Save the Nanosecond! PC Graphics Performance for the next 3 years. Richard Huddy European Developer Relations Manager ATI Technologies, Inc.

Size: px
Start display at page:

Download "Save the Nanosecond! PC Graphics Performance for the next 3 years. Richard Huddy European Developer Relations Manager ATI Technologies, Inc."

Transcription

1 Save the Nanosecond! PC Graphics Performance for the next 3 years Richard Huddy European Developer Relations Manager ATI Technologies, Inc.

2 A funny thing happened to me ATI is now broadly recognised and highly recommended amongst high end gamers

3 Another DX performance talk? Because although this has been my pet subject for 7 years there s still complexity to work out Like: Choosing sort criteria Preferred ways of handling dynamic data The best way to express a pixel shader algorithm

4 nanoseconds - There are lots of them... But, once they re gone... They re gone... If a game lasts for around 40 hours of play that s roughly nanoseconds... Each frame says goodbye to roughly 10 million of these puppies Each VPU clock tick is roughly 2 ns 500MHz is a fast VPU [Each CPU tick is roughly 1/2 ns.] 2GHz is a modest CPU

5 Save the nanosecond There s an English saying, Look after the pennies and the pounds will look after themselves In a sense, pennies are just small pounds But delivering fast frames requires you to save millions of nanoseconds And you can t get rich by saving a dollar every now and then...

6 The DirectX API Since there s an API between you and the hardware it makes sense to expect that you need to know how to use it Abuse of the API can be a mighty expensive option And this is an incredibly common problem

7 Huge Savings... Don t create resources within the performance sensitive part of your code Offline: Compressing textures Install time: Optimize vertex sequences (D3DXOptimizeMesh) Start-up time: Create VBs, IBs, RTs, etc Game loop: Create nothing at all

8 Huge Savings... SetRenderTarget() Let s not have too many of these please! Single digits counts are good Lock() with zero for flags Whether that s a VB that s being rendered from Or a RenderTarget which was rendered to Because there are milliseconds at stake here! Also use DONOTWAIT appropriately to reclaim CPU cycles these are scarce!

9 Significant savings... Every DrawPrim call is a significant cost So make sure you get good value from it Every time you set any state it costs you Whether you set one or ten... But aggressive state filtering is no longer needed so much in DX9 One pixel is irrelevant, but millions matter... Clear() the Z/stencil buffer to make it work fast Sort Front to Back Sub-Sort by shader Set your shader constants in blocks

10 Compilers are smart... At ATI we test compilers to make sure that they re good and help make them better Sample results show : (Win, Draw, Lose) HLSL vs Cg on ATI* : 5, 7, 2 HLSL vs Cg on NV :16, 7, 0 (*) Cg compiler failed to compile 9 of the 23 Renderman samples for SM2.0 even though HLSL compiler succeeded So using HLSL seems like the logical choice Not just an industry standard but the best too

11 And a PC is complex Which is a bit of an understatement A 9800 Pro has a similar number of gates to two Pentium4 processors all on one die But the highly parallel design allows it to do much more work of a very specific kind So you d like to have the CPU and VPU both doing useful work at the same time Luckily the API encourages this

12 Which bits are fast? System: CPU 1 to 1/3 of a nanosecond (1GHz to 3GHz) System memory High latency compared to the CPU MHz (for moving data about) Virtual memory Takes all week Graphics card: VPU core 200 to 500MHz Local video memory 200 to 500MHz (~20GB per second) AGP Bus: 266MHz, 2GB per second, with latency like molasses [100MB per second for CPU reads so don t!]

13 Which bits are fast? System: CPU So the CPU is fast, but it still has too much to do All games are CPU limited Graphics card: VPU core AGP Bus: Not blinding fast clock, but phenomenal throughput Don t texture from here unless you have to

14 Inside the VPU You have several units at your disposal Vertex fetch (memory cache) Vertex shader (xform and lighting) Vertex cache (protecting the shader from abuse) Clipper (so fast it might as well not be there ) Triangle setup Fast Z/stencil reject (quad speed rasterizer rejection) Rasterizer Pixel cache Texture cache Z buffer Blend (Yummy! Read-modify-write)

15 Inside the VPU Because the vertex fetch unit is just reading / caching memory it makes sense to prefer cache-aligned data formats (like 32 bytes or 64 bytes) The vertex cache only works for indexed primitives So we recommend that all rendering is done with DrawIndexedPrimitive() and that you submit data in roughly tri-strip order

16 Saving nanoseconds Use shorter shaders since they re faster One op per clock is what you should expect ATI hardware can parallelise vector + scalar op pairs Shaders are cached on chip too So switching shader can sometimes be very fast Hand written assembly isn t usually a good bet ps.1.4 modifiers can be free in ps.2.0 hardware

17 Saving nanoseconds Prefer the shortest shader which does what you want Use the lowest shader model which achieves your target That way you can potentially access the ps1.4 modifiers which run in the same clock cycle But please do not sacrifice quality for speed! That can be the user s choice later on by selecting no-aa, low screen resolution etc

18 Pre Zee An early Z only pass will save you time if (1) Your pixel shaders are long (2) You cannot sort front-to-back The definition of long here depends upon how well you can usually sort! Pre-Z saves you pixels, but costs you vertices

19 Optimisation - The Big Picture Almost all of the best optimisations come down to one single principal Do the work as early as possible in the pipeline to avoid doing it later where the cost would be greater This applies to things like resource creation (prefer install time costs to runtime costs) culling (cull early is better than late) shader tuning (pre-shader opts move from ps to vs to CPU) Z-only pass

20 What s this about the future? Let s looks at the trends which are changing the balance

21 ATI is at the Center of The Digital Experience

22 Market share... At the end of 2003 ATI finally took the lead in market share in game-play graphics from the competition Yeah, but only by 0.2%... So what? According to Mercury Research, ATI leads with a roughly 80:20 split at the high end Which means that if you re targeting high end gamers and reviewers then your focus is on ATI That s what the vast majority of your audience is using And ATI has a 100% market share lead of New Xbox technologies

23 Multiple platforms... The PC leads the way so that the various genres of lesser hardware are several years behind PC architecture... Latest PDA hardware is equivalent to cutting edge PC hardware from just 4 years ago! Laptops are less than 2 years behind high end workstations Consoles often define the high end as they arrive...

