Learning the Ecological Statistics of Perceptual Organization

Size: px
Start display at page:

Download "Learning the Ecological Statistics of Perceptual Organization"

Transcription

1 Learning the Ecological Statistics of Perceptual Organization Charless Fowlkes work with David Martin, Xiaofeng Ren and Jitendra Malik at University of California at Berkeley 1

2 How do ideas from perceptual organization relate to natural scenes? 2

3 Perceptual Organization Grouping Figure/Ground 3

4 How do ideas from perceptual organization relate to natural scenes? Can we define these cues for real images? Are these cues ecologically valid? [Brunswik & Kamiya 1953] How informative are different cues? What do they have to offer applications of segmentation and recognition? 4

5 Statistics of Natural Scenes P(image features) Edges/Filters/Coding: Ruderman 94/97, Dong/Atick 95, Olshausen/Field 96, Bell/Sejnowski 97, Hateren/Schaaf 98, Buccigrossi/Simoncelli 99, Alvarez/Gousseau/Morel 99, Huang/Mumford 99 P(organization image features) Proximity of Similars: Brunswik/Kamiya 53 Good Continuation: Geisler, et. al. 01, Ren/Malik 02 Similarity, Proximity: Fowlkes/Martin/Malik 01,03 Convexity, Size, Lower-Region: Fowlkes/Martin/Malik 02 5

6 Berkeley Segmentation DataSet [BSDS] D. Martin, C. Fowlkes, D. Tal, J. Malik. "A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics", ICCV,

7 Figure-Ground Labeling - start with 200 segmented images of natural scenes - boundaries labeled by at least 2 different human subjects - subjects agree on 88% of contours labeled 7

8 Overview Grouping Local Grouping Cues Global Integration Figure/Ground Local Figure/Ground Cues Global Integration 8

9 Overview Grouping Local Grouping Cues Global Integration Figure/Ground Local Figure/Ground Cues Global Integration 9

10 Similarity Cues a) distance b) region cues (patch similarity) c) boundary cues (intervening contour) What image measurements allow us to gauge the probability that pixels i and j belong to the same group? 10

11 Learning Pairwise Affinities Sij indicator variable as to whether pixels i and j were marked as belonging to the same group by human subjects. Wij our estimate of the likelihood that pixel i and j belong to the same group conditioned on the image measurements. Use the ground truth given by human segmentations to calibrate cues. Learn statistically optimal cue combination in a supervised learning framework Ecological Statistics: Measure the relative power of different cues for natural scenes C. Fowlkes, D. Martin, J. Malik. "Learning Affinity Functions for Image Segmentation: Combining Patch-based and Gradient-based Approaches", CVPR,

12 Original Image Texture Brightness Color L* a* b* Boundary Processing Region Processing Textons D E Proximity C B A χ 2 χ 2 W ij C A B 12

13 Original Image Boundary Processing D χ 2 E D. Martin, C. Fowlkes, J. Malik. "Learning to Detect Natural Image Boundaries Using Local Brightness, Color and Texture Cues", TPAMI 26 (5) p

14 Non-Boundaries Boundaries I B C T 14

15 Gradient Features 1976 CIE L*a*b* colorspace Brightness Gradient BG(x,y,r,θ) Difference of L* distributions Color Gradient CG(x,y,r,θ) Difference of a*b* distributions Texture Gradient TG(x,y,r,θ) Difference of distributions of V1-like filter responses (x,y) r θ ( gi hi ) χ ( g, h) = 2 i g i + h i 15

16 Two Decades of Local Boundary Detection 16

17 P b Images I Image Canny 2MM Us Human 17

18 How good are humans locally? Off-Boundary On-Boundary Algorithm: r = 9, Humans: r = {5,9,18} Fixation(2s) -> Patch(200ms) -> Mask(1s) 18

19 Man versus Machine: D. Martin, C. Fowlkes, L. Walker, J. Malik. "Local Boundary Detection in Natural Images: Matching Human and Machine Performance", ECVP,

20 Original Image Texture Brightness Color L* a* b* Boundary Processing Region Processing Textons D E Proximity C B A χ 2 χ 2 W ij C A B 20

21 Region Processing Textons C. Fowlkes, D. Martin, J. Malik. "Learning Affinity Functions for Image Segmentation: Combining Patch-based and Gradient-based Approaches", CVPR, 2003 C B χ 2 A C A B 21

22 Patch Features Use histogram based representation of local appearance. Brightness Similarity Color Similarity Texture Similarity (x i,y i ) r Adapt window to local boundary information to avoid straddling contours (x j,y j ) 22

23 Evaluating Affinity Estimates Image Region Cues Contour Cues Estimated Affinity (W) Further Processing Groundtruth Affinity (S) Evaluate Human Segmentations 23

24 Two Evaluation Measures Estimate W ij Groundtruth S ij 1. Precision-Recall of same-segment pairs Precision is P(S ij =1 W ij > t) Recall is P(W ij > t S ij = 1) 2. Mutual Information between W and S p(s,w) log [p(s)p(w) / p(s,w)] 24

