ME 105 Homework 4 A Movie Stunt Simulation with Graphical User Interface

Size: px
Start display at page:

Download "ME 105 Homework 4 A Movie Stunt Simulation with Graphical User Interface"

Transcription

1 ME 105 Homework 4 A Movie Stunt Simulation with Graphical User Interface In the 1994 action-adventure film Speed, a Los Angeles bus with a bomb that was set to explode if the speed of the buss fell below 50 mph (22 m/s). The police discovered the bomb and routed the buss on to a segment of freeway that was still under construction. In a twist of the plot, they overlooked a 50-foot (15 m) horizontal gap in the construction. Since the bomb would explode and kill everyone on board if they slowed down, the bus must jump the gap. Write a MATLAB Graphical User Interface (GUI) program to simulate and animate this movie stunt for the movie crew and compute if the actors and the bus can survive the jump at different freeway incline angles and bus speeds. Show 2 pictures in GUI when the program starts. Show the plot of the freeway and the gap when the program starts. Draw 20 meters of the horizontal freeway before the jump off point in the plot. The freeway is 50 feet (15 m) above the ground at the jump off point. Decide an initial value of the freeway incline angle, compute and draw the incline of the freeway in the plot. If the angel is initialized to 0, draw a 20-meter horizontal line. Draw another 45 meters of freeway after the 15-meter horizontal gap in the plot. Adjust the axis to plot the simulation 80 meters wide and 40 meters tall. Add plot title, and label x-axis and y-axis. Provide the movie crew a slider bar and an edit text box to adjust the freeway incline angle in GUI. Add a static text box to indicate the value is for the freeway incline angle in degrees.

2 Configure the slider bar to slide between 0 and 30 degrees in GUI. Initialize the slider bar and edit text box to show 0 degrees. Allow the movie crew to adjust the slider position to change angle. Show the angle value set by the slider bar in the edit text box. Let the movie crew modify the freeway incline angle from the edit text box as well. The value input in the edit text box should move the slider position. The slider bar can disappear if the edit text box contains a value above 30. Whenever the slider bar or the edit text box changes value, compute and update the freeway plot to show the freeway incline angle. Build a button and a static text box to simulate the gas paddle and speedometer for the movie crew. Add another text box to indicate that the speedometer value is the speed in mph. Show the bus speed in miles per hour (mph). Initialize the static text box to show 55 mph. The movie crew can click the gas button to increase the bus speed by a bit. For example, each click can increase the speed by 0.5 mph. Update the bus speed shown in the speedometer for each button click. Build an action button in GUI for the movie crew to start the bus path animation in slow motion. Display the two initial pictures in GUI. Initialize the bus speed to 55 mph and update the speedometer. Prepare the freeway coordinates after the 15-meter gap. Obtain the current bus speed from the text box in GUI. Obtain the current freeway incline angle from the edit text box in GUI. Compute the freeway coordinates before the 15-meter gap based on the freeway incline angle. Obtain the bus coordinates from the freeway coordinates before the 15-meter gap, by adding 1 meter to the freeway s y direction coordinates. Animate the bus movement before jump by adding a loop to plot one point of the bus x-y coordinate at a time. Move the code that will obtain the current bus speed and freeway incline angle from GUI inside the loop to compute and plot the most current values. Include the plot background, such as the freeway, the plot title, label, legend, and axis setting in the loop. Add a small pause in the loop, for example 0.1 second, to give the movie crew time to speed up the bus before jump. After the bus is in the air, modifying the bus speed should no longer change the simulation outcome. Compute the bus projectile motion. Ignore air resistance in the calculation. o Convert the bus speed from miles per hour (MPH) to meters per second (m/s). Recall that 1 mph = m/s. o Based on the freeway incline angle, compute the initial speed of the bus in the x and y directions. o Compute the time it takes for the bus to reach the maximum height (vy0 = 0) using vy = vy0 + ay t. o Compute the maximum height of the bus using y = y0 + vy0t + ½ ay t 2.

3 o Compute the time it takes for the bus to free fall (vy0 = 0) from its maximum height to the ground using y = y0 + vy0t + ½ ay t 2. o Sum the time that the bus is going up and going down together to obtain the total time the bus will be in the air if it will not land on the freeway. o Use the MATLAB linspace function to generate a large array of time that starts at 0 and ends at the total time with 100 equally spaced time points. o Compute an array of x and an array of y values from each time point in the large time array using x = x0 + vx0t + ½ ax t 2 and y = y0 + vy0t + ½ ay t 2. o Try different initial velocities and angles, plot, and confirm results with an online projectile motion calculator. For example: o Use the MATLAB find function to find the index numbers of all the values in the array of the bus y-coordinates projectile motion that are larger than or equal to 15 meters. Save the index numbers in a new variable. o Create a new bus projectile motion x coordinates from the old bus x coordinates that only contain the new index numbers. o Create a new bus projectile motion y coordinates from the old bus y coordinates that only contain the new index numbers. Animate the bus jump in slow motion. o If the length of the new bus projectile motion x coordinates is larger than 0 AND the last value of the new bus projectile motion x coordinate is larger than or equal to 35: The bus will land on the freeway. We will obtain the bus coordinates after landing with the next few steps. Use the MATLAB find function to find the index numbers of all the values in the x-coordinates of the freeway after the 15-meter gap that are larger than or equal to the last value in the new bus projectile motion x coordinates array. Save the index numbers in a new variable. Apply the index numbers to the x-coordinates of the freeway after the 15- meter gap to obtain the bus x-coordinates after landing. Apply the index numbers to (the y-coordinates of the freeway after the 15- meter gap+1) to obtain the bus y-coordinates after landing. Combine the new bus projectile motion x coordinates and the bus x- coordinates after landing to form the bus jump path for the x direction. Combine the new bus projectile motion y coordinates and the bus y- coordinates after landing to form the bus jump path for the y direction. Add a loop to plot one point of the bus jump path x-y coordinate at a time. Include the plot background, such as the freeway, the plot title, label, legend, and axis setting in the loop. Add a small pause in the loop, for example 0.1 second, to animate the bus jump. Update one picture to indicate a successful result for the movie crew. o Else: The bus will crash.