24 PC Platform retirement Top spec PC s actually have a game-buying life of just two years! PC s older than that are retired for Word, , web browsing etc. New PC s or graphics cards are brought into the home and it s these that are used for games Gamers with systems which are >2 years old buy roughly 1 game per year and these are not high end games Hard core gamers average 5-10 games per year This implies a roughly 2.5:1 CPU scalability issue And roughly 4:1 GPU scalability on both power and features

25 All of which means You should require DX8 hardware and upwards for games due Xmas 2004 or later We recommend treating low end DX9 hardware to the DX8 path. Even 1024x768 is often too demanding for the low end DX9 hardware out there So you should be able to cope with just two code paths on many games for this year DX8 hardware takes one DX9 hardware takes the other But note that because this assertion is based on forecasts and trends it is highly subjective

26 DirectX 8 class hardware Programmable vertex pipeline is in addition to the FF pipeline That makes it hard to beat the fixed function hardware And this makes it fast to switch between pipelines Pixel pipeline is shared between the old fashioned texture cascade and the new pixel processor

27 DirectX 9 class hardware Programmable vertex pipeline is shared with the FF pipeline That makes it easy to beat the fixed function hardware That makes it slow to switch between pipelines For this reason it makes sense generally to prefer the programmable pipeline.

28 So, here is our target: DX9 style mainstream graphics (per frame): > 500K triangles < 500 DrawIndexedPrimitive() calls < 500 VertexBuffer switches < 200 different textures < 200 State change groups Few calls to SetRenderTarget - aim for 0 to pass per poly is typical, but 2 is sometimes smart Runs at monitor refresh rate Which gives more than 40 million polys per second And everything goes through the programmable pipeline No occurrences of Lock(0), DrawPrimitive(), DPUP(), CreateVB() etc

29 Are we there yet? Pixel Shader throughput: More pixel engines with Higher clock speeds Higher Instruction counts More vertex engines too since triangles keep getting smaller The pressure moves away from textures and towards the ALU operations Simply because ALU power grows faster than B/W

30 Are we there yet? High quality AA: Continue to innovate with... Programmable sample points Currently 0, 2, 4 or 6 Full exposure of centroid control DirectX 9.0c API fully exposes this Gamma correction of AA in hardware ATI do this already with a 2.2 gamma function

31 The 3.0 shader model Requires 32 bit floats throughout the pipeline But that s not necessarily full IEEE With it s -0.0s, NANs and INFINITYs etc Although the spec does not require support for blend and fog into float surfaces you may expect this to be available on much hardware Static flow control in pixel shader Has some serious performance implications...

32 Which constraints are next? SM3 Precision Consistent 32 bit IEEE throughout Which means... se7m24 One sign bit 7 bits of exponent 24 bits of mantissa But the propagation rules (like what is INF * -0.0 ) are not necessarily required until SM 4.0 Higher (64 bit) precision is not for the near-term...

33 Stream Processors Modern GPUs and VPUs are computing devices built from stream processors Stream Processors are great for some tasks... Fixed maximum input B/W Fixed Processing power Fixed maximum output B/W

34 Stream Processors? Modern GPUs and VPUs are computing devices built from stream processors Vertex Fetch Vertex Shader Triangle set up Pixel Shader FB fog +blend But really, each block is complex... Sp[0] Sp[1] Sp[...] Sp[n-1] Sp[n]

35 A unified shader model The plan as of GDC 04 Is that each of the different 4.0 shaders will use the same syntax and feature set This allows us to get around the major drawback of hardwired stream processors fixed resources. Then the chip can become a pool of vector processors and the hardware allocates these resources to match demand Which implies that benchmarking the hardware becomes somewhat more complex where:- How many vertices per second depends on the pixel complexity How many pixels per second depends on the vertex complexity

36 So isn t this a CPU? No, look at the Differences: Cache Sizes - CPU = huge Number of Pipeline Stages - VPU = long Cache Interaction - VPU = none Clock Speed - CPU = fast Generality - VPU tends not to read what it writes Vector oriented - VPU is fundamentally 4D Number types - CPU is more flexible, supporting integers and floats easily Branches - VPUs don t like branching

37 Some of the targets for DX Next Geometry generation in the VPU A fully specified new Topology Processor unit Which means you ll be able to generate new vertices with all relevant connectivity information from within the VPU... For example you can extrude shadow volumes using this new hardware [But the geometry shader probably doesn t get fed it s own output...] Note please that DX Next is just my placeholder name

38 Some of the targets for DX Next Support for virtual memory So texture downloads are much more efficient Now only those pages of the relevant mip levels will be present Contrast that with the current situation where all of every mip level is required to be present in VPU-accessible memory before the first texel is filtered... And DX Next has the notion of graphics hardware contexts with maximum context switch times VM may also include write capabilities... Will reduce the pressure to move beyond 512MB but we ll still head in that direction...

