A Pedestrian Navigation System Based On a Foot-Mounted IMU and Map Constraints. Dan Pierce and Dr. David Bevly

Size: px
Start display at page:

Download "A Pedestrian Navigation System Based On a Foot-Mounted IMU and Map Constraints. Dan Pierce and Dr. David Bevly"

Transcription

1 A Pedestrian Navigation System Based On a Foot-Mounted IMU and Map Constraints Dan Pierce and Dr. David Bevly

2 Outline Motivation/Introduction System Description Localization Foot-mounted IMU algorithm Map constraint filter Testing description and results Navigation Human machine interface Testing description and results Future work 1

3 Motivation Enhance the mobility and independence of blind and visually impaired community Assist users in navigating large unstructured environments that they encounter in daily life 2 Parks Parking lots Airports Sports arenas Complex intersections GA VLAB

4 Challenges for Pedestrian Navigation Requires functionality in GPSstressed and GPS-denied scenarios Urban canyons, dense foliage, indoors Typical navigation devices (e.g. smart phones) are insufficient Limited GPS precision/availability Multipath effects Infrastructure-based approaches can be costly when scaling 3

5 System Description Design Requirement: Provide continued assistance for Point A to B navigation through noninvasive human-machine interface Solution: iphone application Optimal route planning within map database Smart intersection connectivity (DSRC) Vibro-tactile belt* Map aided foot-mounted IMU localization solution* 4

6 Localization: Foot-Mounted IMU A relative 3D position/orientation solution is generated by IMU mechanization An Extended Kalman Filter (EKF) is used to correct the solution with updates of zero velocity during footfall Z[m] 6 DoF Pose Step Pose X[m] Y[m] 5

7 Localization: Foot-Mounted IMU Outputs: The full 6 DoF solution is not entirely relevant for navigating the user At each step, a subset of information is extracted Change in heading (Δψ) Change in position (Δx, Δy) The step outputs can then be treated as a source of dead reckoning 6 N E ψ - = N E ψ -/0 + cos (ψ) sin (ψ) 0 sin (ψ) cos (ψ) Δx - Δy - Δψ -

8 Localization: Map Constraints Standalone dead reckoning suffers from increasing errors with distance traveled Solution is constrained using information of physical boundaries (walls, handrails, etc.) 7

9 Localization: Map Particle Filter 8 Initialization Sample state vector estimates ( particles ) are drawn from a probability distribution Time Update Each particle is processed through difference equation with synthetic noise to spread particles Estimate taken as a weighted mean of all particles

10 Localization: Map Particle Filter Map Constraint Update A line is drawn connecting the current and previous position of each particle This line is checked for intersections with any map boundaries Weighting is set to zero for particles that cross map boundaries Error drift is effectively constrained 9

11 Localization: Map Particle Filter Practical considerations Mapping requirements feasible since a map is already used for route planning Processor requirement minimal due to low state vector size (n = 3) and slow update rate (< 1 Hz) Real Time Implementation ROS environment for timing and communications OpenStreetMap for storing paths and boundaries ROS Rviz Representation 10

12 Localization: Testing Overview Six different test subjects walk a predefined path through Woltosz Engineering Research Lab Position and heading estimates compared to truth values at known waypoints along the path 11 Path consisted of two levels, a flight of stairs, and multiple extended hallways Test subjects walked with normal gait for a fair assessment of the system s performance

13 Localization: Testing Results Resulting trajectory from one of the six tests: 12

14 Localization: Testing Results System performance proved to be consistent among the variety of test subjects Localization error stayed within acceptable level of accuracy for navigation Heading Results Box Plot Position Results Box Plot Heading Error [ ] Position Error [m] Test Subject Test Subject 13

15 Navigation: Vibro-Tactile Belt Four vibratory cells located at the anti-cardinal direction of the user s waist Specific vibration patterns convey information to the user User Vibratory Cells Command Veer right/left Turn right/left Stop Pattern Front left/right Front and rear left/right All cells 14

16 Navigation: Vibro-Tactile Belt User s estimated pose is compared to series of waypoints that make up the desired path VT Belt command issued based on relative position Desired waypoint is incremented when user is within a given radius 15

17 Navigation: Testing Overview 16 Two team members from the National Federation of the Blind (NFB) traveled to Auburn to test the system Despite having very little time for familiarizing with the system, the users adapted quickly Each user was outfitted with the system, guided to the start location, and began operating the system Objective: receive qualitative feedback and suggestions from the NFB members

18 Navigation: Results 17

19 Navigation: Results 18

20 Future Work Map Particle Filter Incorporate additional information/measurements Traditional measurement types (GPS, ranging beacons, RFID, etc.) Gait constraint information Vicinity detection (e.g. ascending/descending a stairwell) Implement using different odometry source (e.g. pedometry) Navigation System Reduce form factor Reduced number of VT cells can convey same amount of information Perform all computations on handheld device Additional testing/feedback from the blind community 19

21 Thank you

22 Additional Results 60 Basement N [m] E [m]

23 Additional Results 60 First Floor N [m] E [m]

24 Additional Results 60 Second Floor N [m] E [m]

25 Additional Results 60 Third Floor N [m] E [m]

Perspective Sensing for Inertial Stabilization

Perspective Sensing for Inertial Stabilization Perspective Sensing for Inertial Stabilization Dr. Bernard A. Schnaufer Jeremy Nadke Advanced Technology Center Rockwell Collins, Inc. Cedar Rapids, IA Agenda Rockwell Collins & the Advanced Technology