4 The bus jump path x-direction coordinates are the old bus projectile x coordinates. The bus jump path y-direction coordinates are the (old bus projectile y coordinates+1). Add a loop to plot one point of the bus jump path x-y coordinate at a time. Include the plot background, such as the freeway, the plot title, label, legend, and axis setting in the loop. Add a small pause in the loop, for example 0.1 second, to animate the bus jump. Update one picture to indicate a crash for the movie crew. Additional components are always welcome! (Here is an example components and display when the program starts.)

5 (Here is an example components and display after adjusting the Angle.)

6 (Here is an example components and display after pressing the Action button.)

7 (Here is an example components and display after pressing the Press to Speed up! Button rapidly before the bus reaches the gap.).

8 (Here is an example components and display for a safe simulation result.)

9 (Here is an example components and display if the simulation ends in a crash.) Ensure your hw4 folder contains both the.fig and.m file. Include all the pictures used in HW4 GUI in the same folder. Zip the entire hw4 folder. Rename the hw4.zip to LastName_FirstName_ME105_hw4.zip Submit the.zip file to Moddle.

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10 Quadratic Modeling STEM 10 Today we are going to put together an understanding of the two physics equations we have been using. Distance: Height : Recall the variables: o acceleration o gravitation force

More information

Projectile Trajectory Scenarios

Projectile Trajectory Scenarios Projectile Trajectory Scenarios Student Worksheet Name Class Note: Sections of this document are numbered to correspond to the pages in the TI-Nspire.tns document ProjectileTrajectory.tns. 1.1 Trajectories

More information

You are going to need to access the video that was taken of your device - it can be accessed here:

You are going to need to access the video that was taken of your device - it can be accessed here: Part 2: Projectile Launcher Analysis Report Submit Assignment Due Dec 17, 2015 by 10:30am Points 100 Submitting a file upload Available after Dec 17, 2015 at 6am Step 2 - Now We Look At The Real World

More information

Quadratic Functions, Part 1

Quadratic Functions, Part 1 Quadratic Functions, Part 1 A2.F.BF.A.1 Write a function that describes a relationship between two quantities. A2.F.BF.A.1a Determine an explicit expression, a recursive process, or steps for calculation

More information

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured =

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured = Lesson 5: Vectors and Projectile Motion Name Period 5.1 Introduction: Vectors vs. Scalars (a) Read page 69 of the supplemental Conceptual Physics text. Name at least 3 vector quantities and at least 3

More information

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion Two-Dimensional Motion and Vectors Section 1 Preview Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Two-Dimensional Motion and Vectors

More information

Math 4: Advanced Algebra Ms. Sheppard-Brick A Quiz Review LT ,

Math 4: Advanced Algebra Ms. Sheppard-Brick A Quiz Review LT , 4A Quiz Review LT 3.4 3.10, 4.1 4.3 Key Facts Know how to use the formulas for projectile motion. The formulas will be given to you on the quiz, but you ll need to know what the variables stand for Horizontal:

More information

20/06/ Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion

20/06/ Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion 3-7 A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola. 3-7 It can be understood by analyzing the horizontal and vertical motions separately.

More information

Lab 4 Projectile Motion

Lab 4 Projectile Motion b Lab 4 Projectile Motion What You Need To Know: x = x v = v v o ox = v + v ox ox + at 1 t + at + a x FIGURE 1 Linear Motion Equations The Physics So far in lab you ve dealt with an object moving horizontally

More information

Unit 5 Day 5: Law of Sines and the Ambiguous Case

Unit 5 Day 5: Law of Sines and the Ambiguous Case Unit 5 Day 5: Law of Sines and the Ambiguous Case Warm Up: Day 5 Draw a picture and solve. Label the picture with numbers and words including the angle of elevation/depression and height/length. 1. The

More information

Zero Launch Angle. since θ=0, then v oy =0 and v ox = v o. The time required to reach the water. independent of v o!!