39 The 4.0 shader model Is still being decided by Microsoft Will be for the next OS only Expect this circa early 2006 New geometry shader Common capabilities between all shaders Faster small batch performance is a very high priority Which implies a new driver model Will last for two or more years DX9 lasts from Q until the next OS

Today s Agenda. DirectX 9 Features Sim Dietrich, nvidia - Multisample antialising Jason Mitchell, ATI - Shader models and coding tips

Today s Agenda. DirectX 9 Features Sim Dietrich, nvidia - Multisample antialising Jason Mitchell, ATI - Shader models and coding tips Today s Agenda DirectX 9 Features Sim Dietrich, nvidia - Multisample antialising Jason Mitchell, ATI - Shader models and coding tips Optimization for DirectX 9 Graphics Mike Burrows, Microsoft - Performance

More information

Optimizing DirectX Graphics. Richard Huddy European Developer Relations Manager

Optimizing DirectX Graphics. Richard Huddy European Developer Relations Manager Optimizing DirectX Graphics Richard Huddy European Developer Relations Manager Some early observations Bear in mind that graphics performance problems are both commoner and rarer than you d think The most

More information

Optimizing for DirectX Graphics. Richard Huddy European Developer Relations Manager

Optimizing for DirectX Graphics. Richard Huddy European Developer Relations Manager Optimizing for DirectX Graphics Richard Huddy European Developer Relations Manager Also on today from ATI... Start & End Time: 12:00pm 1:00pm Title: Precomputed Radiance Transfer and Spherical Harmonic

More information

Squeezing Performance out of your Game with ATI Developer Performance Tools and Optimization Techniques

Squeezing Performance out of your Game with ATI Developer Performance Tools and Optimization Techniques Squeezing Performance out of your Game with ATI Developer Performance Tools and Optimization Techniques Jonathan Zarge, Team Lead Performance Tools Richard Huddy, European Developer Relations Manager ATI

More information

X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1

X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1 X. GPU Programming 320491: Advanced Graphics - Chapter X 1 X.1 GPU Architecture 320491: Advanced Graphics - Chapter X 2 GPU Graphics Processing Unit Parallelized SIMD Architecture 112 processing cores

More information

Could you make the XNA functions yourself?

Could you make the XNA functions yourself? 1 Could you make the XNA functions yourself? For the second and especially the third assignment, you need to globally understand what s going on inside the graphics hardware. You will write shaders, which

More information

Graphics Processing Unit Architecture (GPU Arch)

Graphics Processing Unit Architecture (GPU Arch) Graphics Processing Unit Architecture (GPU Arch) With a focus on NVIDIA GeForce 6800 GPU 1 What is a GPU From Wikipedia : A specialized processor efficient at manipulating and displaying computer graphics

More information

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller Entertainment Graphics: Virtual Realism for the Masses CSE 591: GPU Programming Introduction Computer games need to have: realistic appearance of characters and objects believable and creative shading,

More information

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University CSE 591/392: GPU Programming Introduction Klaus Mueller Computer Science Department Stony Brook University First: A Big Word of Thanks! to the millions of computer game enthusiasts worldwide Who demand

More information

Graphics Hardware. Graphics Processing Unit (GPU) is a Subsidiary hardware. With massively multi-threaded many-core. Dedicated to 2D and 3D graphics

Graphics Hardware. Graphics Processing Unit (GPU) is a Subsidiary hardware. With massively multi-threaded many-core. Dedicated to 2D and 3D graphics Why GPU? Chapter 1 Graphics Hardware Graphics Processing Unit (GPU) is a Subsidiary hardware With massively multi-threaded many-core Dedicated to 2D and 3D graphics Special purpose low functionality, high

More information

Architectures. Michael Doggett Department of Computer Science Lund University 2009 Tomas Akenine-Möller and Michael Doggett 1

Architectures. Michael Doggett Department of Computer Science Lund University 2009 Tomas Akenine-Möller and Michael Doggett 1 Architectures Michael Doggett Department of Computer Science Lund University 2009 Tomas Akenine-Möller and Michael Doggett 1 Overview of today s lecture The idea is to cover some of the existing graphics

More information

Challenges for GPU Architecture. Michael Doggett Graphics Architecture Group April 2, 2008

Challenges for GPU Architecture. Michael Doggett Graphics Architecture Group April 2, 2008 Michael Doggett Graphics Architecture Group April 2, 2008 Graphics Processing Unit Architecture CPUs vsgpus AMD s ATI RADEON 2900 Programming Brook+, CAL, ShaderAnalyzer Architecture Challenges Accelerated

More information

Graphics Hardware, Graphics APIs, and Computation on GPUs. Mark Segal

Graphics Hardware, Graphics APIs, and Computation on GPUs. Mark Segal Graphics Hardware, Graphics APIs, and Computation on GPUs Mark Segal Overview Graphics Pipeline Graphics Hardware Graphics APIs ATI s low-level interface for computation on GPUs 2 Graphics Hardware High

More information

CONSOLE ARCHITECTURE

CONSOLE ARCHITECTURE CONSOLE ARCHITECTURE Introduction Part 1 What is a console? Console components Differences between consoles and PCs Benefits of console development The development environment Console game design What

More information

Graphics Performance Optimisation. John Spitzer Director of European Developer Technology

Graphics Performance Optimisation. John Spitzer Director of European Developer Technology Graphics Performance Optimisation John Spitzer Director of European Developer Technology Overview Understand the stages of the graphics pipeline Cherchez la bottleneck Once found, either eliminate or balance

More information

Performance OpenGL Programming (for whatever reason)

Performance OpenGL Programming (for whatever reason) Performance OpenGL Programming (for whatever reason) Mike Bailey Oregon State University Performance Bottlenecks In general there are four places a graphics system can become bottlenecked: 1. The computer

More information

Shader Series Primer: Fundamentals of the Programmable Pipeline in XNA Game Studio Express

