Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling

Size: px
Start display at page:

Download "Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling"

Transcription

1 Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling Michael Maire 1,2 Stella X. Yu 3 Pietro Perona 2 1 TTI Chicago 2 California Institute of Technology 3 University of California at Berkeley / ICSI

2 Motivation: Deep Representations

3 Image Classification Motivation: Deep Representations [Krizhevsky, Sutskever, and Hinton, NIPS 2012]

4 Image Classification Motivation: Deep Representations [Krizhevsky, Sutskever, and Hinton, NIPS 2012] [Bo, Ren, and Fox, CVPR 2013]

5 Image Classification Motivation: Deep Representations [Krizhevsky, Sutskever, and Hinton, NIPS 2012] [Bo, Ren, and Fox, CVPR 2013] Object Detection [Girshick, Donahue, Darrell, and Malik, CVPR 2014]

6 Deep Representations for Semantic Labeling classify image detect objects

7 Deep Representations for Semantic Labeling classify image label every pixel detect objects

8 Contour Detection: Special Case { 0 if in region interior 1 if on region boundary

9 Contour Detection: Special Case

10 Contour Detection: Special Case contour detection serves as foundation for: segmentation, object proposals

11 Semantic Labeling Strategy predict patch labels from a spatially localized multilayer slice of a deep representation

12 Semantic Labeling Strategy predict patch labels from a spatially localized multilayer slice of a deep representation generalization of sparse reconstruction

13 Multipath Sparse Coding [Bo, Ren, and Fox, CVPR 2013]

14 [Bo, Ren, and Fox, CVPR 2013]

15 [Bo, Ren, and Fox, CVPR 2013]

16 [Bo, Ren, and Fox, CVPR 2013]

17

18 patch descriptor (sparse)

19 use patch descriptors in a sparse reconstructive setting patch descriptor (sparse)

20 Sparse Coding & Reconstruction Image

21 Sparse Coding & Reconstruction Image Patch Dictionary Batch OMP

22 Sparse Coding & Reconstruction Image Patch Dictionary Batch OMP = z i,0 + z i, z i,l z i 0 K x i d 0 d 1 d L

23 Sparse Coding & Reconstruction Image Patch Dictionary Sparse Codes Batch OMP coefficients pixels = z i,0 + z i, z i,l z i 0 K x i d 0 d 1 d L

24 Sparse Coding & Reconstruction Image Patch Dictionary Sparse Codes Batch OMP coefficients pixels = z i,0 + z i, z i,l z i 0 K x i d 0 d 1 d L

25 Sparse Coding & Reconstruction Image Patch Dictionary Sparse Codes Batch OMP coefficients pixels

26 Sparse Coding & Reconstruction Image Patch Dictionary Sparse Codes Batch OMP coefficients pixels Sparse Codes coefficients pixels

27 Sparse Coding & Reconstruction Image Patch Dictionary Sparse Codes Batch OMP coefficients pixels coefficients Sparse Codes pixels Patch Dictionary Reconstruction

28 Sparse Coding & Reconstruction Image Patch Dictionary Sparse Codes Batch OMP coefficients pixels coefficients Sparse Codes pixels Patch Dictionary Reconstruction Image

29 Reconstructive Sparse Code Transfer Sparse Codes coefficients pixels

30 Reconstructive Sparse Code Transfer Rectified Sparse Codes coefficients pixels [ ] z i max(zi T, 0), max( zi T T, 0), 1

31 Reconstructive Sparse Code Transfer Rectified Sparse Codes Transfer Dictionary coefficients pixels [ ] z i max(zi T, 0), max( zi T T, 0), 1 Reconstruction

32 Reconstructive Sparse Code Transfer Rectified Sparse Codes Transfer Dictionary coefficients pixels [ ] z i max(zi T, 0), max( zi T T, 0), 1 Reconstruction Contour Detection

33 Sparse Coding: Generative Training

34 Sparse Coding: Generative Training sample patches X = [x 0, x 1,...] from training images

35 Sparse Coding: Generative Training sample patches X = [x 0, x 1,...] from training images learn: sparse representations Z = [z0, z 1,...] dictionary D = [d0, d 1,..., d L 1 ]

36 Sparse Coding: Generative Training sample patches X = [x 0, x 1,...] from training images learn: sparse representations Z = [z0, z 1,...] dictionary D = [d0, d 1,..., d L 1 ] MI-KSVD finds an approximate solution to: [ L 1 L 1 X DZ 2 F + λ argmin D, Z i=0 j=0,j i s.t. i, d i 2 = 1 and n, z n 0 K d T i d j ]

37 Sparse Coding: Generative Training sample patches X = [x 0, x 1,...] from training images learn: sparse representations Z = [z0, z 1,...] dictionary D = [d0, d 1,..., d L 1 ] MI-KSVD finds an approximate solution to: [ L 1 L 1 X DZ 2 F + λ argmin D, Z i=0 j=0,j i s.t. i, d i 2 = 1 and n, z n 0 K encode patch x R m m c as z R L : d T i d j ] argmin x Dz 2 z s.t. z 0 K

38 Transfer Dictionary: Discriminative Training

39 Transfer Dictionary: Discriminative Training D maps sparse vector z R L to patch P R m m c

40 Transfer Dictionary: Discriminative Training D maps sparse vector z R L to patch P R m m c replace D with function F ( )

41 Transfer Dictionary: Discriminative Training D maps sparse vector z R L to patch P R m m c replace D with function F ( ) F (z) predicts groundtruth labeling G R m m h

42 Transfer Dictionary: Discriminative Training D maps sparse vector z R L to patch P R m m c replace D with function F ( ) F (z) predicts groundtruth labeling G R m m h patch-level discriminative training:

43 Transfer Dictionary: Discriminative Training D maps sparse vector z R L to patch P R m m c replace D with function F ( ) F (z) predicts groundtruth labeling G R m m h patch-level discriminative training: sample codes {z0, z 1,...} and corresponding groundtruth patches {g 0, g 1,...}

44 Transfer Dictionary: Discriminative Training D maps sparse vector z R L to patch P R m m c replace D with function F ( ) F (z) predicts groundtruth labeling G R m m h patch-level discriminative training: sample codes {z0, z 1,...} and corresponding groundtruth patches {g 0, g 1,...} split F ( ) into independently trained predictors [f 0, f 1,..., f (m 2 h 1)], one for each output element

45 Transfer Dictionary: Discriminative Training D maps sparse vector z R L to patch P R m m c replace D with function F ( ) F (z) predicts groundtruth labeling G R m m h patch-level discriminative training: sample codes {z0, z 1,...} and corresponding groundtruth patches {g 0, g 1,...} split F ( ) into independently trained predictors [f 0, f 1,..., f (m 2 h 1)], one for each output element we want: f j (z i ) g i [j] i, j

46 Transfer Dictionary: Discriminative Training D maps sparse vector z R L to patch P R m m c replace D with function F ( ) F (z) predicts groundtruth labeling G R m m h patch-level discriminative training: sample codes {z0, z 1,...} and corresponding groundtruth patches {g 0, g 1,...} split F ( ) into independently trained predictors [f 0, f 1,..., f (m 2 h 1)], one for each output element we want: f j (z i ) g i [j] i, j train each fj ( ) using logistic regression

47 Transfer Dictionary: Discriminative Training D maps sparse vector z R L to patch P R m m c replace D with function F ( ) F (z) predicts groundtruth labeling G R m m h patch-level discriminative training: sample codes {z0, z 1,...} and corresponding groundtruth patches {g 0, g 1,...} split F ( ) into independently trained predictors [f 0, f 1,..., f (m 2 h 1)], one for each output element we want: f j (z i ) g i [j] i, j train each fj ( ) using logistic regression replace z with concatenated multipath codes

48

49 Multiple Scales

50 Multiple Scales Layer 1 Dictionaries 5x5, 64 atoms 11x11, 64 atoms 5x5, 512 atoms 11x11, 512 atoms 21x21, 512 atoms 31x31, 512 atoms

51 Multiple Scales Layer 1 Dictionaries 5x5, 64 atoms 11x11, 64 atoms 5x5, 512 atoms 11x11, 512 atoms 21x21, 512 atoms 31x31, 512 atoms pooling Layer 2 Dictionaries 5x5, 512 atoms 5x5, 512 atoms

52 Multiple Scales Layer 1 Dictionaries 5x5, 64 atoms 11x11, 64 atoms 5x5, 512 atoms 11x11, 512 atoms 21x21, 512 atoms 31x31, 512 atoms pooling = Layer 2 Dictionaries 5x5, 512 atoms 5x5, 512 atoms rectify, upsample, concatenate sparse activation maps

53 Multiple Scales Layer 1 Dictionaries 5x5, 64 atoms 11x11, 64 atoms 5x5, 512 atoms 11x11, 512 atoms 21x21, 512 atoms 31x31, 512 atoms pooling = Layer 2 Dictionaries 5x5, 512 atoms 5x5, 512 atoms rectify, upsample, concatenate sparse activation maps dimensions Sparse Representation

54 Multiple Scales Layer 1 Dictionaries 5x5, 64 atoms 11x11, 64 atoms 5x5, 512 atoms 11x11, 512 atoms 21x21, 512 atoms 31x31, 512 atoms pooling = Layer 2 Dictionaries 5x5, 512 atoms 5x5, 512 atoms rectify, upsample, concatenate sparse activation maps = dimensions Contour Reconstruction Sparse Representation

55 Contour Detection Groundtruth [Martin, Fowlkes, Tal, and Malik, ICCV 2001]

56 Contour Detection Results

57 Contour Detection Results

58 Contour Detection Performance

59 Contour Detection Performance

60 Contour Detection Performance Performance Metric Hand-Designed Spectral ODS F OIS F AP Features? Filters? Globalization? Human Structured Edges yes no no local SCG (color) no yes no Sparse Code Transfer Layers no no no Sparse Code Transfer Layer no no no local SCG (gray) no yes no multiscale Pb yes yes no Canny Edge Detector yes yes no global SCG (color) yes yes yes global Pb + UCM yes yes yes + UCM global Pb yes yes yes Sparse Code Transfer: Performance competitive with top approaches Both representation and classifier are learned Free from reliance on hand-designed features or filters

61 Texture and Network Depth Layer 1 Layers 1+2

62 Texture and Network Depth Layer 1 Layers 1+2

63 Semantic Labeling hair skin background Labeled Faces in the Wild Dataset [Kae, Sohn, Lee, Learned-Miller, CVPR 2013]

64 Summary

65 Summary Semantic labeling using spatially localized slices of deep representations

66 Summary Semantic labeling using spatially localized slices of deep representations Sparse reconstruction generalized to multipath networks

67 Summary Semantic labeling using spatially localized slices of deep representations Sparse reconstruction generalized to multipath networks Transfer learning perspective: Generatively trained patch representation Task-specific discriminately trained transfer classifier

68 Summary Semantic labeling using spatially localized slices of deep representations Sparse reconstruction generalized to multipath networks Transfer learning perspective: Generatively trained patch representation Task-specific discriminately trained transfer classifier Pure learning for high performance contour detection

69 Summary Semantic labeling using spatially localized slices of deep representations Sparse reconstruction generalized to multipath networks Transfer learning perspective: Generatively trained patch representation Task-specific discriminately trained transfer classifier Pure learning for high performance contour detection Contours obtained as a byproduct of deep representations