Zero Launch Angle. since θ=0, then v oy =0 and v ox = v o. The time required to reach the water. independent of v o!! Zero Launch Angle y h since θ=0, then v oy =0 and v ox = v o and based on our coordinate system we have x o =0, y o =h x The time required to reach the water independent of v o!! 1 2 Combining Eliminating

More information

Chapter 3: Vectors & 2D Motion. Brent Royuk Phys-111 Concordia University

Chapter 3: Vectors & 2D Motion. Brent Royuk Phys-111 Concordia University Chapter 3: Vectors & 2D Motion Brent Royuk Phys-111 Concordia University Vectors What is a vector? Examples? Notation:! a or! a or a 2 Vector Addition Graphical Methods Triangle, parallelogram, polygon

More information

Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND?

Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND? Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND? You have watched a ball roll off a table and strike the floor. What determines where it will land? Could you predict where it will land?

More information

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical With no gravity the projectile would follow the straight-line path (dashed line).

More information

Two-Dimensional Motion

Two-Dimensional Motion Two-Dimensional Motion Objects don't always move in a straight line. When an object moves in two dimensions, we must look at vector components. The most common kind of two dimensional motion you will encounter

More information

On-line Virtual Kinematics Laboratory Visualizing Interactively Projectile Motion

On-line Virtual Kinematics Laboratory Visualizing Interactively Projectile Motion On-line Virtual Kinematics Laboratory Visualizing Interactively Projectile Motion Author: A. Milazzo, A. Bonanno Dipartimento di Fisica Università della Calabria. Unità I.N.F.M. di Cosenza. Introduction

More information

ENED 1090: Engineering Models I Homework Assignment #2 Due: Week of September 16 th at the beginning of your Recitation Section

ENED 1090: Engineering Models I Homework Assignment #2 Due: Week of September 16 th at the beginning of your Recitation Section ENED 1090: Engineering Models I Homework Assignment #2 Due: Week of September 16 th at the beginning of your Recitation Section Instructions: 1. Before you begin editing this document, you must save this

More information

OCR Maths M2. Topic Questions from Papers. Projectiles

OCR Maths M2. Topic Questions from Papers. Projectiles OCR Maths M2 Topic Questions from Papers Projectiles PhysicsAndMathsTutor.com 21 Aparticleisprojectedhorizontallywithaspeedof6ms 1 from a point 10 m above horizontal ground. The particle moves freely under

More information

Projectile Motion. A.1. Finding the flight time from the vertical motion. The five variables for the vertical motion are:

Projectile Motion. A.1. Finding the flight time from the vertical motion. The five variables for the vertical motion are: Projectile Motion A. Finding the muzzle speed v0 The speed of the projectile as it leaves the gun can be found by firing it horizontally from a table, and measuring the horizontal range R0. On the diagram,

More information

Armstrong State University Engineering Studies MATLAB Marina Algorithm Development I Primer

Armstrong State University Engineering Studies MATLAB Marina Algorithm Development I Primer Armstrong State University Engineering Studies MATLAB Marina Algorithm Development I Primer Prerequisites The Algorithm Development I Primer assumes knowledge of the MATLAB IDE, MATLAB help, arithmetic

More information

Projectile Launched Horizontally

Projectile Launched Horizontally Projectile Launched Horizontally by Nada Saab-Ismail, PhD, MAT, MEd, IB nhsaab.weebly.com nhsaab2014@gmail.com P3.3c Explain the recoil of a projectile launcher in terms of forces and masses. P3.4e Solve

More information

Review for Quarter 3 Cumulative Test

Review for Quarter 3 Cumulative Test Review for Quarter 3 Cumulative Test I. Solving quadratic equations (LT 4.2, 4.3, 4.4) Key Facts To factor a polynomial, first factor out any common factors, then use the box method to factor the quadratic.

More information

Sphero Lightning Lab Cheat Sheet

Sphero Lightning Lab Cheat Sheet Actions Tool Description Variables Ranges Roll Combines heading, speed and time variables to make the robot roll. Duration Speed Heading (0 to 999999 seconds) (degrees 0-359) Set Speed Sets the speed of

More information

Honors Pre-Calculus. 6.1: Vector Word Problems

Honors Pre-Calculus. 6.1: Vector Word Problems Honors Pre-Calculus 6.1: Vector Word Problems 1. A sled on an inclined plane weighs 00 lb, and the plane makes an angle of 0 degrees with the horizontal. What force, perpendicular to the plane, is exerted

More information

Falling Balls. Names: Date: About this Laboratory

Falling Balls. Names: Date: About this Laboratory Falling Balls Names: Date: About this Laboratory In this laboratory,1 we will explore quadratic functions and how they relate to the motion of an object that is dropped from a specified height above ground

More information

Learning Objectives. Math Prerequisites. Technology Prerequisites. Materials. Math Objectives. Technology Objectives

Learning Objectives. Math Prerequisites. Technology Prerequisites. Materials. Math Objectives. Technology Objectives Learning Objectives Parametric Functions Lesson 2: Dude, Where s My Football? Level: Algebra 2 Time required: 60 minutes Many students expect a falling object graph to look just like the path of the falling