Shader Series Primer: Fundamentals of the Programmable Pipeline in XNA Game Studio Express Shader Series Primer: Fundamentals of the Programmable Pipeline in XNA Game Studio Express Level: Intermediate Area: Graphics Programming Summary This document is an introduction to the series of samples,

More information

How to Work on Next Gen Effects Now: Bridging DX10 and DX9. Guennadi Riguer ATI Technologies

How to Work on Next Gen Effects Now: Bridging DX10 and DX9. Guennadi Riguer ATI Technologies How to Work on Next Gen Effects Now: Bridging DX10 and DX9 Guennadi Riguer ATI Technologies Overview New pipeline and new cool things Simulating some DX10 features in DX9 Experimental techniques Why This

More information

GPU Computation Strategies & Tricks. Ian Buck NVIDIA

GPU Computation Strategies & Tricks. Ian Buck NVIDIA GPU Computation Strategies & Tricks Ian Buck NVIDIA Recent Trends 2 Compute is Cheap parallelism to keep 100s of ALUs per chip busy shading is highly parallel millions of fragments per frame 0.5mm 64-bit

More information

This Unit: Putting It All Together. CIS 501 Computer Architecture. What is Computer Architecture? Sources

This Unit: Putting It All Together. CIS 501 Computer Architecture. What is Computer Architecture? Sources This Unit: Putting It All Together CIS 501 Computer Architecture Unit 12: Putting It All Together: Anatomy of the XBox 360 Game Console Application OS Compiler Firmware CPU I/O Memory Digital Circuits

More information

PowerVR Hardware. Architecture Overview for Developers

PowerVR Hardware. Architecture Overview for Developers Public Imagination Technologies PowerVR Hardware Public. This publication contains proprietary information which is subject to change without notice and is supplied 'as is' without warranty of any kind.

More information

Optimisation. CS7GV3 Real-time Rendering

Optimisation. CS7GV3 Real-time Rendering Optimisation CS7GV3 Real-time Rendering Introduction Talk about lower-level optimization Higher-level optimization is better algorithms Example: not using a spatial data structure vs. using one After that

More information

This Unit: Putting It All Together. CIS 371 Computer Organization and Design. Sources. What is Computer Architecture?

This Unit: Putting It All Together. CIS 371 Computer Organization and Design. Sources. What is Computer Architecture? This Unit: Putting It All Together CIS 371 Computer Organization and Design Unit 15: Putting It All Together: Anatomy of the XBox 360 Game Console Application OS Compiler Firmware CPU I/O Memory Digital

More information

Vulkan: Architecture positive How Vulkan maps to PowerVR GPUs Kevin sun Lead Developer Support Engineer, APAC PowerVR Graphics.

Vulkan: Architecture positive How Vulkan maps to PowerVR GPUs Kevin sun Lead Developer Support Engineer, APAC PowerVR Graphics. Vulkan: Architecture positive How Vulkan maps to PowerVR GPUs Kevin sun Lead Developer Support Engineer, APAC PowerVR Graphics www.imgtec.com Introduction Who am I? Kevin Sun Working at Imagination Technologies

More information

Unit 11: Putting it All Together: Anatomy of the XBox 360 Game Console

Unit 11: Putting it All Together: Anatomy of the XBox 360 Game Console Computer Architecture Unit 11: Putting it All Together: Anatomy of the XBox 360 Game Console Slides originally developed by Milo Martin & Amir Roth at University of Pennsylvania! Computer Architecture

More information

Spring 2009 Prof. Hyesoon Kim

Spring 2009 Prof. Hyesoon Kim Spring 2009 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

This Unit: Putting It All Together. CIS 371 Computer Organization and Design. What is Computer Architecture? Sources

This Unit: Putting It All Together. CIS 371 Computer Organization and Design. What is Computer Architecture? Sources This Unit: Putting It All Together CIS 371 Computer Organization and Design Unit 15: Putting It All Together: Anatomy of the XBox 360 Game Console Application OS Compiler Firmware CPU I/O Memory Digital

More information

CS427 Multicore Architecture and Parallel Computing

CS427 Multicore Architecture and Parallel Computing CS427 Multicore Architecture and Parallel Computing Lecture 6 GPU Architecture Li Jiang 2014/10/9 1 GPU Scaling A quiet revolution and potential build-up Calculation: 936 GFLOPS vs. 102 GFLOPS Memory Bandwidth:

More information

Windowing System on a 3D Pipeline. February 2005

Windowing System on a 3D Pipeline. February 2005 Windowing System on a 3D Pipeline February 2005 Agenda 1.Overview of the 3D pipeline 2.NVIDIA software overview 3.Strengths and challenges with using the 3D pipeline GeForce 6800 220M Transistors April

More information

Streaming Massive Environments From Zero to 200MPH

Streaming Massive Environments From Zero to 200MPH FORZA MOTORSPORT From Zero to 200MPH Chris Tector (Software Architect Turn 10 Studios) Turn 10 Internal studio at Microsoft Game Studios - we make Forza Motorsport Around 70 full time staff 2 Why am I

More information

Threading Hardware in G80

Threading Hardware in G80 ing Hardware in G80 1 Sources Slides by ECE 498 AL : Programming Massively Parallel Processors : Wen-Mei Hwu John Nickolls, NVIDIA 2 3D 3D API: API: OpenGL OpenGL or or Direct3D Direct3D GPU Command &

More information

Introduction to Multicore architecture. Tao Zhang Oct. 21, 2010

Introduction to Multicore architecture. Tao Zhang Oct. 21, 2010 Introduction to Multicore architecture Tao Zhang Oct. 21, 2010 Overview Part1: General multicore architecture Part2: GPU architecture Part1: General Multicore architecture Uniprocessor Performance (ECint)