70 Summary Semantic labeling using spatially localized slices of deep representations Sparse reconstruction generalized to multipath networks Transfer learning perspective: Generatively trained patch representation Task-specific discriminately trained transfer classifier Pure learning for high performance contour detection Contours obtained as a byproduct of deep representations Thank You!

arxiv: v1 [cs.cv] 16 Oct 2014

arxiv: v1 [cs.cv] 16 Oct 2014 Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling Michael Maire 1,2, Stella X. Yu 3, and Pietro Perona 2 arxiv:1410.4521v1 [cs.cv] 16 Oct 2014 1 TTI Chicago 2 California Institute

More information

Edge Detection Using Convolutional Neural Network

Edge Detection Using Convolutional Neural Network Edge Detection Using Convolutional Neural Network Ruohui Wang (B) Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong, China wr013@ie.cuhk.edu.hk Abstract. In this work,

More information

DeepEdge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection

DeepEdge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection DeepEdge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection Gedas Bertasius University of Pennsylvania gberta@seas.upenn.edu Jianbo Shi University of Pennsylvania jshi@seas.upenn.edu

More information

Learning the Ecological Statistics of Perceptual Organization

Learning the Ecological Statistics of Perceptual Organization Learning the Ecological Statistics of Perceptual Organization Charless Fowlkes work with David Martin, Xiaofeng Ren and Jitendra Malik at University of California at Berkeley 1 How do ideas from perceptual

More information

Lecture 5: Object Detection

Lecture 5: Object Detection Object Detection CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 5: Object Detection Bohyung Han Computer Vision Lab. bhhan@postech.ac.kr 2 Traditional Object Detection Algorithms Region-based

More information

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION Kingsley Kuan 1, Gaurav Manek 1, Jie Lin 1, Yuan Fang 1, Vijay Chandrasekhar 1,2 Institute for Infocomm Research, A*STAR, Singapore 1 Nanyang Technological

More information

IMAGE SUPER-RESOLUTION BASED ON DICTIONARY LEARNING AND ANCHORED NEIGHBORHOOD REGRESSION WITH MUTUAL INCOHERENCE

IMAGE SUPER-RESOLUTION BASED ON DICTIONARY LEARNING AND ANCHORED NEIGHBORHOOD REGRESSION WITH MUTUAL INCOHERENCE IMAGE SUPER-RESOLUTION BASED ON DICTIONARY LEARNING AND ANCHORED NEIGHBORHOOD REGRESSION WITH MUTUAL INCOHERENCE Yulun Zhang 1, Kaiyu Gu 2, Yongbing Zhang 1, Jian Zhang 3, and Qionghai Dai 1,4 1 Shenzhen

More information

A FRAMEWORK OF EXTRACTING MULTI-SCALE FEATURES USING MULTIPLE CONVOLUTIONAL NEURAL NETWORKS. Kuan-Chuan Peng and Tsuhan Chen

A FRAMEWORK OF EXTRACTING MULTI-SCALE FEATURES USING MULTIPLE CONVOLUTIONAL NEURAL NETWORKS. Kuan-Chuan Peng and Tsuhan Chen A FRAMEWORK OF EXTRACTING MULTI-SCALE FEATURES USING MULTIPLE CONVOLUTIONAL NEURAL NETWORKS Kuan-Chuan Peng and Tsuhan Chen School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

More information

Fast Edge Detection Using Structured Forests

Fast Edge Detection Using Structured Forests Fast Edge Detection Using Structured Forests Piotr Dollár, C. Lawrence Zitnick [1] Zhihao Li (zhihaol@andrew.cmu.edu) Computer Science Department Carnegie Mellon University Table of contents 1. Introduction

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period starts

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Announcements Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Seminar registration period starts on Friday We will offer a lab course in the summer semester Deep Robot Learning Topic:

More information

Part Localization by Exploiting Deep Convolutional Networks

Part Localization by Exploiting Deep Convolutional Networks Part Localization by Exploiting Deep Convolutional Networks Marcel Simon, Erik Rodner, and Joachim Denzler Computer Vision Group, Friedrich Schiller University of Jena, Germany www.inf-cv.uni-jena.de Abstract.

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

Multipath Sparse Coding Using Hierarchical Matching Pursuit

Multipath Sparse Coding Using Hierarchical Matching Pursuit Multipath Sparse Coding Using Hierarchical Matching Pursuit Liefeng Bo ISTC-PC Intel Labs liefeng.bo@intel.com Xiaofeng Ren ISTC-PC Intel Labs xren@cs.washington.edu Dieter Fox University of Washington

More information

Multipath Sparse Coding Using Hierarchical Matching Pursuit

Multipath Sparse Coding Using Hierarchical Matching Pursuit 2013 IEEE Conference on Computer Vision and Pattern Recognition Multipath Sparse Coding Using Hierarchical Matching Pursuit Liefeng Bo ISTC-PC Intel Labs liefeng.bo@intel.com Xiaofeng Ren ISTC-PC Intel

More information

Boundaries and Sketches

Boundaries and Sketches Boundaries and Sketches Szeliski 4.2 Computer Vision James Hays Many slides from Michael Maire, Jitendra Malek Today s lecture Segmentation vs Boundary Detection Why boundaries / Grouping? Recap: Canny

More information

Part III: Affinity Functions for Image Segmentation

Part III: Affinity Functions for Image Segmentation Part III: Affinity Functions for Image Segmentation Charless Fowlkes joint work with David Martin and Jitendra Malik at University of California at Berkeley 1 Q: What measurements should we use for constructing

More information

Multi-View 3D Object Detection Network for Autonomous Driving

Multi-View 3D Object Detection Network for Autonomous Driving Multi-View 3D Object Detection Network for Autonomous Driving Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, Tian Xia CVPR 2017 (Spotlight) Presented By: Jason Ku Overview Motivation Dataset Network Architecture