More information

Slide 2 / 222. Algebra II. Quadratic Functions

Slide 2 / 222. Algebra II. Quadratic Functions Slide 1 / 222 Slide 2 / 222 Algebra II Quadratic Functions 2014-10-14 www.njctl.org Slide 3 / 222 Table of Contents Key Terms Explain Characteristics of Quadratic Functions Combining Transformations (review)

More information

Two-Dimensional Projectile Motion

Two-Dimensional Projectile Motion Two-Dimensional Projectile Motion I. Introduction. This experiment involves the study of motion using a CCD video camera in which a sequence of video frames (a movie ) is recorded onto computer disk and

More information

Vector Decomposition

Vector Decomposition Projectile Motion AP Physics 1 Vector Decomposition 1 Coordinate Systems A coordinate system is an artificially imposed grid that you place on a problem. You are free to choose: Where to place the origin,

More information

BONE CONTROLLER ASSET VERSION 0.1 REV 1

BONE CONTROLLER ASSET VERSION 0.1 REV 1 Foreword Thank you for purchasing the Bone Controller! I m an independent developer and your feedback and support really means a lot to me. Please don t ever hesitate to contact me if you have a question,

More information

Motion Graphs. Plotting position against time can tell you a lot about motion. Let's look at the axes:

Motion Graphs. Plotting position against time can tell you a lot about motion. Let's look at the axes: Motion Graphs 1 Name Motion Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes graphs help make motion easier to picture, and therefore understand. Remember: Motion

More information

Student Exploration: Quadratics in Polynomial Form

Student Exploration: Quadratics in Polynomial Form Name: Date: Student Exploration: Quadratics in Polynomial Form Vocabulary: axis of symmetry, parabola, quadratic function, vertex of a parabola Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

More information

Exploring Projectile Motion with Interactive Physics

Exploring Projectile Motion with Interactive Physics Purpose: The purpose of this lab will is to simulate a laboratory exercise using a program known as "Interactive Physics." Such simulations are becoming increasingly common, as they allow dynamic models

More information

MAC Rev.S Learning Objectives. Learning Objectives (Cont.) Module 4 Quadratic Functions and Equations

MAC Rev.S Learning Objectives. Learning Objectives (Cont.) Module 4 Quadratic Functions and Equations MAC 1140 Module 4 Quadratic Functions and Equations Learning Objectives Upon completing this module, you should be able to 1. understand basic concepts about quadratic functions and their graphs.. complete

More information

Getting To Know Shutter Speeds

Getting To Know Shutter Speeds Tools and Program Needed: Your Brain dslr Computer USB Drive Bridge PhotoShop Name: Stopping Action, Jump Shots & Panning 0 5 2 The shutter priority setting (TV on the dial) is a setting to control the

More information

SPH3U1 Lesson 12 Kinematics

SPH3U1 Lesson 12 Kinematics SPH3U1 Lesson 12 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the motion of an object thrown at arbitrary angles through the air. Describe the horizontal and vertical motions of

More information

ROSE-HULMAN INSTITUTE OF TECHNOLOGY

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Introduction to Working Model Welcome to Working Model! What is Working Model? It's an advanced 2-dimensional motion simulation package with sophisticated editing capabilities. It allows you to build and

More information

Contents 10. Graphs of Trigonometric Functions

Contents 10. Graphs of Trigonometric Functions Contents 10. Graphs of Trigonometric Functions 2 10.2 Sine and Cosine Curves: Horizontal and Vertical Displacement...... 2 Example 10.15............................... 2 10.3 Composite Sine and Cosine

More information

QUADRATIC FUNCTIONS: MINIMUM/MAXIMUM POINTS, USE OF SYMMETRY. 7.1 Minimum/Maximum, Recall: Completing the square

QUADRATIC FUNCTIONS: MINIMUM/MAXIMUM POINTS, USE OF SYMMETRY. 7.1 Minimum/Maximum, Recall: Completing the square CHAPTER 7 QUADRATIC FUNCTIONS: MINIMUM/MAXIMUM POINTS, USE OF SYMMETRY 7.1 Minimum/Maximum, Recall: Completing the square The completing the square method uses the formula x + y) = x + xy + y and forces

More information

Study Guide and Review - Chapter 10

Study Guide and Review - Chapter 10 State whether each sentence is true or false. If false, replace the underlined word, phrase, expression, or number to make a true sentence. 1. A triangle with sides having measures of 3, 4, and 6 is a

More information

Study Guide and Review - Chapter 10

Study Guide and Review - Chapter 10 State whether each sentence is true or false. If false, replace the underlined word, phrase, expression, or number to make a true sentence. 1. A triangle with sides having measures of 3, 4, and 6 is a

More information

Section 5: Quadratics

Section 5: Quadratics Chapter Review Applied Calculus 46 Section 5: Quadratics Quadratics Quadratics are transformations of the f ( x) x function. Quadratics commonly arise from problems involving area and projectile motion,

More information

DISTANCE-TIME GRAPHS Plotting distance against time can tell you a lot about motion. Let's look at the axes:

DISTANCE-TIME GRAPHS Plotting distance against time can tell you a lot about motion. Let's look at the axes: Motion Graphs Notes Describing the motion of an object is occasionally hard to do with words. Sometimes help make motion easier to picture, and therefore understand. Remember: Motion. Speed. Velocity.