More information

The NVIDIA GeForce 8800 GPU

The NVIDIA GeForce 8800 GPU The NVIDIA GeForce 8800 GPU August 2007 Erik Lindholm / Stuart Oberman Outline GeForce 8800 Architecture Overview Streaming Processor Array Streaming Multiprocessor Texture ROP: Raster Operation Pipeline

More information

Building scalable 3D applications. Ville Miettinen Hybrid Graphics

Building scalable 3D applications. Ville Miettinen Hybrid Graphics Building scalable 3D applications Ville Miettinen Hybrid Graphics What s going to happen... (1/2) Mass market: 3D apps will become a huge success on low-end and mid-tier cell phones Retro-gaming New game

More information

GPGPU, 1st Meeting Mordechai Butrashvily, CEO GASS

GPGPU, 1st Meeting Mordechai Butrashvily, CEO GASS GPGPU, 1st Meeting Mordechai Butrashvily, CEO GASS Agenda Forming a GPGPU WG 1 st meeting Future meetings Activities Forming a GPGPU WG To raise needs and enhance information sharing A platform for knowledge

More information

Hardware-driven Visibility Culling Jeong Hyun Kim

Hardware-driven Visibility Culling Jeong Hyun Kim Hardware-driven Visibility Culling Jeong Hyun Kim KAIST (Korea Advanced Institute of Science and Technology) Contents Introduction Background Clipping Culling Z-max (Z-min) Filter Programmable culling

More information

From Brook to CUDA. GPU Technology Conference

From Brook to CUDA. GPU Technology Conference From Brook to CUDA GPU Technology Conference A 50 Second Tutorial on GPU Programming by Ian Buck Adding two vectors in C is pretty easy for (i=0; i

More information

The Central Processing Unit

The Central Processing Unit The Central Processing Unit All computers derive from the same basic design, usually referred to as the von Neumann architecture. This concept involves solving a problem by defining a sequence of commands

More information

Modern Processor Architectures. L25: Modern Compiler Design

Modern Processor Architectures. L25: Modern Compiler Design Modern Processor Architectures L25: Modern Compiler Design The 1960s - 1970s Instructions took multiple cycles Only one instruction in flight at once Optimisation meant minimising the number of instructions

More information

General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing)

General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing) ME 290-R: General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing) Sara McMains Spring 2009 Performance: Bottlenecks Sources of bottlenecks CPU Transfer Processing Rasterizer

More information

Real - Time Rendering. Pipeline optimization. Michal Červeňanský Juraj Starinský

Real - Time Rendering. Pipeline optimization. Michal Červeňanský Juraj Starinský Real - Time Rendering Pipeline optimization Michal Červeňanský Juraj Starinský Motivation Resolution 1600x1200, at 60 fps Hw power not enough Acceleration is still necessary 3.3.2010 2 Overview Application

More information

CS8803SC Software and Hardware Cooperative Computing GPGPU. Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology

CS8803SC Software and Hardware Cooperative Computing GPGPU. Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology CS8803SC Software and Hardware Cooperative Computing GPGPU Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology Why GPU? A quiet revolution and potential build-up Calculation: 367

More information

DX10, Batching, and Performance Considerations. Bryan Dudash NVIDIA Developer Technology

DX10, Batching, and Performance Considerations. Bryan Dudash NVIDIA Developer Technology DX10, Batching, and Performance Considerations Bryan Dudash NVIDIA Developer Technology The Point of this talk The attempt to combine wisdom and power has only rarely been successful and then only for

More information

Graphics Hardware. Instructor Stephen J. Guy

Graphics Hardware. Instructor Stephen J. Guy Instructor Stephen J. Guy Overview What is a GPU Evolution of GPU GPU Design Modern Features Programmability! Programming Examples Overview What is a GPU Evolution of GPU GPU Design Modern Features Programmability!

More information

Spring 2011 Prof. Hyesoon Kim

Spring 2011 Prof. Hyesoon Kim Spring 2011 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

Advanced processor designs

Advanced processor designs Advanced processor designs We ve only scratched the surface of CPU design. Today we ll briefly introduce some of the big ideas and big words behind modern processors by looking at two example CPUs. The

More information

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer Real-Time Rendering (Echtzeitgraphik) Michael Wimmer wimmer@cg.tuwien.ac.at Walking down the graphics pipeline Application Geometry Rasterizer What for? Understanding the rendering pipeline is the key

More information

Lecture 25: Board Notes: Threads and GPUs

Lecture 25: Board Notes: Threads and GPUs Lecture 25: Board Notes: Threads and GPUs Announcements: - Reminder: HW 7 due today - Reminder: Submit project idea via (plain text) email by 11/24 Recap: - Slide 4: Lecture 23: Introduction to Parallel

More information

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS 1 Last time Each block is assigned to and executed on a single streaming multiprocessor (SM). Threads execute in groups of 32 called warps. Threads in

More information

ECE 574 Cluster Computing Lecture 16

ECE 574 Cluster Computing Lecture 16 ECE 574 Cluster Computing Lecture 16 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 26 March 2019 Announcements HW#7 posted HW#6 and HW#5 returned Don t forget project topics

More information

Next-Generation Graphics on Larrabee. Tim Foley Intel Corp

Next-Generation Graphics on Larrabee. Tim Foley Intel Corp Next-Generation Graphics on Larrabee Tim Foley Intel Corp Motivation The killer app for GPGPU is graphics We ve seen Abstract models for parallel programming How those models map efficiently to Larrabee