25 Individual Features Patches Gradients 25

26 Cue Combination Models Classification Trees Top-down splits to maximize entropy, error bounded Density Estimation Adaptive bins using k-means Logistic Regression, 3 variants Linear and quadratic terms Confidence-rated generalization of AdaBoost (Schapire&Singer) Hierarchical Mixtures of Experts (Jordan&Jacobs) Up to 8 experts, initialized top-down, fit with EM Support Vector Machines (libsvm, Chang&Lin) Gaussian kernel, ν-parameterization Logistic with quadratic terms is sufficient (performs as well as any classifier we tried 26

27 Combining Cues 27

28 Affinity Model vs. Human Segmentation 28

29 Findings Both Edges and Patches provide useful independent information. Texture gradients can be quite powerful Color patches better than gradients Brightness gradients better than patches. Proximity is a result, not a cause of grouping 29

30 Overview Grouping Local Grouping Cues Global Integration Figure/Ground Local Figure/Ground Cues Global Integration 30

31 Segmentation from Pairwise Affinities Image Affinities (Wij) Eigenvectors Segmentation Zahn 1971, Urquhart 1982, Scott/Longuet-Higgins 1990, Wu/Leahy 1993, Sarkar/Boyer 1996, Shi/Malik 1997, Felzenszwalb/Huttenlocher 1998, Perona/Freeman 1998, Gdalyahu/Weinshall/Werman 1999, Jermyn/Ishikawa

32 32

33 33

34 Extract Pb Compute Eigenvectors Gradient of eigenvectors 34

35 Evaluating the power of globalization 35

36 Evaluating the power of globalization 36

37 Moving Beyond Pixels Pixels are too fine grained Not scale invariant No explicit control over connectedness Hard to incorporate mid/high-level shape information such as continutiy or familiarity 37

38 Moving Beyond Pixels Superpixels give up little information while reducing complexity Allows for more interesting features Mori, Ren, Efros & Malik CVPR 04 Ren, Fowlkes & Malik CVPR 05? 38

39 Overview Grouping Local Grouping Cues Global Integration Figure/Ground Local Figure/Ground Cues Global Integration 39

40 Local Cues for Figure/Ground Assume we have a perfect segmentation Can we predict which region a contour belongs to based on it s local shape? Size/Surroundedness Convexity Lower Region C. Fowlkes, D. Martin, J. Malik. "On Measuring the Ecological Validity of Local Figure-Ground Cues", ECVP, (September 2003). 40

41 Size and Surroundedness [Rubin 1921] G p F Size(p) = log(area F / Area G ) 41

42 Convexity [Metzger 1953, Kanizsa and Gerbino 1976] Conv G = percentage of straight lines that lie completely within region G G p F Convexity(p) = log(conv F / Conv G ) 42

43 Lower Region [Vecera, Vogel & Woodman 2002] θ p center of mass LowerRegion(p) = θ G 43

44 Figural regions tend to be convex 44

45 Figural regions tend to lie below ground regions 45

46 Size Lower Region Convexity 46

47 Power of cue depends on support of the analysis window. 47

48 Power of cue depends on support of the analysis window. 48

49 Upper Bounding Local Performance Present human subjects with local shapes, seen through an aperture. 49

50 Preliminary Local Human Performance 50

51 Extension to Real Images Build up library of prototypical contour configurations by clustering local shape descriptors Geometric Blur [Berg & Malik 01] Train a classifier which uses similarities to these prototype shapes to predict figure/ground label 51

52 Shapemes Classifier using 64 shapeme features: 61% 52

53 Overview Grouping Local Grouping Cues Global Integration Figure/Ground Local Figure/Ground Cues Global Integration 53

54 Globalization of Figure/Ground Measurements Averaging local shapeme cue over human-marked boundaries: 71% Prior over junction types and label continuity: 79% 54

55 Future Work F/G globalization without using human segmentation Propogate labels on superpixel/cdt graph Role of figure/ground in recognition or segmentation? Show computational benefit of focusing recognition efforts on figural regions first. Simultaneous segmentation and figure/ground assignment on superpixel/cdt graph. 55

56 Future Work Segmentation Segmentation Figure/Ground Recognition Figure/Ground Recognition 56

57 Conclusion Rational design of bottom-up grouping cues. Ecological statistics of grouping and figure/ground cues. Characterization of spectral clustering and other globalization algorithms. 57

58 THE END 58

Part III: Affinity Functions for Image Segmentation

Part III: Affinity Functions for Image Segmentation Part III: Affinity Functions for Image Segmentation Charless Fowlkes joint work with David Martin and Jitendra Malik at University of California at Berkeley 1 Q: What measurements should we use for constructing

More information

Global Probability of Boundary

Global Probability of Boundary Global Probability of Boundary Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cues Martin, Fowlkes, Malik Using Contours to Detect and Localize Junctions in Natural

More information

Boundaries and Sketches

Boundaries and Sketches Boundaries and Sketches Szeliski 4.2 Computer Vision James Hays Many slides from Michael Maire, Jitendra Malek Today s lecture Segmentation vs Boundary Detection Why boundaries / Grouping? Recap: Canny