More information

Adobe Flash CS4 Part 4: Interactivity

Adobe Flash CS4 Part 4: Interactivity CALIFORNIA STATE UNIVERSITY, LOS ANGELES INFORMATION TECHNOLOGY SERVICES Adobe Flash CS4 Part 4: Interactivity Fall 2010, Version 1.0 Table of Contents Introduction... 2 Downloading the Data Files... 2

More information

Step 2: Find the coordinates of the vertex (h, k) Step 5: State the zeros and interpret what they mean. Step 6: Make sure you answered all questions.

Step 2: Find the coordinates of the vertex (h, k) Step 5: State the zeros and interpret what they mean. Step 6: Make sure you answered all questions. Chapter 4 No Problem Word Problems! Name: Algebra 2 Period: 1 2 3 4 5 6 A. Solving from Standard Form 1. A ball is thrown so its height, h, in feet, is given by the equation h = 16t! + 10t where t is the

More information

MatLab Programming Lesson 4: Mini-projects

MatLab Programming Lesson 4: Mini-projects MatLab Programming Lesson 4: Mini-projects ) Log into your computer and open MatLab 2) If you don t have the previous M-scripts saved, you can find them at http://www.physics.arizona.edu/~physreu/dox/matlab_lesson_.pdf,

More information

Motion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes:

Motion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes: Motion Graphs 1 _ Motion Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes graphs help make motion easier to picture, and therefore understand. Remember: Motion

More information

Objectives: To create a Flash motion tween using the timeline and keyframes, and using pivot points to define object movement.

Objectives: To create a Flash motion tween using the timeline and keyframes, and using pivot points to define object movement. DM20 Assignment 4c Flash motion tween with pivot point adjustments screen shots from CS3 with CS4 differences described Objectives: To create a Flash motion tween using the timeline and keyframes, and

More information

Aimetis Crowd Detection. 1.x User Guide

Aimetis Crowd Detection. 1.x User Guide Aimetis Crowd Detection x User Guide Contents Contents Legal information... 3 Introduction...4 Installation...5 Requirements... 5 Install Crowd Detection...5 Open Crowd Detection... 5 Add a license...

More information

Lesson 3.1 Vertices and Intercepts. Important Features of Parabolas

Lesson 3.1 Vertices and Intercepts. Important Features of Parabolas Lesson 3.1 Vertices and Intercepts Name: _ Learning Objective: Students will be able to identify the vertex and intercepts of a parabola from its equation. CCSS.MATH.CONTENT.HSF.IF.C.7.A Graph linear and

More information

Name Class Date. Activity P37: Time of Flight versus Initial Speed (Photogate)

Name Class Date. Activity P37: Time of Flight versus Initial Speed (Photogate) Name Class Date Activity P37: Time of Flight versus Initial Speed (Photogate) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Projectile motion P37 Time of Flight.DS P08 Time of Flight P08_TOF.SWS

More information

IOP Horizons in Physics. Department of Physics University of Limerick

IOP Horizons in Physics. Department of Physics University of Limerick IOP Horizons in Physics Department of Physics University of Limerick 1 Import Video Using the Video tab Import the video you want to analyse. Your video may not have the correct orientation. If so filters

More information

E19 Final Project Report Liquid Pong Simulation. E.A.Martin, X.D.Zhai

E19 Final Project Report Liquid Pong Simulation. E.A.Martin, X.D.Zhai E19 Final Project Report Liquid Pong Simulation E.A.Martin, X.D.Zhai December 22, 2012 Motivation and Goals Before embarking on this project, we decided to choose a project that extends the concepts learned

More information

Project 2: Projectile Motion

Project 2: Projectile Motion Physics 2300 Spring 2018 Name Lab partner Project 2: Projectile Motion You now know enough about VPython to write your first simulation program. The idea of a simulation is to program the laws of physics

More information

For the following, find the equation, roots, axis of symmetry, vertex, and graph that go together. i (1,2) F X = -2, -2. ii (3,13) iii (1, -5)

For the following, find the equation, roots, axis of symmetry, vertex, and graph that go together. i (1,2) F X = -2, -2. ii (3,13) iii (1, -5) Name: Date: Hour: Practice with Quadratics and Parabolas (40 Formative Points) For the following, find the equation, roots, axis of symmetry, vertex, and graph that go together. Equation A y = x 2 + 4x

More information

Armstrong Atlantic State University Engineering Studies MATLAB Marina 2D Plotting Primer

Armstrong Atlantic State University Engineering Studies MATLAB Marina 2D Plotting Primer Armstrong Atlantic State University Engineering Studies MATLAB Marina D Plotting Primer Prerequisites The D Plotting Primer assumes knowledge of the MATLAB IDE, MATLAB help, arithmetic operations, built

More information

Contents 10. Graphs of Trigonometric Functions

Contents 10. Graphs of Trigonometric Functions Contents 10. Graphs of Trigonometric Functions 2 10.2 Sine and Cosine Curves: Horizontal and Vertical Displacement...... 2 Example 10.15............................... 2 10.3 Composite Sine and Cosine