More information

Portland State University ECE 588/688. Graphics Processors

Portland State University ECE 588/688. Graphics Processors Portland State University ECE 588/688 Graphics Processors Copyright by Alaa Alameldeen 2018 Why Graphics Processors? Graphics programs have different characteristics from general purpose programs Highly

More information

Spring 2010 Prof. Hyesoon Kim. AMD presentations from Richard Huddy and Michael Doggett

Spring 2010 Prof. Hyesoon Kim. AMD presentations from Richard Huddy and Michael Doggett Spring 2010 Prof. Hyesoon Kim AMD presentations from Richard Huddy and Michael Doggett Radeon 2900 2600 2400 Stream Processors 320 120 40 SIMDs 4 3 2 Pipelines 16 8 4 Texture Units 16 8 4 Render Backens

More information

The Application Stage. The Game Loop, Resource Management and Renderer Design

The Application Stage. The Game Loop, Resource Management and Renderer Design 1 The Application Stage The Game Loop, Resource Management and Renderer Design Application Stage Responsibilities 2 Set up the rendering pipeline Resource Management 3D meshes Textures etc. Prepare data

More information

Current Trends in Computer Graphics Hardware

Current Trends in Computer Graphics Hardware Current Trends in Computer Graphics Hardware Dirk Reiners University of Louisiana Lafayette, LA Quick Introduction Assistant Professor in Computer Science at University of Louisiana, Lafayette (since 2006)

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

PowerVR Series5. Architecture Guide for Developers

PowerVR Series5. Architecture Guide for Developers Public Imagination Technologies PowerVR Series5 Public. This publication contains proprietary information which is subject to change without notice and is supplied 'as is' without warranty of any kind.

More information

A SIMD-efficient 14 Instruction Shader Program for High-Throughput Microtriangle Rasterization

A SIMD-efficient 14 Instruction Shader Program for High-Throughput Microtriangle Rasterization A SIMD-efficient 14 Instruction Shader Program for High-Throughput Microtriangle Rasterization Jordi Roca Victor Moya Carlos Gonzalez Vicente Escandell Albert Murciego Agustin Fernandez, Computer Architecture

More information

GPGPU. Peter Laurens 1st-year PhD Student, NSC

GPGPU. Peter Laurens 1st-year PhD Student, NSC GPGPU Peter Laurens 1st-year PhD Student, NSC Presentation Overview 1. What is it? 2. What can it do for me? 3. How can I get it to do that? 4. What s the catch? 5. What s the future? What is it? Introducing

More information

Rasterization and Graphics Hardware. Not just about fancy 3D! Rendering/Rasterization. The simplest case: Points. When do we care?

Rasterization and Graphics Hardware. Not just about fancy 3D! Rendering/Rasterization. The simplest case: Points. When do we care? Where does a picture come from? Rasterization and Graphics Hardware CS559 Course Notes Not for Projection November 2007, Mike Gleicher Result: image (raster) Input 2D/3D model of the world Rendering term

More information

Monday Morning. Graphics Hardware

Monday Morning. Graphics Hardware Monday Morning Department of Computer Engineering Graphics Hardware Ulf Assarsson Skärmen består av massa pixlar 3D-Rendering Objects are often made of triangles x,y,z- coordinate for each vertex Y X Z

More information

POWERVR MBX. Technology Overview

POWERVR MBX. Technology Overview POWERVR MBX Technology Overview Copyright 2009, Imagination Technologies Ltd. All Rights Reserved. This publication contains proprietary information which is subject to change without notice and is supplied

More information

Parallelism and Concurrency. COS 326 David Walker Princeton University

Parallelism and Concurrency. COS 326 David Walker Princeton University Parallelism and Concurrency COS 326 David Walker Princeton University Parallelism What is it? Today's technology trends. How can we take advantage of it? Why is it so much harder to program? Some preliminary

More information

Course Recap + 3D Graphics on Mobile GPUs

Course Recap + 3D Graphics on Mobile GPUs Lecture 18: Course Recap + 3D Graphics on Mobile GPUs Interactive Computer Graphics Q. What is a big concern in mobile computing? A. Power Two reasons to save power Run at higher performance for a fixed

More information

Coming to a Pixel Near You: Mobile 3D Graphics on the GoForce WMP. Chris Wynn NVIDIA Corporation

Coming to a Pixel Near You: Mobile 3D Graphics on the GoForce WMP. Chris Wynn NVIDIA Corporation Coming to a Pixel Near You: Mobile 3D Graphics on the GoForce WMP Chris Wynn NVIDIA Corporation What is GoForce 3D? Licensable 3D Core for Mobile Devices Discrete Solutions: GoForce 3D 4500/4800 OpenGL

More information

POWERVR MBX & SGX OpenVG Support and Resources

POWERVR MBX & SGX OpenVG Support and Resources POWERVR MBX & SGX OpenVG Support and Resources Kristof Beets 3 rd Party Relations Manager - Imagination Technologies kristof.beets@imgtec.com Copyright Khronos Group, 2006 - Page 1 Copyright Khronos Group,

More information

Xbox 360 high-level architecture

Xbox 360 high-level architecture 11/2/11 Xbox 360 s Xenon vs. Playstation 3 s Cell Both chips clocked at a 3.2 GHz Architectural Comparison: Xbox 360 vs. Playstation 3 Prof. Aaron Lanterman School of Electrical and Computer Engineering

More information

Profiling and Debugging Games on Mobile Platforms

Profiling and Debugging Games on Mobile Platforms Profiling and Debugging Games on Mobile Platforms Lorenzo Dal Col Senior Software Engineer, Graphics Tools Gamelab 2013, Barcelona 26 th June 2013 Agenda Introduction to Performance Analysis with ARM DS-5

More information

Modern Processor Architectures (A compiler writer s perspective) L25: Modern Compiler Design