More information

3 October, 2013 MVA ENS Cachan. Lecture 2: Logistic regression & intro to MIL Iasonas Kokkinos

3 October, 2013 MVA ENS Cachan. Lecture 2: Logistic regression & intro to MIL Iasonas Kokkinos Machine Learning for Computer Vision 1 3 October, 2013 MVA ENS Cachan Lecture 2: Logistic regression & intro to MIL Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Department of Applied Mathematics Ecole Centrale

More information

Figure/Ground Assignment in Natural Images

Figure/Ground Assignment in Natural Images igure/round Assignment in Natural Images Xiaofeng Ren, Charless C. owlkes and Jitendra Malik Computer Science Division University of California at Berkeley Berkeley, CA 94720 USA Abstract. igure/ground

More information

Cue Integration for Figure/Ground Labeling

Cue Integration for Figure/Ground Labeling Cue Integration for Figure/Ground Labeling Xiaofeng Ren, Charless C. Fowlkes and Jitendra Malik Computer Science Division, University of California, Berkeley, CA 94720 {xren,fowlkes,malik}@cs.berkeley.edu

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling

Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling Michael Maire 1,2 Stella X. Yu 3 Pietro Perona 2 1 TTI Chicago 2 California Institute of Technology 3 University of California

More information

Contour Detection and Hierarchical Image Segmentation Some Experiments

Contour Detection and Hierarchical Image Segmentation Some Experiments Contour Detection and Hierarchical Image Segmentation Some Experiments CS395T Visual Recognition Presented by Elad Liebman Overview Understanding the method better: The importance of thresholding the ouput

More information

Patterns and Computer Vision

Patterns and Computer Vision Patterns and Computer Vision Michael Anderson, Bryan Catanzaro, Jike Chong, Katya Gonina, Kurt Keutzer, Tim Mattson, Mark Murphy, David Sheffield, Bor-Yiing Su, Narayanan Sundaram and the rest of the PALLAS

More information

OCCLUSION BOUNDARIES ESTIMATION FROM A HIGH-RESOLUTION SAR IMAGE

OCCLUSION BOUNDARIES ESTIMATION FROM A HIGH-RESOLUTION SAR IMAGE OCCLUSION BOUNDARIES ESTIMATION FROM A HIGH-RESOLUTION SAR IMAGE Wenju He, Marc Jäger, and Olaf Hellwich Berlin University of Technology FR3-1, Franklinstr. 28, 10587 Berlin, Germany {wenjuhe, jaeger,

More information

Edge Detection. Computer Vision Shiv Ram Dubey, IIIT Sri City

Edge Detection. Computer Vision Shiv Ram Dubey, IIIT Sri City Edge Detection Computer Vision Shiv Ram Dubey, IIIT Sri City Previous two classes: Image Filtering Spatial domain Smoothing, sharpening, measuring texture * = FFT FFT Inverse FFT = Frequency domain Denoising,

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

Recap from Monday. Visualizing Networks Caffe overview Slides are now online

Recap from Monday. Visualizing Networks Caffe overview Slides are now online Recap from Monday Visualizing Networks Caffe overview Slides are now online Today Edges and Regions, GPB Fast Edge Detection Using Structured Forests Zhihao Li Holistically-Nested Edge Detection Yuxin

More information

Learning to Detect Natural Image Boundaries Using Brightness and Texture

Learning to Detect Natural Image Boundaries Using Brightness and Texture Learning to Detect Natural Image Boundaries Using Brightness and Texture David R. Martin Charless C. Fowlkes Jitendra Malik Computer Science Division, EECS, U.C. Berkeley, Berkeley, CA 9472 dmartin,fowlkes,malik

More information

CS 2770: Computer Vision. Edges and Segments. Prof. Adriana Kovashka University of Pittsburgh February 21, 2017

CS 2770: Computer Vision. Edges and Segments. Prof. Adriana Kovashka University of Pittsburgh February 21, 2017 CS 2770: Computer Vision Edges and Segments Prof. Adriana Kovashka University of Pittsburgh February 21, 2017 Edges vs Segments Figure adapted from J. Hays Edges vs Segments Edges More low-level Don t

More information

Scale-Invariant Contour Completion using Conditional Random Fields

Scale-Invariant Contour Completion using Conditional Random Fields Scale-Invariant Contour Completion using Conditional Random Fields Xiaofeng Ren, Charless C. Fowlkes, Jitendra Malik Computer Science Division University of California, Berkeley, CA 9472 {xren,fowlkes,malik}@cs.berkeley.edu

More information

CS 534: Computer Vision Segmentation and Perceptual Grouping

CS 534: Computer Vision Segmentation and Perceptual Grouping CS 534: Computer Vision Segmentation and Perceptual Grouping Ahmed Elgammal Dept of Computer Science CS 534 Segmentation - 1 Outlines Mid-level vision What is segmentation Perceptual Grouping Segmentation

More information

Discovering Visual Hierarchy through Unsupervised Learning Haider Razvi

Discovering Visual Hierarchy through Unsupervised Learning Haider Razvi Discovering Visual Hierarchy through Unsupervised Learning Haider Razvi hrazvi@stanford.edu 1 Introduction: We present a method for discovering visual hierarchy in a set of images. Automatically grouping