More information

3D Capture. 3D Capture. 3D Capture. 3D Capture. Real-world

3D Capture. 3D Capture. 3D Capture. 3D Capture. Real-world Real-world Need at least two cameras, commonly on side-by-side Plug-in the Minoru 3D webcam Right-click the Minoru icons to see a list of options. Set the mode to use Side-by-Side with Left first. Set

More information

Y. Butterworth Lehmann & 9.2 Page 1 of 11

Y. Butterworth Lehmann & 9.2 Page 1 of 11 Pre Chapter 9 Coverage Quadratic (2 nd Degree) Form a type of graph called a parabola Form of equation we'll be dealing with in this chapter: y = ax 2 + c Sign of a determines opens up or down "+" opens

More information

(ii) Calculate the maximum height reached by the ball. (iii) Calculate the times at which the ball is at half its maximum height.

(ii) Calculate the maximum height reached by the ball. (iii) Calculate the times at which the ball is at half its maximum height. 1 Inthis question take g =10. A golf ball is hit from ground level over horizontal ground. The initial velocity of the ball is 40 m s 1 at an angle α to the horizontal, where sin α = 0.6 and cos α = 0.8.

More information

Applied Parabolas: Catapult (one test grade)

Applied Parabolas: Catapult (one test grade) Name: I. Overview: PreCalculus Applied Parabola Project Applied Parabolas: Catapult (one test grade) You will use catapults to launch candy into the air. Using a stopwatch, you will time how long the projectile

More information

ACTIVITY TWO CONSTANT VELOCITY IN TWO DIRECTIONS

ACTIVITY TWO CONSTANT VELOCITY IN TWO DIRECTIONS 1 ACTIVITY TWO CONSTANT VELOCITY IN TWO DIRECTIONS Purpose The overall goal of this activity is for students to analyze the motion of an object moving with constant velocity along a diagonal line. In this

More information

Math 112 Fall 2014 Midterm 1 Review Problems Page 1. (E) None of these

Math 112 Fall 2014 Midterm 1 Review Problems Page 1. (E) None of these Math Fall Midterm Review Problems Page. Solve the equation. The answer is: x x 7 Less than Between and Between and Between and 7 (E) More than 7. Solve for x : x x 8. The solution is a number: less than

More information

Practice Exams. Exam logistics. Projectile Motion Problem-Solving. ax = 0 m/s2 ay = -9.8 m/s2. You won t do well if you wait then cram.

Practice Exams. Exam logistics. Projectile Motion Problem-Solving. ax = 0 m/s2 ay = -9.8 m/s2. You won t do well if you wait then cram. 1 v projectile is in free fall! ax = 0 m/s2 ay = -9.8 m/s2 Projectile Motion Problem-Solving Last year s exam equation sheet. 2 What are you getting stuck on in problem-solving? Topics: Chapters 1 3 including:

More information

Introduction to Google SketchUp

Introduction to Google SketchUp Introduction to Google SketchUp When initially opening SketchUp, it will be useful to select the Google Earth Modelling Meters option from the initial menu. If this menu doesn t appear, the same option

More information

Purpose of the experiment

Purpose of the experiment Projectile Motion PES 116 Advanced Physics Lab I Purpose of the experiment Measure the velocity of a ball using two photogates and Logger Pro. Apply the concepts of two-dimensional kinematics to predict

More information

LAB 03: The Equations of Uniform Motion

LAB 03: The Equations of Uniform Motion LAB 03: The Equations of Uniform Motion This experiment uses a ramp and a low-friction cart. If you give the cart a gentle push up the ramp, the cart will roll upward, slow and stop, and then roll back

More information

Name. Beaumont Middle School 8th Grade, Advanced Algebra I. A = l w P = 2 l + 2w

Name. Beaumont Middle School 8th Grade, Advanced Algebra I. A = l w P = 2 l + 2w 1 Name Beaumont Middle School 8th Grade, 2015-2016 Advanced Algebra I A = l w P = 2 l + 2w Graphing Quadratic Functions, Using the Zeroes (x-intercepts) EXAMPLES 1) y = x 2 9 2 a) Standard Form: b) a =,

More information

College Pre Calculus A Period. Weekly Review Sheet # 1 Assigned: Monday, 9/9/2013 Due: Friday, 9/13/2013

College Pre Calculus A Period. Weekly Review Sheet # 1 Assigned: Monday, 9/9/2013 Due: Friday, 9/13/2013 College Pre Calculus A Name Period Weekly Review Sheet # 1 Assigned: Monday, 9/9/013 Due: Friday, 9/13/013 YOU MUST SHOW ALL WORK FOR EVERY QUESTION IN THE BOX BELOW AND THEN RECORD YOUR ANSWERS ON THE

More information

Section 33: Advanced Charts

Section 33: Advanced Charts Section 33 Advanced Charts By the end of this Section you should be able to: Use Chart Options Add Moving Averages to Charts Change a 3D Chart View Use Data Labels and Markers Create Stacked Bar Charts

More information

Stomp Rocket Lab Physics

Stomp Rocket Lab Physics Stomp Rocket Lab Physics Stomp Rockets are plastic projectiles that are launched when a bladder of air is hit or stomped with a foot. Typically the launch angle can be changed, but should be left at 90