More information

DeepContour: A Deep Convolutional Feature Learned by Positive-sharing Loss for Contour Detection

DeepContour: A Deep Convolutional Feature Learned by Positive-sharing Loss for Contour Detection DeepContour: A Deep Convolutional Feature Learned by Positive-sharing Loss for Contour Detection Wei Shen 1, Xinggang Wang 2, Yan Wang 3, Xiang Bai 2, Zhijiang Zhang 1 1 Key Lab of Specialty Fiber Optics

More information

Stacked Multiscale Feature Learning for Domain Independent Medical Image Segmentation

Stacked Multiscale Feature Learning for Domain Independent Medical Image Segmentation Stacked Multiscale Feature Learning for Domain Independent Medical Image Segmentation Ryan Kiros, Karteek Popuri, Dana Cobzas, and Martin Jagersand University of Alberta, Canada Abstract. In this work

More information

3D Object Recognition and Scene Understanding from RGB-D Videos. Yu Xiang Postdoctoral Researcher University of Washington

3D Object Recognition and Scene Understanding from RGB-D Videos. Yu Xiang Postdoctoral Researcher University of Washington 3D Object Recognition and Scene Understanding from RGB-D Videos Yu Xiang Postdoctoral Researcher University of Washington 1 2 Act in the 3D World Sensing & Understanding Acting Intelligent System 3D World

More information

Object detection with CNNs

Object detection with CNNs Object detection with CNNs 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before CNNs After CNNs 0% 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 year Region proposals

More information

Edge Detection. Computer Vision Shiv Ram Dubey, IIIT Sri City

Edge Detection. Computer Vision Shiv Ram Dubey, IIIT Sri City Edge Detection Computer Vision Shiv Ram Dubey, IIIT Sri City Previous two classes: Image Filtering Spatial domain Smoothing, sharpening, measuring texture * = FFT FFT Inverse FFT = Frequency domain Denoising,

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning for Object Categorization 14.01.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period

More information

Discrete-Continuous Gradient Orientation Estimation for Faster Image Segmentation

Discrete-Continuous Gradient Orientation Estimation for Faster Image Segmentation Discrete-Continuous Gradient Orientation Estimation for Faster Image Segmentation Michael Donoser and Dieter Schmalstieg Institute for Computer Graphics and Vision Graz University of Technology {donoser,schmalstieg}@icg.tugraz.at

More information

Extended Dictionary Learning : Convolutional and Multiple Feature Spaces

Extended Dictionary Learning : Convolutional and Multiple Feature Spaces Extended Dictionary Learning : Convolutional and Multiple Feature Spaces Konstantina Fotiadou, Greg Tsagkatakis & Panagiotis Tsakalides kfot@ics.forth.gr, greg@ics.forth.gr, tsakalid@ics.forth.gr ICS-

More information

Global Probability of Boundary

Global Probability of Boundary Global Probability of Boundary Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cues Martin, Fowlkes, Malik Using Contours to Detect and Localize Junctions in Natural

More information

Multipath Sparse Coding Using Hierarchical Matching Pursuit

Multipath Sparse Coding Using Hierarchical Matching Pursuit Multipath Sparse Coding Using Hierarchical Matching Pursuit Liefeng Bo, Xiaofeng Ren ISTC Pervasive Computing, Intel Labs Seattle WA 98195, USA {liefeng.bo,xiaofeng.ren}@intel.com Dieter Fox University

More information

CS 2770: Computer Vision. Edges and Segments. Prof. Adriana Kovashka University of Pittsburgh February 21, 2017

CS 2770: Computer Vision. Edges and Segments. Prof. Adriana Kovashka University of Pittsburgh February 21, 2017 CS 2770: Computer Vision Edges and Segments Prof. Adriana Kovashka University of Pittsburgh February 21, 2017 Edges vs Segments Figure adapted from J. Hays Edges vs Segments Edges More low-level Don t

More information

Perceiving the 3D World from Images and Videos. Yu Xiang Postdoctoral Researcher University of Washington

Perceiving the 3D World from Images and Videos. Yu Xiang Postdoctoral Researcher University of Washington Perceiving the 3D World from Images and Videos Yu Xiang Postdoctoral Researcher University of Washington 1 2 Act in the 3D World Sensing & Understanding Acting Intelligent System 3D World 3 Understand

More information

Content-Based Image Recovery

Content-Based Image Recovery Content-Based Image Recovery Hong-Yu Zhou and Jianxin Wu National Key Laboratory for Novel Software Technology Nanjing University, China zhouhy@lamda.nju.edu.cn wujx2001@nju.edu.cn Abstract. We propose

More information

PASCAL Boundaries: A Semantic Boundary Dataset with A Deep Semantic Boundary Detector

PASCAL Boundaries: A Semantic Boundary Dataset with A Deep Semantic Boundary Detector PASCAL Boundaries: A Semantic Boundary Dataset with A Deep Semantic Boundary Detector Vittal Premachandran 1, Boyan Bonev 2, Xiaochen Lian 2, and Alan Yuille 1 1 Department of Computer Science, Johns Hopkins

More information

LEARNING BOUNDARIES WITH COLOR AND DEPTH. Zhaoyin Jia, Andrew Gallagher, Tsuhan Chen

LEARNING BOUNDARIES WITH COLOR AND DEPTH. Zhaoyin Jia, Andrew Gallagher, Tsuhan Chen LEARNING BOUNDARIES WITH COLOR AND DEPTH Zhaoyin Jia, Andrew Gallagher, Tsuhan Chen School of Electrical and Computer Engineering, Cornell University ABSTRACT To enable high-level understanding of a scene,

More information

Dense Volume-to-Volume Vascular Boundary Detection

Dense Volume-to-Volume Vascular Boundary Detection Dense Volume-to-Volume Vascular Boundary Detection Jameson Merkow 1, David Kriegman 1, Alison Marsden 2, and Zhuowen Tu 1 1 University of California, San Diego. 2 Stanford University Abstract. In this