More information

Classifying Images with Visual/Textual Cues. By Steven Kappes and Yan Cao

Classifying Images with Visual/Textual Cues. By Steven Kappes and Yan Cao Classifying Images with Visual/Textual Cues By Steven Kappes and Yan Cao Motivation Image search Building large sets of classified images Robotics Background Object recognition is unsolved Deformable shaped

More information

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University NIPS 2008: E. Sudderth & M. Jordan, Shared Segmentation of Natural

More information

Solution: filter the image, then subsample F 1 F 2. subsample blur subsample. blur

Solution: filter the image, then subsample F 1 F 2. subsample blur subsample. blur Pyramids Gaussian pre-filtering Solution: filter the image, then subsample blur F 0 subsample blur subsample * F 0 H F 1 F 1 * H F 2 { Gaussian pyramid blur F 0 subsample blur subsample * F 0 H F 1 F 1

More information

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors Segmentation I Goal Separate image into coherent regions Berkeley segmentation database: http://www.eecs.berkeley.edu/research/projects/cs/vision/grouping/segbench/ Slide by L. Lazebnik Applications Intelligent

More information

What Happened to the Representations of Perception? Cornelia Fermüller Computer Vision Laboratory University of Maryland

What Happened to the Representations of Perception? Cornelia Fermüller Computer Vision Laboratory University of Maryland What Happened to the Representations of Perception? Cornelia Fermüller Computer Vision Laboratory University of Maryland Why we study manipulation actions? 2. Learning from humans to teach robots Y Yang,

More information

Grouping and Segmentation

Grouping and Segmentation 03/17/15 Grouping and Segmentation Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Today s class Segmentation and grouping Gestalt cues By clustering (mean-shift) By boundaries (watershed)

More information

Learning and Matching Line Aspects for Articulated Objects

Learning and Matching Line Aspects for Articulated Objects Learning and Matching Line Aspects for Articulated Objects Xiaofeng Ren Toyota Technological Institute at Chicago 1427 E. 6th Street, Chicago, IL 6637 xren@tti-c.org Abstract Traditional aspect graphs

More information

Automatic Photo Popup

Automatic Photo Popup Automatic Photo Popup Derek Hoiem Alexei A. Efros Martial Hebert Carnegie Mellon University What Is Automatic Photo Popup Introduction Creating 3D models from images is a complex process Time-consuming

More information

Medial Features for Superpixel Segmentation

Medial Features for Superpixel Segmentation Medial Features for Superpixel Segmentation David Engel Luciano Spinello Rudolph Triebel Roland Siegwart Heinrich H. Bülthoff Cristóbal Curio Max Planck Institute for Biological Cybernetics Spemannstr.

More information

The goals of segmentation

The goals of segmentation Image segmentation The goals of segmentation Group together similar-looking pixels for efficiency of further processing Bottom-up process Unsupervised superpixels X. Ren and J. Malik. Learning a classification

More information

Image Segmentation. Lecture14: Image Segmentation. Sample Segmentation Results. Use of Image Segmentation

Image Segmentation. Lecture14: Image Segmentation. Sample Segmentation Results. Use of Image Segmentation Image Segmentation CSED441:Introduction to Computer Vision (2015S) Lecture14: Image Segmentation What is image segmentation? Process of partitioning an image into multiple homogeneous segments Process

More information

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep CS395T paper review Indoor Segmentation and Support Inference from RGBD Images Chao Jia Sep 28 2012 Introduction What do we want -- Indoor scene parsing Segmentation and labeling Support relationships

More information

Investigating How and When Perceptual Organization Cues Improve Boundary Detection in Natural Images

Investigating How and When Perceptual Organization Cues Improve Boundary Detection in Natural Images Investigating How and When Perceptual Organization Cues Improve Boundary Detection in Natural Images Leandro A. Loss, George Bebis, Mircea Nicolescu Computer Vision Laboratory University of Nevada, Reno

More information

Segmentation Computer Vision Spring 2018, Lecture 27

Segmentation Computer Vision Spring 2018, Lecture 27 Segmentation http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 218, Lecture 27 Course announcements Homework 7 is due on Sunday 6 th. - Any questions about homework 7? - How many of you have

More information

WP1: Video Data Analysis

WP1: Video Data Analysis Leading : UNICT Participant: UEDIN Fish4Knowledge Final Review Meeting - November 29, 2013 - Luxembourg Workpackage 1 Objectives Fish Detection: Background/foreground modeling algorithms able to deal with

More information

Segmentation and Grouping

Segmentation and Grouping CS 1699: Intro to Computer Vision Segmentation and Grouping Prof. Adriana Kovashka University of Pittsburgh September 24, 2015 Goals: Grouping in vision Gather features that belong together Obtain an intermediate

More information

6.801/866. Segmentation and Line Fitting. T. Darrell

6.801/866. Segmentation and Line Fitting. T. Darrell 6.801/866 Segmentation and Line Fitting T. Darrell Segmentation and Line Fitting Gestalt grouping Background subtraction K-Means Graph cuts Hough transform Iterative fitting (Next time: Probabilistic segmentation)

