systems Lab, Aerospace Engineering, echnion Ehud Rivlin Computer Science, echnion

More information

H2020 Space Robotic SRC- OG4

H2020 Space Robotic SRC- OG4 H2020 Space Robotic SRC- OG4 2 nd PERASPERA workshop Presentation by Sabrina Andiappane Thales Alenia Space France This project has received funding from the European Union s Horizon 2020 research and

More information

UAV Position and Attitude Sensoring in Indoor Environment Using Cameras

UAV Position and Attitude Sensoring in Indoor Environment Using Cameras UAV Position and Attitude Sensoring in Indoor Environment Using Cameras 1 Peng Xu Abstract There are great advantages of indoor experiment for UAVs. Test flights of UAV in laboratory is more convenient,

More information

Motion Capture using Body Mounted Cameras in an Unknown Environment

Motion Capture using Body Mounted Cameras in an Unknown Environment Motion Capture using Body Mounted Cameras in an Unknown Environment Nam Vo Taeyoung Kim Siddharth Choudhary 1. The Problem Motion capture has been recently used to provide much of character motion in several

More information

LUMS Mine Detector Project

LUMS Mine Detector Project LUMS Mine Detector Project Using visual information to control a robot (Hutchinson et al. 1996). Vision may or may not be used in the feedback loop. Visual (image based) features such as points, lines

More information

Manipulating a Large Variety of Objects and Tool Use in Domestic Service, Industrial Automation, Search and Rescue, and Space Exploration

Manipulating a Large Variety of Objects and Tool Use in Domestic Service, Industrial Automation, Search and Rescue, and Space Exploration Manipulating a Large Variety of Objects and Tool Use in Domestic Service, Industrial Automation, Search and Rescue, and Space Exploration Sven Behnke Computer Science Institute VI Autonomous Intelligent

More information

Lecture 8.2 Structure from Motion. Thomas Opsahl

Lecture 8.2 Structure from Motion. Thomas Opsahl Lecture 8.2 Structure from Motion Thomas Opsahl More-than-two-view geometry Correspondences (matching) More views enables us to reveal and remove more mismatches than we can do in the two-view case More

More information

A Whole New World of Mapping and Sensing: Uses from Asset to Management to In Vehicle Sensing for Collision Avoidance

A Whole New World of Mapping and Sensing: Uses from Asset to Management to In Vehicle Sensing for Collision Avoidance A Whole New World of Mapping and Sensing: Uses from Asset to Management to In Vehicle Sensing for Collision Avoidance Charles Toth, Dorota A Grejner-Brzezinska, Carla Bailo and Joanna Pinkerton Satellite

More information

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light II Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

Sensor Fusion: Potential, Challenges and Applications. Presented by KVH Industries and Geodetics, Inc. December 2016

Sensor Fusion: Potential, Challenges and Applications. Presented by KVH Industries and Geodetics, Inc. December 2016 Sensor Fusion: Potential, Challenges and Applications Presented by KVH Industries and Geodetics, Inc. December 2016 1 KVH Industries Overview Innovative technology company 600 employees worldwide Focused

More information

Object Recognition. Lecture 11, April 21 st, Lexing Xie. EE4830 Digital Image Processing

Object Recognition. Lecture 11, April 21 st, Lexing Xie. EE4830 Digital Image Processing Object Recognition Lecture 11, April 21 st, 2008 Lexing Xie EE4830 Digital Image Processing http://www.ee.columbia.edu/~xlx/ee4830/ 1 Announcements 2 HW#5 due today HW#6 last HW of the semester Due May

More information

Accurate 3D Face and Body Modeling from a Single Fixed Kinect

Accurate 3D Face and Body Modeling from a Single Fixed Kinect Accurate 3D Face and Body Modeling from a Single Fixed Kinect Ruizhe Wang*, Matthias Hernandez*, Jongmoo Choi, Gérard Medioni Computer Vision Lab, IRIS University of Southern California Abstract In this

More information

Epipolar Geometry CSE P576. Dr. Matthew Brown

Epipolar Geometry CSE P576. Dr. Matthew Brown Epipolar Geometry CSE P576 Dr. Matthew Brown Epipolar Geometry Epipolar Lines, Plane Constraint Fundamental Matrix, Linear solution + RANSAC Applications: Structure from Motion, Stereo [ Szeliski 11] 2

More information