More information

Displacement-time and Velocity-time Graphs

Displacement-time and Velocity-time Graphs PhysicsFactsheet April Number Displacement- and Velocity- Graphs This Factsheet explains how motion can be described using graphs, in particular how - graphs and - graphs can be used. Displacement- graphs

More information

Adobe Flash CS4 Part 3: Animation

Adobe Flash CS4 Part 3: Animation CALIFORNIA STATE UNIVERSITY, LOS ANGELES INFORMATION TECHNOLOGY SERVICES Adobe Flash CS4 Part 3: Animation Fall 2010, Version 1.0 Table of Contents Introduction...2 Downloading the Data Files...2 Understanding

More information

AWM 11 UNIT 4 TRIGONOMETRY OF RIGHT TRIANGLES

AWM 11 UNIT 4 TRIGONOMETRY OF RIGHT TRIANGLES AWM 11 UNIT 4 TRIGONOMETRY OF RIGHT TRIANGLES Assignment Title Work to complete Complete 1 Triangles Labelling Triangles 2 Pythagorean Theorem Exploring Pythagorean Theorem 3 More Pythagorean Theorem Using

More information

EEN118 LAB FOUR. h = v t ½ g t 2

EEN118 LAB FOUR. h = v t ½ g t 2 EEN118 LAB FOUR In this lab you will be performing a simulation of a physical system, shooting a projectile from a cannon and working out where it will land. Although this is not a very complicated physical

More information

Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET

Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET After reading through the Introduction, Purpose and Principles sections of the lab manual (and skimming through the procedures), answer the following

More information

Example 1: Give the coordinates of the points on the graph.

Example 1: Give the coordinates of the points on the graph. Ordered Pairs Often, to get an idea of the behavior of an equation, we will make a picture that represents the solutions to the equation. A graph gives us that picture. The rectangular coordinate plane,

More information

Projectile Motion SECTION 3. Two-Dimensional Motion. Objectives. Use of components avoids vector multiplication.

Projectile Motion SECTION 3. Two-Dimensional Motion. Objectives. Use of components avoids vector multiplication. Projectile Motion Key Term projectile motion Two-Dimensional Motion Previously, we showed how quantities such as displacement and velocity were vectors that could be resolved into components. In this section,

More information

ME 3222 Design & Manufacturing II. Creating and Animating a Slider-Crank in Creo Elements (Version 2.0)

ME 3222 Design & Manufacturing II. Creating and Animating a Slider-Crank in Creo Elements (Version 2.0) ME 3222 Design & Manufacturing II Creating and Animating a Slider-Crank in Creo Elements (Version 2.0) Tom Chase February 18, 2016 Overview This document explains how to create a mechanism and animate

More information

Flow Sim. Chapter 16. Airplane. A. Enable Flow Simulation. Step 1. If necessary, open your ASSEMBLY file.

Flow Sim. Chapter 16. Airplane. A. Enable Flow Simulation. Step 1. If necessary, open your ASSEMBLY file. Chapter 16 Airplane Flow Sim A. Enable Flow Simulation. Step 1. If necessary, open your ASSEMBLY file. Step 2. If necessary, turn on Flow Simulation, click the flyout of Options on the Standard toolbar

More information

Lecture 5. If, as shown in figure, we form a right triangle With P1 and P2 as vertices, then length of the horizontal

Lecture 5. If, as shown in figure, we form a right triangle With P1 and P2 as vertices, then length of the horizontal Distance; Circles; Equations of the form Lecture 5 y = ax + bx + c In this lecture we shall derive a formula for the distance between two points in a coordinate plane, and we shall use that formula to

More information

Graphical Analysis of Kinematics

Graphical Analysis of Kinematics Physics Topics Graphical Analysis of Kinematics If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Velocity and

More information

Upcoming Deadlines. ArtPhysics123.pbworks.com. Second Homework (Mini-portfolio): Due Monday, February 8 th ; Due Wednesday, February 10 th ;

Upcoming Deadlines. ArtPhysics123.pbworks.com. Second Homework (Mini-portfolio): Due Monday, February 8 th ; Due Wednesday, February 10 th ; Upcoming Deadlines Pick up a clicker, find the right channel, and enter Student ID Second Homework (Mini-portfolio): Due Monday, February 8 th ; 10 points (5 points if late) Third Homework (Shooting Reference)

More information

Class #10 Wednesday, November 8, 2017

Class #10 Wednesday, November 8, 2017 Graphics In Excel Before we create a simulation, we need to be able to make a drawing in Excel. The techniques we use here are also used in Mathematica and LabVIEW. Drawings in Excel take place inside

More information

MATLAB Programming for Numerical Computation Dr. Niket Kaisare Department Of Chemical Engineering Indian Institute of Technology, Madras

MATLAB Programming for Numerical Computation Dr. Niket Kaisare Department Of Chemical Engineering Indian Institute of Technology, Madras MATLAB Programming for Numerical Computation Dr. Niket Kaisare Department Of Chemical Engineering Indian Institute of Technology, Madras Module No. #01 Lecture No. #1.1 Introduction to MATLAB programming