More information

AK Computer Vision Feature Point Detectors and Descriptors

AK Computer Vision Feature Point Detectors and Descriptors AK Computer Vision Feature Point Detectors and Descriptors 1 Feature Point Detectors and Descriptors: Motivation 2 Step 1: Detect local features should be invariant to scale and rotation, or perspective

More information

Detecting Object Instances Without Discriminative Features

Detecting Object Instances Without Discriminative Features Detecting Object Instances Without Discriminative Features Edward Hsiao June 19, 2013 Thesis Committee: Martial Hebert, Chair Alexei Efros Takeo Kanade Andrew Zisserman, University of Oxford 1 Object Instance

More information

Estimating Human Pose in Images. Navraj Singh December 11, 2009

Estimating Human Pose in Images. Navraj Singh December 11, 2009 Estimating Human Pose in Images Navraj Singh December 11, 2009 Introduction This project attempts to improve the performance of an existing method of estimating the pose of humans in still images. Tasks

More information

Edge and Texture. CS 554 Computer Vision Pinar Duygulu Bilkent University

Edge and Texture. CS 554 Computer Vision Pinar Duygulu Bilkent University Edge and Texture CS 554 Computer Vision Pinar Duygulu Bilkent University Filters for features Previously, thinking of filtering as a way to remove or reduce noise Now, consider how filters will allow us

More information

Outline. Segmentation & Grouping. Examples of grouping in vision. Grouping in vision. Grouping in vision 2/9/2011. CS 376 Lecture 7 Segmentation 1

Outline. Segmentation & Grouping. Examples of grouping in vision. Grouping in vision. Grouping in vision 2/9/2011. CS 376 Lecture 7 Segmentation 1 Outline What are grouping problems in vision? Segmentation & Grouping Wed, Feb 9 Prof. UT-Austin Inspiration from human perception Gestalt properties Bottom-up segmentation via clustering Algorithms: Mode

More information

CS229 Final Project One Click: Object Removal

CS229 Final Project One Click: Object Removal CS229 Final Project One Click: Object Removal Ming Jiang Nicolas Meunier December 12, 2008 1 Introduction In this project, our goal is to come up with an algorithm that can automatically detect the contour

More information

LEARNING BOUNDARIES WITH COLOR AND DEPTH. Zhaoyin Jia, Andrew Gallagher, Tsuhan Chen

LEARNING BOUNDARIES WITH COLOR AND DEPTH. Zhaoyin Jia, Andrew Gallagher, Tsuhan Chen LEARNING BOUNDARIES WITH COLOR AND DEPTH Zhaoyin Jia, Andrew Gallagher, Tsuhan Chen School of Electrical and Computer Engineering, Cornell University ABSTRACT To enable high-level understanding of a scene,

More information

CS 4495 Computer Vision. Segmentation. Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing. Segmentation

CS 4495 Computer Vision. Segmentation. Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing. Segmentation CS 4495 Computer Vision Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing Administrivia PS 4: Out but I was a bit late so due date pushed back to Oct 29. OpenCV now has real SIFT

More information

A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics

A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics ICCV Vancouver, July 2 A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics David Martin Charless Fowlkes Doron Tal

More information

Segmentation and Grouping April 19 th, 2018

Segmentation and Grouping April 19 th, 2018 Segmentation and Grouping April 19 th, 2018 Yong Jae Lee UC Davis Features and filters Transforming and describing images; textures, edges 2 Grouping and fitting [fig from Shi et al] Clustering, segmentation,

More information

Linear combinations of simple classifiers for the PASCAL challenge

Linear combinations of simple classifiers for the PASCAL challenge Linear combinations of simple classifiers for the PASCAL challenge Nik A. Melchior and David Lee 16 721 Advanced Perception The Robotics Institute Carnegie Mellon University Email: melchior@cmu.edu, dlee1@andrew.cmu.edu

More information

Segmentation by Example

Segmentation by Example Segmentation by Example Sameer Agarwal and Serge Belongie Department of Computer Science and Engineering University of California, San Diego La Jolla, CA 92093, USA {sagarwal,sjb}@cs.ucsd.edu Abstract

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

Shape Descriptor using Polar Plot for Shape Recognition.

Shape Descriptor using Polar Plot for Shape Recognition. Shape Descriptor using Polar Plot for Shape Recognition. Brijesh Pillai ECE Graduate Student, Clemson University bpillai@clemson.edu Abstract : This paper presents my work on computing shape models that

More information

Image Processing. Image Features

Image Processing. Image Features Image Processing Image Features Preliminaries 2 What are Image Features? Anything. What they are used for? Some statements about image fragments (patches) recognition Search for similar patches matching

More information

CMPSCI 670: Computer Vision! Grouping

CMPSCI 670: Computer Vision! Grouping CMPSCI 670: Computer Vision! Grouping University of Massachusetts, Amherst October 14, 2014 Instructor: Subhransu Maji Slides credit: Kristen Grauman and others Final project guidelines posted Milestones

More information

SVM-KNN : Discriminative Nearest Neighbor Classification for Visual Category Recognition