Modern Processor Architectures (A compiler writer s perspective) L25: Modern Compiler Design Modern Processor Architectures (A compiler writer s perspective) L25: Modern Compiler Design The 1960s - 1970s Instructions took multiple cycles Only one instruction in flight at once Optimisation meant

More information

PC I/O. May 7, Howard Huang 1

PC I/O. May 7, Howard Huang 1 PC I/O Today wraps up the I/O material with a little bit about PC I/O systems. Internal buses like PCI and ISA are critical. External buses like USB and Firewire are becoming more important. Today also

More information

GPU Architecture. Michael Doggett Department of Computer Science Lund university

GPU Architecture. Michael Doggett Department of Computer Science Lund university GPU Architecture Michael Doggett Department of Computer Science Lund university GPUs from my time at ATI R200 Xbox360 GPU R630 R610 R770 Let s start at the beginning... Graphics Hardware before GPUs 1970s

More information

Beyond Programmable Shading. Scheduling the Graphics Pipeline

Beyond Programmable Shading. Scheduling the Graphics Pipeline Beyond Programmable Shading Scheduling the Graphics Pipeline Jonathan Ragan-Kelley, MIT CSAIL 9 August 2011 Mike s just showed how shaders can use large, coherent batches of work to achieve high throughput.

More information

Analyze and Optimize Windows* Game Applications Using Intel INDE Graphics Performance Analyzers (GPA)

Analyze and Optimize Windows* Game Applications Using Intel INDE Graphics Performance Analyzers (GPA) Analyze and Optimize Windows* Game Applications Using Intel INDE Graphics Performance Analyzers (GPA) Intel INDE Graphics Performance Analyzers (GPA) are powerful, agile tools enabling game developers

More information

Day: Thursday, 03/19 Time: 16:00-16:50 Location: Room 212A Level: Intermediate Type: Talk Tags: Developer - Tools & Libraries; Game Development

Day: Thursday, 03/19 Time: 16:00-16:50 Location: Room 212A Level: Intermediate Type: Talk Tags: Developer - Tools & Libraries; Game Development 1 Day: Thursday, 03/19 Time: 16:00-16:50 Location: Room 212A Level: Intermediate Type: Talk Tags: Developer - Tools & Libraries; Game Development 2 3 Talk about just some of the features of DX12 that are

More information

Introduction to Computer Graphics (CS602) Lecture No 03 Graphics Systems

Introduction to Computer Graphics (CS602) Lecture No 03 Graphics Systems Introduction to Computer Graphics (CS602) Lecture No 03 Graphics Systems 3.1 Raster-Scan Systems Interactive raster graphics systems typically employ several processing units. In addition to the CPU, a

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #22 CPU Design: Pipelining to Improve Performance II 2007-8-1 Scott Beamer, Instructor CS61C L22 CPU Design : Pipelining to Improve Performance

More information

Enabling immersive gaming experiences Intro to Ray Tracing

Enabling immersive gaming experiences Intro to Ray Tracing Enabling immersive gaming experiences Intro to Ray Tracing Overview What is Ray Tracing? Why Ray Tracing? PowerVR Wizard Architecture Example Content Unity Hybrid Rendering Demonstration 3 What is Ray

More information

What s New with GPGPU?

What s New with GPGPU? What s New with GPGPU? John Owens Assistant Professor, Electrical and Computer Engineering Institute for Data Analysis and Visualization University of California, Davis Microprocessor Scaling is Slowing

More information

Ultimate Graphics Performance for DirectX 10 Hardware

Ultimate Graphics Performance for DirectX 10 Hardware Ultimate Graphics Performance for DirectX 10 Hardware Nicolas Thibieroz European Developer Relations AMD Graphics Products Group nicolas.thibieroz@amd.com V1.01 Generic API Usage DX10 designed for performance

More information

RSX Best Practices. Mark Cerny, Cerny Games David Simpson, Naughty Dog Jon Olick, Naughty Dog

RSX Best Practices. Mark Cerny, Cerny Games David Simpson, Naughty Dog Jon Olick, Naughty Dog RSX Best Practices Mark Cerny, Cerny Games David Simpson, Naughty Dog Jon Olick, Naughty Dog RSX Best Practices About libgcm Using the SPUs with the RSX Brief overview of GCM Replay December 7 th, 2004

More information

GoForce 3D: Coming to a Pixel Near You

GoForce 3D: Coming to a Pixel Near You GoForce 3D: Coming to a Pixel Near You CEDEC 2004 NVIDIA Actively Developing Handheld Solutions Exciting and Growing Market Fully Committed to developing World Class graphics products for the mobile Already

More information

From Concept to Silicon

From Concept to Silicon From Concept to Silicon How an idea becomes a part of a new chip at ATI Richard Huddy ATI Research From Concept to Silicon Creating a new Visual Processing Unit (VPU) is a complex task involving many people

More information

Render-To-Texture Caching. D. Sim Dietrich Jr.