More information

7-5 Parametric Equations

7-5 Parametric Equations 3. Sketch the curve given by each pair of parametric equations over the given interval. Make a table of values for 6 t 6. t x y 6 19 28 5 16.5 17 4 14 8 3 11.5 1 2 9 4 1 6.5 7 0 4 8 1 1.5 7 2 1 4 3 3.5

More information

Name Class Date. Using Graphs to Relate Two Quantities

Name Class Date. Using Graphs to Relate Two Quantities 4-1 Reteaching Using Graphs to Relate Two Quantities An important life skill is to be able to a read graph. When looking at a graph, you should check the title, the labels on the axes, and the general

More information

5.5 Right Triangles. 1. For an acute angle A in right triangle ABC, the trigonometric functions are as follow:

5.5 Right Triangles. 1. For an acute angle A in right triangle ABC, the trigonometric functions are as follow: 5.5 Right Triangles 1. For an acute angle A in right triangle ABC, the trigonometric functions are as follow: sin A = side opposite hypotenuse cos A = side adjacent hypotenuse B tan A = side opposite side

More information

Lesson 8: Graphs and Graphing Linear Equations

Lesson 8: Graphs and Graphing Linear Equations In this chapter, we will begin looking at the relationships between two variables. Typically one variable is considered to be the input, and the other is called the output. The input is the value that

More information

Using Flash Animation Basics

Using Flash Animation Basics Using Flash Contents Using Flash... 1 Animation Basics... 1 Exercise 1. Creating a Symbol... 2 Exercise 2. Working with Layers... 4 Exercise 3. Using the Timeline... 6 Exercise 4. Previewing an animation...

More information

PRECALCULUS MATH Trigonometry 9-12

PRECALCULUS MATH Trigonometry 9-12 1. Find angle measurements in degrees and radians based on the unit circle. 1. Students understand the notion of angle and how to measure it, both in degrees and radians. They can convert between degrees

More information

3.7, Graphing Calculator Fun. Sketch a full picture of the following graphs. Draw axes and indicate the x and y max and min.

3.7, Graphing Calculator Fun. Sketch a full picture of the following graphs. Draw axes and indicate the x and y max and min. 3.7, 3.9 1 Graphing Calculator Fun Sketch a full picture of the following graphs. Draw axes and indicate the x and y max and min. y = x 2 32x +240 y = -2sin(x) +1 [-2π, 2π] Solve the following 3x 2 4x

More information

Flow Sim. Chapter 12. F1 Car. A. Enable Flow Simulation. Step 1. If necessary, open your ASSEMBLY file.

Flow Sim. Chapter 12. F1 Car. A. Enable Flow Simulation. Step 1. If necessary, open your ASSEMBLY file. Chapter 12 F1 Car Flow Sim A. Enable Flow Simulation. Step 1. If necessary, open your ASSEMBLY file. Step 2. If necessary, turn on Flow Simulation, click the flyout of Options on the Standard toolbar and

More information

Introduction to Trigonometry

Introduction to Trigonometry NAME COMMON CORE GEOMETRY- Unit 6 Introduction to Trigonometry DATE PAGE TOPIC HOMEWORK 1/22 2-4 Lesson 1 : Incredibly Useful Ratios Homework Worksheet 1/23 5-6 LESSON 2: Using Trigonometry to find missing

More information

EEN118 LAB FOUR. h = v t ½ g t 2

EEN118 LAB FOUR. h = v t ½ g t 2 EEN118 LAB FOUR In this lab you will be performing a simulation of a physical system, shooting a projectile from a cannon and working out where it will land. Although this is not a very complicated physical

More information

Algebra II Lesson 4.1 and 4.2 Review

Algebra II Lesson 4.1 and 4.2 Review Name: Class: Date: Algebra II Lesson 4.1 and 4.2 Review 1. Graph y = 1 4 x 2. a. c. b. d. Graph. 2. y = x 2 3 a. c. b. d. 1 Name: 3. y = 3x 2 + x + 1 a. c. b. d. 4. y = 2x 2 + x + 3 5. How would you translate

More information

Solving Right Triangles. How do you solve right triangles?

Solving Right Triangles. How do you solve right triangles? Solving Right Triangles How do you solve right triangles? The Trigonometric Functions we will be looking at SINE COSINE TANGENT The Trigonometric Functions SINE COSINE TANGENT SINE Pronounced sign TANGENT

More information

2.3 Projectile Motion

2.3 Projectile Motion Figure 1 An Olympic ski jumper uses his own body as a projectile. projectile an object that moves along a two-dimensional curved trajectory in response to gravity projectile motion the motion of a projectile

More information

The Lens. Refraction and The Lens. Figure 1a:

The Lens. Refraction and The Lens. Figure 1a: Lenses are used in many different optical devices. They are found in telescopes, binoculars, cameras, camcorders and eyeglasses. Even your eye contains a lens that helps you see objects at different distances.

More information

5 Applications of Definite Integrals

5 Applications of Definite Integrals 5 Applications of Definite Integrals The previous chapter introduced the concepts of a definite integral as an area and as a limit of Riemann sums, demonstrated some of the properties of integrals, introduced

More information