More information

CS6501: Deep Learning for Visual Recognition. Object Detection I: RCNN, Fast-RCNN, Faster-RCNN

CS6501: Deep Learning for Visual Recognition. Object Detection I: RCNN, Fast-RCNN, Faster-RCNN CS6501: Deep Learning for Visual Recognition Object Detection I: RCNN, Fast-RCNN, Faster-RCNN Today s Class Object Detection The RCNN Object Detector (2014) The Fast RCNN Object Detector (2015) The Faster

More information

Affinity CNN: Learning Pixel-Centric Pairwise Relations for Figure/Ground Embedding

Affinity CNN: Learning Pixel-Centric Pairwise Relations for Figure/Ground Embedding Affinity CNN: Learning Pixel-Centric Pairwise Relations for Figure/Ground Embedding Michael Maire TTI Chicago mmaire@ttic.edu Takuya Narihira Sony Corp. takuya.narihira@jp.sony.com Stella X. Yu UC Berkeley

More information

Learning-based Methods in Vision

Learning-based Methods in Vision Learning-based Methods in Vision 16-824 Sparsity and Deep Learning Motivation Multitude of hand-designed features currently in use in vision - SIFT, HoG, LBP, MSER, etc. Even the best approaches, just

More information

arxiv: v1 [cs.cv] 17 May 2016

arxiv: v1 [cs.cv] 17 May 2016 SemiContour: A Semi-supervised Learning Approach for Contour Detection Zizhao Zhang, Fuyong Xing, Xiaoshuang Shi, Lin Yang University of Florida, Gainesville, FL 32611, USA zizhao@cise.ufl.edu, {f.xing,xsshi2015}@ufl.edu,

More information

Lecture 7: Semantic Segmentation

Lecture 7: Semantic Segmentation Semantic Segmentation CSED703R: Deep Learning for Visual Recognition (207F) Segmenting images based on its semantic notion Lecture 7: Semantic Segmentation Bohyung Han Computer Vision Lab. bhhanpostech.ac.kr

More information

Deep Neural Networks:

Deep Neural Networks: Deep Neural Networks: Part II Convolutional Neural Network (CNN) Yuan-Kai Wang, 2016 Web site of this course: http://pattern-recognition.weebly.com source: CNN for ImageClassification, by S. Lazebnik,

More information

TRANSPARENT OBJECT DETECTION USING REGIONS WITH CONVOLUTIONAL NEURAL NETWORK

TRANSPARENT OBJECT DETECTION USING REGIONS WITH CONVOLUTIONAL NEURAL NETWORK TRANSPARENT OBJECT DETECTION USING REGIONS WITH CONVOLUTIONAL NEURAL NETWORK 1 Po-Jen Lai ( 賴柏任 ), 2 Chiou-Shann Fuh ( 傅楸善 ) 1 Dept. of Electrical Engineering, National Taiwan University, Taiwan 2 Dept.

More information

Towards Large-Scale Semantic Representations for Actionable Exploitation. Prof. Trevor Darrell UC Berkeley

Towards Large-Scale Semantic Representations for Actionable Exploitation. Prof. Trevor Darrell UC Berkeley Towards Large-Scale Semantic Representations for Actionable Exploitation Prof. Trevor Darrell UC Berkeley traditional surveillance sensor emerging crowd sensor Desired capabilities: spatio-temporal reconstruction

More information

Direct Intrinsics: Learning Albedo-Shading Decomposition by Convolutional Regression

Direct Intrinsics: Learning Albedo-Shading Decomposition by Convolutional Regression Direct Intrinsics: Learning - Decomposition by Convolutional Regression Takuya Narihira UC Berkeley / ICSI / Sony Corp. takuya.narihira@jp.sony.com Michael Maire TTI Chicago mmaire@ttic.edu Stella X. Yu

More information

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I IMECS 2018, March 14-16, 2018, Hong Kong

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I IMECS 2018, March 14-16, 2018, Hong Kong , March 14-16, 2018, Hong Kong , March 14-16, 2018, Hong Kong , March 14-16, 2018, Hong Kong , March 14-16, 2018, Hong Kong TABLE I CLASSIFICATION ACCURACY OF DIFFERENT PRE-TRAINED MODELS ON THE TEST DATA

More information

Single Image Depth Estimation via Deep Learning

Single Image Depth Estimation via Deep Learning Single Image Depth Estimation via Deep Learning Wei Song Stanford University Stanford, CA Abstract The goal of the project is to apply direct supervised deep learning to the problem of monocular depth

More information

Multiscale Combinatorial Grouping

Multiscale Combinatorial Grouping Multiscale Combinatorial Grouping Pablo Arbela ez1, Jordi Pont-Tuset2, 1 Jonathan T. Barron1 University of California, Berkeley Berkeley, CA 94720 2 Ferran Marques2 Jitendra Malik1 Universitat Polite cnica

More information

Classification of objects from Video Data (Group 30)

Classification of objects from Video Data (Group 30) Classification of objects from Video Data (Group 30) Sheallika Singh 12665 Vibhuti Mahajan 12792 Aahitagni Mukherjee 12001 M Arvind 12385 1 Motivation Video surveillance has been employed for a long time

More information

Supplementary material for Analyzing Filters Toward Efficient ConvNet

Supplementary material for Analyzing Filters Toward Efficient ConvNet Supplementary material for Analyzing Filters Toward Efficient Net Takumi Kobayashi National Institute of Advanced Industrial Science and Technology, Japan takumi.kobayashi@aist.go.jp A. Orthonormal Steerable

More information

Cost-alleviative Learning for Deep Convolutional Neural Network-based Facial Part Labeling