Render-To-Texture Caching. D. Sim Dietrich Jr. Render-To-Texture Caching D. Sim Dietrich Jr. What is Render-To-Texture Caching? Pixel shaders are becoming more complex and expensive Per-pixel shadows Dynamic Normal Maps Bullet holes Water simulation

More information

Optimizing and Profiling Unity Games for Mobile Platforms. Angelo Theodorou Senior Software Engineer, MPG Gamelab 2014, 25 th -27 th June

Optimizing and Profiling Unity Games for Mobile Platforms. Angelo Theodorou Senior Software Engineer, MPG Gamelab 2014, 25 th -27 th June Optimizing and Profiling Unity Games for Mobile Platforms Angelo Theodorou Senior Software Engineer, MPG Gamelab 2014, 25 th -27 th June 1 Agenda Introduction ARM and the presenter Preliminary knowledge

More information

Optimizing Games for ATI s IMAGEON Aaftab Munshi. 3D Architect ATI Research

Optimizing Games for ATI s IMAGEON Aaftab Munshi. 3D Architect ATI Research Optimizing Games for ATI s IMAGEON 2300 Aaftab Munshi 3D Architect ATI Research A A 3D hardware solution enables publishers to extend brands to mobile devices while remaining close to original vision of

More information

Mention driver developers in the room. Because of time this will be fairly high level, feel free to come talk to us afterwards

Mention driver developers in the room. Because of time this will be fairly high level, feel free to come talk to us afterwards 1 Introduce Mark, Michael Poll: Who is a software developer or works for a software company? Who s in management? Who knows what the OpenGL ARB standards body is? Mention driver developers in the room.

More information

CS195V Week 9. GPU Architecture and Other Shading Languages

CS195V Week 9. GPU Architecture and Other Shading Languages CS195V Week 9 GPU Architecture and Other Shading Languages GPU Architecture We will do a short overview of GPU hardware and architecture Relatively short journey into hardware, for more in depth information,

More information

Hardware-driven visibility culling

Hardware-driven visibility culling Hardware-driven visibility culling I. Introduction 20073114 김정현 The goal of the 3D graphics is to generate a realistic and accurate 3D image. To achieve this, it needs to process not only large amount

More information

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský Real - Time Rendering Graphics pipeline Michal Červeňanský Juraj Starinský Overview History of Graphics HW Rendering pipeline Shaders Debugging 2 History of Graphics HW First generation Second generation

More information

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Introduction to CUDA Algoritmi e Calcolo Parallelo References q This set of slides is mainly based on: " CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory " Slide of Applied

More information

Cg 2.0. Mark Kilgard

Cg 2.0. Mark Kilgard Cg 2.0 Mark Kilgard What is Cg? Cg is a GPU shading language C/C++ like language Write vertex-, geometry-, and fragmentprocessing kernels that execute on massively parallel GPUs Productivity through a

More information

Shadows for Many Lights sounds like it might mean something, but In fact it can mean very different things, that require very different solutions.

Shadows for Many Lights sounds like it might mean something, but In fact it can mean very different things, that require very different solutions. 1 2 Shadows for Many Lights sounds like it might mean something, but In fact it can mean very different things, that require very different solutions. 3 We aim for something like the numbers of lights

More information

Scanline Rendering 2 1/42

Scanline Rendering 2 1/42 Scanline Rendering 2 1/42 Review 1. Set up a Camera the viewing frustum has near and far clipping planes 2. Create some Geometry made out of triangles 3. Place the geometry in the scene using Transforms

More information

Multimedia in Mobile Phones. Architectures and Trends Lund

Multimedia in Mobile Phones. Architectures and Trends Lund Multimedia in Mobile Phones Architectures and Trends Lund 091124 Presentation Henrik Ohlsson Contact: henrik.h.ohlsson@stericsson.com Working with multimedia hardware (graphics and displays) at ST- Ericsson

More information

Mobile 3D Devices. -- They re not little PCs! Stephen Wilkinson Graphics Software Technical Lead Texas Instruments CSSD/OMAP

Mobile 3D Devices. -- They re not little PCs! Stephen Wilkinson Graphics Software Technical Lead Texas Instruments CSSD/OMAP Mobile 3D Devices -- They re not little PCs! Stephen Wilkinson Graphics Software Technical Lead Texas Instruments CSSD/OMAP Who is this guy? Involved with simulation and games since 1995 Worked on SIMNET

More information

Bringing AAA graphics to mobile platforms. Niklas Smedberg Senior Engine Programmer, Epic Games

Bringing AAA graphics to mobile platforms. Niklas Smedberg Senior Engine Programmer, Epic Games Bringing AAA graphics to mobile platforms Niklas Smedberg Senior Engine Programmer, Epic Games Who Am I A.k.a. Smedis Platform team at Epic Games Unreal Engine 15 years in the industry 30 years of programming

More information

CS61C - Machine Structures. Week 6 - Performance. Oct 3, 2003 John Wawrzynek.

CS61C - Machine Structures. Week 6 - Performance. Oct 3, 2003 John Wawrzynek. CS61C - Machine Structures Week 6 - Performance Oct 3, 2003 John Wawrzynek http://www-inst.eecs.berkeley.edu/~cs61c/ 1 Why do we worry about performance? As a consumer: An application might need a certain

More information

Direct3D API Issues: Instancing and Floating-point Specials. Cem Cebenoyan NVIDIA Corporation

Direct3D API Issues: Instancing and Floating-point Specials. Cem Cebenoyan NVIDIA Corporation Direct3D API Issues: Instancing and Floating-point Specials Cem Cebenoyan NVIDIA Corporation Agenda Really two mini-talks today Instancing API Usage Performance / pitfalls Floating-point specials DirectX

More information

Evolution of GPUs Chris Seitz

Evolution of GPUs Chris Seitz Evolution of GPUs Chris Seitz Overview Concepts: Real-time rendering Hardware graphics pipeline Evolution of the PC hardware graphics pipeline: 1995-1998: Texture mapping and z-buffer 1998: Multitexturing

More information

Introduction to the Direct3D 11 Graphics Pipeline

Introduction to the Direct3D 11 Graphics Pipeline Introduction to the Direct3D 11 Graphics Pipeline Kevin Gee - XNA Developer Connection Microsoft Corporation 2008 NVIDIA Corporation. Direct3D 11 focuses on Key Takeaways Increasing scalability, Improving

More information