SVM-KNN : Discriminative Nearest Neighbor Classification for Visual Category Recognition SVM-KNN : Discriminative Nearest Neighbor Classification for Visual Category Recognition Hao Zhang, Alexander Berg, Michael Maire Jitendra Malik EECS, UC Berkeley Presented by Adam Bickett Objective Visual

More information

Segmentation & Grouping Kristen Grauman UT Austin. Announcements

Segmentation & Grouping Kristen Grauman UT Austin. Announcements Segmentation & Grouping Kristen Grauman UT Austin Tues Feb 7 A0 on Canvas Announcements No office hours today TA office hours this week as usual Guest lecture Thursday by Suyog Jain Interactive segmentation

More information

Robust Segmentation of Cluttered Scenes Using RGB-Z Images

Robust Segmentation of Cluttered Scenes Using RGB-Z Images Robust Segmentation of Cluttered Scenes Using RGB-Z Images Navneet Kapur Stanford University Stanford, CA - 94305 nkapur@stanford.edu Subodh Iyengar Stanford University Stanford, CA - 94305 subodh@stanford.edu

More information

Figure-Ground Segmentation Techniques

Figure-Ground Segmentation Techniques Figure-Ground Segmentation Techniques Snehal P. Ambulkar 1, Nikhil S. Sakhare 2 1 2 nd Year Student, Master of Technology, Computer Science & Engineering, Rajiv Gandhi College of Engineering & Research,

More information

Appearance-based Keypoint Clustering

Appearance-based Keypoint Clustering Appearance-based Keypoint Clustering Francisco J. Estrada Pascal Fua University of Toronto at Scarborough 1265 Military Trail, M1C 1A4, Toronto, On. Canada Vincent Lepetit Sabine Su sstrunk Ecole Polytechnique

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 10 Segmentation 14/02/27 http://www.ee.unlv.edu/~b1morris/ecg782/

More information

human vision: grouping k-means clustering graph-theoretic clustering Hough transform line fitting RANSAC

human vision: grouping k-means clustering graph-theoretic clustering Hough transform line fitting RANSAC COS 429: COMPUTER VISON Segmentation human vision: grouping k-means clustering graph-theoretic clustering Hough transform line fitting RANSAC Reading: Chapters 14, 15 Some of the slides are credited to:

More information

Fast Border Ownership Assignment with Bio-Inspired Features

Fast Border Ownership Assignment with Bio-Inspired Features Fast Border Ownership Assignment with Bio-Inspired Features Ching L. Teo, Cornelia Fermüller, Yiannis Aloimonos Computer Vision Lab and UMIACS University of Maryland College Park What is Border Ownership?

More information

Robust Zero Watermarking for Still and Similar Images Using a Learning Based Contour Detection

Robust Zero Watermarking for Still and Similar Images Using a Learning Based Contour Detection Robust Zero Watermarking for Still and Similar Images Using a Learning Based Contour Detection Shahryar Ehsaee and Mansour Jamzad (&) Department of Computer Engineering, Sharif University of Technology,

More information

Detecting Junctions in Photographs of Objects. Abstract. the gp b algorithm (Arbeláez et al., 2010) uses local cues such as brightness, color,

Detecting Junctions in Photographs of Objects. Abstract. the gp b algorithm (Arbeláez et al., 2010) uses local cues such as brightness, color, Thesis advisor Todd Zickler Author Hyunho Richard Lee Detecting Junctions in Photographs of Objects Abstract Line drawings are inherently simple, yet retain most of the information of a full image. This

More information

Unsupervised discovery of category and object models. The task

Unsupervised discovery of category and object models. The task Unsupervised discovery of category and object models Martial Hebert The task 1 Common ingredients 1. Generate candidate segments 2. Estimate similarity between candidate segments 3. Prune resulting (implicit)

More information

Supervised texture detection in images

Supervised texture detection in images Supervised texture detection in images Branislav Mičušík and Allan Hanbury Pattern Recognition and Image Processing Group, Institute of Computer Aided Automation, Vienna University of Technology Favoritenstraße

More information

SCALP: Superpixels with Contour Adherence using Linear Path

SCALP: Superpixels with Contour Adherence using Linear Path SCALP: Superpixels with Contour Adherence using Linear Path Rémi Giraud 1,2 remi.giraud@labri.fr with Vinh-Thong Ta 1 and Nicolas Papadakis 2 1 LaBRI CNRS UMR 5800 - University of Bordeaux, FRANCE PICTURA

More information

Bus Detection and recognition for visually impaired people

Bus Detection and recognition for visually impaired people Bus Detection and recognition for visually impaired people Hangrong Pan, Chucai Yi, and Yingli Tian The City College of New York The Graduate Center The City University of New York MAP4VIP Outline Motivation

More information

Lecture 16 Segmentation and Scene understanding

Lecture 16 Segmentation and Scene understanding Lecture 16 Segmentation and Scene understanding Introduction! Mean-shift! Graph-based segmentation! Top-down segmentation! Silvio Savarese Lecture 15 -! 3-Mar-14 Segmentation Silvio Savarese Lecture 15

More information

Visual Object Recognition

Visual Object Recognition Perceptual and Sensory Augmented Computing Visual Object Recognition Tutorial Visual Object Recognition Bastian Leibe Computer Vision Laboratory ETH Zurich Chicago, 14.07.2008 & Kristen Grauman Department