Cost-alleviative Learning for Deep Convolutional Neural Network-based Facial Part Labeling [DOI: 10.2197/ipsjtcva.7.99] Express Paper Cost-alleviative Learning for Deep Convolutional Neural Network-based Facial Part Labeling Takayoshi Yamashita 1,a) Takaya Nakamura 1 Hiroshi Fukui 1,b) Yuji

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation BY; ROSS GIRSHICK, JEFF DONAHUE, TREVOR DARRELL AND JITENDRA MALIK PRESENTER; MUHAMMAD OSAMA Object detection vs. classification

More information

LEARNING A SPARSE DICTIONARY OF VIDEO STRUCTURE FOR ACTIVITY MODELING. Nandita M. Nayak, Amit K. Roy-Chowdhury. University of California, Riverside

LEARNING A SPARSE DICTIONARY OF VIDEO STRUCTURE FOR ACTIVITY MODELING. Nandita M. Nayak, Amit K. Roy-Chowdhury. University of California, Riverside LEARNING A SPARSE DICTIONARY OF VIDEO STRUCTURE FOR ACTIVITY MODELING Nandita M. Nayak, Amit K. Roy-Chowdhury University of California, Riverside ABSTRACT We present an approach which incorporates spatiotemporal

More information

REJECTION-BASED CLASSIFICATION FOR ACTION RECOGNITION USING A SPATIO-TEMPORAL DICTIONARY. Stefen Chan Wai Tim, Michele Rombaut, Denis Pellerin

REJECTION-BASED CLASSIFICATION FOR ACTION RECOGNITION USING A SPATIO-TEMPORAL DICTIONARY. Stefen Chan Wai Tim, Michele Rombaut, Denis Pellerin REJECTION-BASED CLASSIFICATION FOR ACTION RECOGNITION USING A SPATIO-TEMPORAL DICTIONARY Stefen Chan Wai Tim, Michele Rombaut, Denis Pellerin Univ. Grenoble Alpes, GIPSA-Lab, F-38000 Grenoble, France ABSTRACT

More information

Machine Learning. MGS Lecture 3: Deep Learning

Machine Learning. MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ Machine Learning MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ WHAT IS DEEP LEARNING? Shallow network: Only one hidden layer

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Presented by Tushar Bansal Objective 1. Get bounding box for all objects

More information

Edge and Texture. CS 554 Computer Vision Pinar Duygulu Bilkent University

Edge and Texture. CS 554 Computer Vision Pinar Duygulu Bilkent University Edge and Texture CS 554 Computer Vision Pinar Duygulu Bilkent University Filters for features Previously, thinking of filtering as a way to remove or reduce noise Now, consider how filters will allow us

More information

Deep Crisp Boundaries

Deep Crisp Boundaries Deep Crisp Boundaries Yupei Wang 1,2, Xin Zhao 1,2, Kaiqi Huang 1,2,3 1 CRIPAC & NLPR, CASIA 2 University of Chinese Academy of Sciences 3 CAS Center for Excellence in Brain Science and Intelligence Technology

More information

arxiv: v1 [cs.cv] 20 Dec 2016

arxiv: v1 [cs.cv] 20 Dec 2016 End-to-End Pedestrian Collision Warning System based on a Convolutional Neural Network with Semantic Segmentation arxiv:1612.06558v1 [cs.cv] 20 Dec 2016 Heechul Jung heechul@dgist.ac.kr Min-Kook Choi mkchoi@dgist.ac.kr

More information

Microscopy Cell Counting with Fully Convolutional Regression Networks

Microscopy Cell Counting with Fully Convolutional Regression Networks Microscopy Cell Counting with Fully Convolutional Regression Networks Weidi Xie, J. Alison Noble, Andrew Zisserman Department of Engineering Science, University of Oxford,UK Abstract. This paper concerns

More information

Computer Vision I. Announcement. Corners. Edges. Numerical Derivatives f(x) Edge and Corner Detection. CSE252A Lecture 11

Computer Vision I. Announcement. Corners. Edges. Numerical Derivatives f(x) Edge and Corner Detection. CSE252A Lecture 11 Announcement Edge and Corner Detection Slides are posted HW due Friday CSE5A Lecture 11 Edges Corners Edge is Where Change Occurs: 1-D Change is measured by derivative in 1D Numerical Derivatives f(x)

More information

Supervised texture detection in images

Supervised texture detection in images Supervised texture detection in images Branislav Mičušík and Allan Hanbury Pattern Recognition and Image Processing Group, Institute of Computer Aided Automation, Vienna University of Technology Favoritenstraße

More information

Recap from Monday. Visualizing Networks Caffe overview Slides are now online

Recap from Monday. Visualizing Networks Caffe overview Slides are now online Recap from Monday Visualizing Networks Caffe overview Slides are now online Today Edges and Regions, GPB Fast Edge Detection Using Structured Forests Zhihao Li Holistically-Nested Edge Detection Yuxin

More information

Object Detection Based on Deep Learning

Object Detection Based on Deep Learning Object Detection Based on Deep Learning Yurii Pashchenko AI Ukraine 2016, Kharkiv, 2016 Image classification (mostly what you ve seen) http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf

More information

Visual Material Traits Recognizing Per-Pixel Material Context

Visual Material Traits Recognizing Per-Pixel Material Context Visual Material Traits Recognizing Per-Pixel Material Context Gabriel Schwartz gbs25@drexel.edu Ko Nishino kon@drexel.edu 1 / 22 2 / 22 Materials as Visual Context What tells us this road is unsafe? 3

More information

Industrial Technology Research Institute, Hsinchu, Taiwan, R.O.C ǂ

Industrial Technology Research Institute, Hsinchu, Taiwan, R.O.C ǂ Stop Line Detection and Distance Measurement for Road Intersection based on Deep Learning Neural Network Guan-Ting Lin 1, Patrisia Sherryl Santoso *1, Che-Tsung Lin *ǂ, Chia-Chi Tsai and Jiun-In Guo National