More information

Outline

Outline Internship at the project team PULSAR A. Schnaars 1 1 University of Magdeburg Supervisor: Guillaume Charpiat PhD Pulsar - INRIA Sophia-Antipolis INRIA Sophia-Antipolis, 15th march 2010 Outline 1 2 3 4

More information

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL)

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) http://chrischoy.org Stanford CS231A 1 Understanding a Scene Objects Chairs, Cups, Tables,

More information

Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration

Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration 1 Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration Sharon Alpert, Meirav Galun, Achi Brandt, and Ronen Basri Member, IEEE Abstract We present a bottom-up aggregation approach

More information

Supplementary Materials for Salient Object Detection: A

Supplementary Materials for Salient Object Detection: A Supplementary Materials for Salient Object Detection: A Discriminative Regional Feature Integration Approach Huaizu Jiang, Zejian Yuan, Ming-Ming Cheng, Yihong Gong Nanning Zheng, and Jingdong Wang Abstract

More information

Segmentation and Grouping April 21 st, 2015

Segmentation and Grouping April 21 st, 2015 Segmentation and Grouping April 21 st, 2015 Yong Jae Lee UC Davis Announcements PS0 grades are up on SmartSite Please put name on answer sheet 2 Features and filters Transforming and describing images;

More information

Grouping and Segmentation

Grouping and Segmentation Grouping and Segmentation CS 554 Computer Vision Pinar Duygulu Bilkent University (Source:Kristen Grauman ) Goals: Grouping in vision Gather features that belong together Obtain an intermediate representation

More information

Comparison of Local Feature Descriptors

Comparison of Local Feature Descriptors Department of EECS, University of California, Berkeley. December 13, 26 1 Local Features 2 Mikolajczyk s Dataset Caltech 11 Dataset 3 Evaluation of Feature Detectors Evaluation of Feature Deriptors 4 Applications

More information

STUDYING THE FEASIBILITY AND IMPORTANCE OF GRAPH-BASED IMAGE SEGMENTATION TECHNIQUES

STUDYING THE FEASIBILITY AND IMPORTANCE OF GRAPH-BASED IMAGE SEGMENTATION TECHNIQUES 25-29 JATIT. All rights reserved. STUDYING THE FEASIBILITY AND IMPORTANCE OF GRAPH-BASED IMAGE SEGMENTATION TECHNIQUES DR.S.V.KASMIR RAJA, 2 A.SHAIK ABDUL KHADIR, 3 DR.S.S.RIAZ AHAMED. Dean (Research),

More information

ECS 289H: Visual Recognition Fall Yong Jae Lee Department of Computer Science

ECS 289H: Visual Recognition Fall Yong Jae Lee Department of Computer Science ECS 289H: Visual Recognition Fall 2014 Yong Jae Lee Department of Computer Science Plan for today Questions? Research overview Standard supervised visual learning building Category models Annotators tree

More information

Computer Vision I. Announcement. Corners. Edges. Numerical Derivatives f(x) Edge and Corner Detection. CSE252A Lecture 11

Computer Vision I. Announcement. Corners. Edges. Numerical Derivatives f(x) Edge and Corner Detection. CSE252A Lecture 11 Announcement Edge and Corner Detection Slides are posted HW due Friday CSE5A Lecture 11 Edges Corners Edge is Where Change Occurs: 1-D Change is measured by derivative in 1D Numerical Derivatives f(x)

More information

Bag-of-features. Cordelia Schmid

Bag-of-features. Cordelia Schmid Bag-of-features for category classification Cordelia Schmid Visual search Particular objects and scenes, large databases Category recognition Image classification: assigning a class label to the image

More information

Segmentation. Bottom Up Segmentation

Segmentation. Bottom Up Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Bottom Up Segmentation 1 Segmentation as clustering Depending on what we choose as the feature space, we can group pixels in different ways. Grouping

More information

Learning to Segment Object Candidates

Learning to Segment Object Candidates Learning to Segment Object Candidates Pedro Pinheiro, Ronan Collobert and Piotr Dollar Presented by - Sivaraman, Kalpathy Sitaraman, M.S. in Computer Science, University of Virginia Facebook Artificial

More information

Region-based Segmentation

Region-based Segmentation Region-based Segmentation Image Segmentation Group similar components (such as, pixels in an image, image frames in a video) to obtain a compact representation. Applications: Finding tumors, veins, etc.