More information

Patterns and Computer Vision

Patterns and Computer Vision Patterns and Computer Vision Michael Anderson, Bryan Catanzaro, Jike Chong, Katya Gonina, Kurt Keutzer, Tim Mattson, Mark Murphy, David Sheffield, Bor-Yiing Su, Narayanan Sundaram and the rest of the PALLAS

More information

CONVOLUTIONAL COST AGGREGATION FOR ROBUST STEREO MATCHING. Somi Jeong Seungryong Kim Bumsub Ham Kwanghoon Sohn

CONVOLUTIONAL COST AGGREGATION FOR ROBUST STEREO MATCHING. Somi Jeong Seungryong Kim Bumsub Ham Kwanghoon Sohn CONVOLUTIONAL COST AGGREGATION FOR ROBUST STEREO MATCHING Somi Jeong Seungryong Kim Bumsub Ham Kwanghoon Sohn School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea E-mail: khsohn@yonsei.ac.kr

More information

Histograms of Sparse Codes for Object Detection

Histograms of Sparse Codes for Object Detection Histograms of Sparse Codes for Object Detection Xiaofeng Ren (Amazon), Deva Ramanan (UC Irvine) Presented by Hossein Azizpour What does the paper do? (learning) a new representation local histograms of

More information

Cascade Region Regression for Robust Object Detection

Cascade Region Regression for Robust Object Detection Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Cascade Region Regression for Robust Object Detection Jiankang Deng, Shaoli Huang, Jing Yang, Hui Shuai, Zhengbo Yu, Zongguang Lu, Qiang Ma, Yali

More information

SSD: Single Shot MultiBox Detector. Author: Wei Liu et al. Presenter: Siyu Jiang

SSD: Single Shot MultiBox Detector. Author: Wei Liu et al. Presenter: Siyu Jiang SSD: Single Shot MultiBox Detector Author: Wei Liu et al. Presenter: Siyu Jiang Outline 1. Motivations 2. Contributions 3. Methodology 4. Experiments 5. Conclusions 6. Extensions Motivation Motivation

More information

Convolutional-Recursive Deep Learning for 3D Object Classification

Convolutional-Recursive Deep Learning for 3D Object Classification Convolutional-Recursive Deep Learning for 3D Object Classification Richard Socher, Brody Huval, Bharath Bhat, Christopher D. Manning, Andrew Y. Ng NIPS 2012 Iro Armeni, Manik Dhar Motivation Hand-designed

More information

Detecting Faces Using Inside Cascaded Contextual CNN

Detecting Faces Using Inside Cascaded Contextual CNN Detecting Faces Using Inside Cascaded Contextual CNN Kaipeng Zhang 1, Zhanpeng Zhang 2, Hao Wang 1, Zhifeng Li 1, Yu Qiao 3, Wei Liu 1 1 Tencent AI Lab 2 SenseTime Group Limited 3 Guangdong Provincial

More information

R-FCN++: Towards Accurate Region-Based Fully Convolutional Networks for Object Detection

R-FCN++: Towards Accurate Region-Based Fully Convolutional Networks for Object Detection The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18) R-FCN++: Towards Accurate Region-Based Fully Convolutional Networks for Object Detection Zeming Li, 1 Yilun Chen, 2 Gang Yu, 2 Yangdong

More information

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Presented by: Rex Ying and Charles Qi Input: A Single RGB Image Estimate

More information

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides Deep Learning in Visual Recognition Thanks Da Zhang for the slides Deep Learning is Everywhere 2 Roadmap Introduction Convolutional Neural Network Application Image Classification Object Detection Object

More information

Linear combinations of simple classifiers for the PASCAL challenge

Linear combinations of simple classifiers for the PASCAL challenge Linear combinations of simple classifiers for the PASCAL challenge Nik A. Melchior and David Lee 16 721 Advanced Perception The Robotics Institute Carnegie Mellon University Email: melchior@cmu.edu, dlee1@andrew.cmu.edu

More information

MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction

MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction Ayush Tewari Michael Zollhofer Hyeongwoo Kim Pablo Garrido Florian Bernard Patrick Perez Christian Theobalt

More information

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky Ilya Sutskever Geoffrey Hinton University of Toronto Canada Paper with same name to appear in NIPS 2012 Main idea Architecture

More information

Structured Forests for Fast Edge Detection

Structured Forests for Fast Edge Detection 2013 IEEE International Conference on Computer Vision Structured Forests for Fast Edge Detection Piotr Dollár Microsoft Research pdollar@microsoft.com C. Lawrence Zitnick Microsoft Research larryz@microsoft.com

More information

arxiv: v3 [cs.cv] 21 Sep 2015

arxiv: v3 [cs.cv] 21 Sep 2015 High-for-Low and Low-for-High: Efficient Boundary Detection from Deep Object Features and its Applications to High-Level Vision arxiv:1504.06201v3 [cs.cv] 21 Sep 2015 Gedas Bertasius University of Pennsylvania

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

Real-time Object Detection CS 229 Course Project

Real-time Object Detection CS 229 Course Project Real-time Object Detection CS 229 Course Project Zibo Gong 1, Tianchang He 1, and Ziyi Yang 1 1 Department of Electrical Engineering, Stanford University December 17, 2016 Abstract Objection detection

More information

Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab.

Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab. [ICIP 2017] Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab., POSTECH Pedestrian Detection Goal To draw bounding boxes that

More information

Image Captioning with Object Detection and Localization

Image Captioning with Object Detection and Localization Image Captioning with Object Detection and Localization Zhongliang Yang, Yu-Jin Zhang, Sadaqat ur Rehman, Yongfeng Huang, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

More information

Deep Convolutional Neural Networks. Nov. 20th, 2015 Bruce Draper

Deep Convolutional Neural Networks. Nov. 20th, 2015 Bruce Draper Deep Convolutional Neural Networks Nov. 20th, 2015 Bruce Draper Background: Fully-connected single layer neural networks Feed-forward classification Trained through back-propagation Example Computer Vision

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

TA Section: Problem Set 4

TA Section: Problem Set 4 TA Section: Problem Set 4 Outline Discriminative vs. Generative Classifiers Image representation and recognition models Bag of Words Model Part-based Model Constellation Model Pictorial Structures Model

More information

arxiv: v2 [cs.cv] 23 May 2016

arxiv: v2 [cs.cv] 23 May 2016 Localizing by Describing: Attribute-Guided Attention Localization for Fine-Grained Recognition arxiv:1605.06217v2 [cs.cv] 23 May 2016 Xiao Liu Jiang Wang Shilei Wen Errui Ding Yuanqing Lin Baidu Research

More information

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 CS 1674: Intro to Computer Vision Neural Networks Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 Announcements Please watch the videos I sent you, if you haven t yet (that s your reading)

More information

Pixels to Voxels: Modeling Visual Representation in the Human Brain

Pixels to Voxels: Modeling Visual Representation in the Human Brain Pixels to Voxels: Modeling Visual Representation in the Human Brain Authors: Pulkit Agrawal, Dustin Stansbury, Jitendra Malik, Jack L. Gallant Presenters: JunYoung Gwak, Kuan Fang Outlines Background Motivation

More information

GEDContours: A High Speed Contour Detector for Grayscale Images

GEDContours: A High Speed Contour Detector for Grayscale Images GEDContours: A High Speed Contour Detector for Grascale Images Cunet Akinlar cakinlar@anadolu.edu.tr Anadolu Universit, Computer Engineering Department, Eskisehir, Turke Abstract We propose a high-speed

More information

ROBUST INTERNAL EXEMPLAR-BASED IMAGE ENHANCEMENT. Yang Xian 1 and Yingli Tian 1,2

ROBUST INTERNAL EXEMPLAR-BASED IMAGE ENHANCEMENT. Yang Xian 1 and Yingli Tian 1,2 ROBUST INTERNAL EXEMPLAR-BASED IMAGE ENHANCEMENT Yang Xian 1 and Yingli Tian 1,2 1 The Graduate Center, 2 The City College, The City University of New York, New York, Email: yxian@gc.cuny.edu; ytian@ccny.cuny.edu

More information

Towards Real-Time Automatic Number Plate. Detection: Dots in the Search Space

Towards Real-Time Automatic Number Plate. Detection: Dots in the Search Space Towards Real-Time Automatic Number Plate Detection: Dots in the Search Space Chi Zhang Department of Computer Science and Technology, Zhejiang University wellyzhangc@zju.edu.cn Abstract Automatic Number

More information

Convolutional Neural Networks: Applications and a short timeline. 7th Deep Learning Meetup Kornel Kis Vienna,

Convolutional Neural Networks: Applications and a short timeline. 7th Deep Learning Meetup Kornel Kis Vienna, Convolutional Neural Networks: Applications and a short timeline 7th Deep Learning Meetup Kornel Kis Vienna, 1.12.2016. Introduction Currently a master student Master thesis at BME SmartLab Started deep

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information

Multiple Kernel Learning for Emotion Recognition in the Wild

Multiple Kernel Learning for Emotion Recognition in the Wild Multiple Kernel Learning for Emotion Recognition in the Wild Karan Sikka, Karmen Dykstra, Suchitra Sathyanarayana, Gwen Littlewort and Marian S. Bartlett Machine Perception Laboratory UCSD EmotiW Challenge,

More information

FACIAL POINT DETECTION USING CONVOLUTIONAL NEURAL NETWORK TRANSFERRED FROM A HETEROGENEOUS TASK

FACIAL POINT DETECTION USING CONVOLUTIONAL NEURAL NETWORK TRANSFERRED FROM A HETEROGENEOUS TASK FACIAL POINT DETECTION USING CONVOLUTIONAL NEURAL NETWORK TRANSFERRED FROM A HETEROGENEOUS TASK Takayoshi Yamashita* Taro Watasue** Yuji Yamauchi* Hironobu Fujiyoshi* *Chubu University, **Tome R&D 1200,

More information

Partial Least Squares Regression on Grassmannian Manifold for Emotion Recognition

Partial Least Squares Regression on Grassmannian Manifold for Emotion Recognition Emotion Recognition In The Wild Challenge and Workshop (EmotiW 2013) Partial Least Squares Regression on Grassmannian Manifold for Emotion Recognition Mengyi Liu, Ruiping Wang, Zhiwu Huang, Shiguang Shan,

More information

Context by Region Ancestry

Context by Region Ancestry Context by Region Ancestry Joseph J. Lim, Pablo Arbeláez, Chunhui Gu, and Jitendra Malik University of California, Berkeley - Berkeley, CA 94720 {lim,arbelaez,chunhui,malik}@eecs.berkeley.edu Abstract

More information

AK Computer Vision Feature Point Detectors and Descriptors

AK Computer Vision Feature Point Detectors and Descriptors AK Computer Vision Feature Point Detectors and Descriptors 1 Feature Point Detectors and Descriptors: Motivation 2 Step 1: Detect local features should be invariant to scale and rotation, or perspective

More information

Wavelet-based Texture Classification of Tissues in Computed Tomography

Wavelet-based Texture Classification of Tissues in Computed Tomography Wavelet-based Texture Classification of Tissues in Computed Tomography Lindsay Semler, Lucia Dettori, Jacob Furst Intelligent Multimedia Processing Laboratory School of Computer Science, Telecommunications,

More information