More information

Object Classification Problem

Object Classification Problem HIERARCHICAL OBJECT CATEGORIZATION" Gregory Griffin and Pietro Perona. Learning and Using Taxonomies For Fast Visual Categorization. CVPR 2008 Marcin Marszalek and Cordelia Schmid. Constructing Category

More information

STRUCTURAL EDGE LEARNING FOR 3-D RECONSTRUCTION FROM A SINGLE STILL IMAGE. Nan Hu. Stanford University Electrical Engineering

STRUCTURAL EDGE LEARNING FOR 3-D RECONSTRUCTION FROM A SINGLE STILL IMAGE. Nan Hu. Stanford University Electrical Engineering STRUCTURAL EDGE LEARNING FOR 3-D RECONSTRUCTION FROM A SINGLE STILL IMAGE Nan Hu Stanford University Electrical Engineering nanhu@stanford.edu ABSTRACT Learning 3-D scene structure from a single still

More information

Classification and Detection in Images. D.A. Forsyth

Classification and Detection in Images. D.A. Forsyth Classification and Detection in Images D.A. Forsyth Classifying Images Motivating problems detecting explicit images classifying materials classifying scenes Strategy build appropriate image features train

More information

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation Object detection using Region Proposals (RCNN) Ernest Cheung COMP790-125 Presentation 1 2 Problem to solve Object detection Input: Image Output: Bounding box of the object 3 Object detection using CNN

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

http://www.xkcd.com/233/ Text Clustering David Kauchak cs160 Fall 2009 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture17-clustering.ppt Administrative 2 nd status reports Paper review

More information

Segmentation & Clustering

Segmentation & Clustering EECS 442 Computer vision Segmentation & Clustering Segmentation in human vision K-mean clustering Mean-shift Graph-cut Reading: Chapters 14 [FP] Some slides of this lectures are courtesy of prof F. Li,

More information

Image Analysis Lecture Segmentation. Idar Dyrdal

Image Analysis Lecture Segmentation. Idar Dyrdal Image Analysis Lecture 9.1 - Segmentation Idar Dyrdal Segmentation Image segmentation is the process of partitioning a digital image into multiple parts The goal is to divide the image into meaningful

More information

Human Head-Shoulder Segmentation

Human Head-Shoulder Segmentation Human Head-Shoulder Segmentation Hai Xin, Haizhou Ai Computer Science and Technology Tsinghua University Beijing, China ahz@mail.tsinghua.edu.cn Hui Chao, Daniel Tretter Hewlett-Packard Labs 1501 Page

More information

2D Scene Representation and Description

2D Scene Representation and Description 2D Scene Representation and Description You can get very far in 2D! image segmentation image description 2D image object token tokenset 2D grouping 2D scene description 1 Segmentation: From Images to Tokens

More information

TA Section 7 Problem Set 3. SIFT (Lowe 2004) Shape Context (Belongie et al. 2002) Voxel Coloring (Seitz and Dyer 1999)

TA Section 7 Problem Set 3. SIFT (Lowe 2004) Shape Context (Belongie et al. 2002) Voxel Coloring (Seitz and Dyer 1999) TA Section 7 Problem Set 3 SIFT (Lowe 2004) Shape Context (Belongie et al. 2002) Voxel Coloring (Seitz and Dyer 1999) Sam Corbett-Davies TA Section 7 02-13-2014 Distinctive Image Features from Scale-Invariant

More information

CS6716 Pattern Recognition

CS6716 Pattern Recognition CS6716 Pattern Recognition Aaron Bobick School of Interactive Computing Administrivia PS3 is out now, due April 8. Today chapter 12 of the Hastie book. Slides (and entertainment) from Moataz Al-Haj Three

More information

Fast and Bottom-Up Object Detection, Segmentation, and Evaluation using Gestalt Principles

Fast and Bottom-Up Object Detection, Segmentation, and Evaluation using Gestalt Principles Fast and Bottom-Up Object Detection, Segmentation, and Evaluation using Gestalt Principles Gert Kootstra and Danica Kragic Abstract In many scenarios, domestic robot will regularly encounter unknown objects.

More information

Multiple cosegmentation

Multiple cosegmentation Armand Joulin, Francis Bach and Jean Ponce. INRIA -Ecole Normale Supérieure April 25, 2012 Segmentation Introduction Segmentation Supervised and weakly-supervised segmentation Cosegmentation Segmentation

More information

Image Analysis. Edge Detection

Image Analysis. Edge Detection Image Analysis Edge Detection Christophoros Nikou cnikou@cs.uoi.gr Images taken from: Computer Vision course by Kristen Grauman, University of Texas at Austin (http://www.cs.utexas.edu/~grauman/courses/spring2011/index.html).

More information

Generic Face Alignment Using an Improved Active Shape Model

Generic Face Alignment Using an Improved Active Shape Model Generic Face Alignment Using an Improved Active Shape Model Liting Wang, Xiaoqing Ding, Chi Fang Electronic Engineering Department, Tsinghua University, Beijing, China {wanglt, dxq, fangchi} @ocrserv.ee.tsinghua.edu.cn

More information

Comparing Local Feature Descriptors in plsa-based Image Models

Comparing Local Feature Descriptors in plsa-based Image Models Comparing Local Feature Descriptors in plsa-based Image Models Eva Hörster 1,ThomasGreif 1, Rainer Lienhart 1, and Malcolm Slaney 2 1 Multimedia Computing Lab, University of Augsburg, Germany {hoerster,lienhart}@informatik.uni-augsburg.de

More information

Does everyone have an override code?

Does everyone have an override code? Does everyone have an override code? Project 1 due Friday 9pm Review of Filtering Filtering in frequency domain Can be faster than filtering in spatial domain (for large filters) Can help understand effect

More information