More information

Indoor navigation using smartphones. Chris Hide IESSG, University of Nottingham, UK

Indoor navigation using smartphones. Chris Hide IESSG, University of Nottingham, UK Indoor navigation using smartphones Chris Hide IESSG, University of Nottingham, UK Overview Smartphones Available sensors Current positioning methods Positioning research at IESSG 1. Wi-Fi fingerprinting

More information

Lecture 13 Visual Inertial Fusion

Lecture 13 Visual Inertial Fusion Lecture 13 Visual Inertial Fusion Davide Scaramuzza Course Evaluation Please fill the evaluation form you received by email! Provide feedback on Exercises: good and bad Course: good and bad How to improve

More information

Aided-inertial for GPS-denied Navigation and Mapping

Aided-inertial for GPS-denied Navigation and Mapping Aided-inertial for GPS-denied Navigation and Mapping Erik Lithopoulos Applanix Corporation 85 Leek Crescent, Richmond Ontario, Canada L4B 3B3 elithopoulos@applanix.com ABSTRACT This paper describes the

More information

Relating Local Vision Measurements to Global Navigation Satellite Systems Using Waypoint Based Maps

Relating Local Vision Measurements to Global Navigation Satellite Systems Using Waypoint Based Maps Relating Local Vision Measurements to Global Navigation Satellite Systems Using Waypoint Based Maps John W. Allen Samuel Gin College of Engineering GPS and Vehicle Dynamics Lab Auburn University Auburn,

More information

Testing the Possibilities of Using IMUs with Different Types of Movements

Testing the Possibilities of Using IMUs with Different Types of Movements 137 Testing the Possibilities of Using IMUs with Different Types of Movements Kajánek, P. and Kopáčik A. Slovak University of Technology, Faculty of Civil Engineering, Radlinského 11, 81368 Bratislava,

More information

Aided-inertial for Long-term, Self-contained GPS-denied Navigation and Mapping

Aided-inertial for Long-term, Self-contained GPS-denied Navigation and Mapping Aided-inertial for Long-term, Self-contained GPS-denied Navigation and Mapping Erik Lithopoulos, Louis Lalumiere, Ron Beyeler Applanix Corporation Greg Spurlock, LTC Bruce Williams Defense Threat Reduction

More information

Incorporation of a Foot-Mounted IMU for Multi-Sensor Pedestrian Navigation. Daniel Pierce

Incorporation of a Foot-Mounted IMU for Multi-Sensor Pedestrian Navigation. Daniel Pierce Incorporation of a Foot-Mounted IMU for Multi-Sensor Pedestrian Navigation by Daniel Pierce A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for

More information

An Experimental Exploration of Low-Cost Solutions for Precision Ground Vehicle Navigation

An Experimental Exploration of Low-Cost Solutions for Precision Ground Vehicle Navigation An Experimental Exploration of Low-Cost Solutions for Precision Ground Vehicle Navigation Daniel Cody Salmon David M. Bevly Auburn University GPS and Vehicle Dynamics Laboratory 1 Introduction Motivation

More information

OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps

OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps Georgios Floros, Benito van der Zander and Bastian Leibe RWTH Aachen University, Germany http://www.vision.rwth-aachen.de floros@vision.rwth-aachen.de

More information

The use of different data sets in 3-D modelling

The use of different data sets in 3-D modelling The use of different data sets in 3-D modelling Ahmed M. HAMRUNI June, 2014 Presentation outlines Introduction Aims and objectives Test site and data Technology: Pictometry and UltraCamD Results and analysis

More information

Indoor Navigation Aid System Using No Positioning Technique for Visually Impaired People

Indoor Navigation Aid System Using No Positioning Technique for Visually Impaired People Indoor Navigation Aid System Using No Positioning Technique for Visually Impaired People Yeonju Oh, Wei-Liang Kao, and Byung-Cheol Min Computer and Information Technology, Purdue University, West Lafayette,

More information

Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry

Distributed Vision-Aided Cooperative Navigation Based on Three-View Geometry Distributed Vision-Aided Cooperative Navigation Based on hree-view Geometry Vadim Indelman, Pini Gurfil Distributed Space Systems Lab, Aerospace Engineering, echnion Ehud Rivlin Computer Science, echnion

More information

A High Precision Reference Data Set for Pedestrian Navigation using Foot-Mounted Inertial Sensors

A High Precision Reference Data Set for Pedestrian Navigation using Foot-Mounted Inertial Sensors 200 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 5-7 September 200, Zürich, Switzerland A High Precision Reference Data Set for Pedestrian Navigation using Foot-Mounted

More information

Localization, Where am I?

Localization, Where am I? 5.1 Localization, Where am I?? position Position Update (Estimation?) Encoder Prediction of Position (e.g. odometry) YES matched observations Map data base predicted position Matching Odometry, Dead Reckoning

More information

State Estimation for Continuous-Time Systems with Perspective Outputs from Discrete Noisy Time-Delayed Measurements

State Estimation for Continuous-Time Systems with Perspective Outputs from Discrete Noisy Time-Delayed Measurements State Estimation for Continuous-Time Systems with Perspective Outputs from Discrete Noisy Time-Delayed Measurements António Pedro Aguiar aguiar@ece.ucsb.edu João Pedro Hespanha hespanha@ece.ucsb.edu Dept.

More information

Camera Drones Lecture 2 Control and Sensors

Camera Drones Lecture 2 Control and Sensors Camera Drones Lecture 2 Control and Sensors Ass.Prof. Friedrich Fraundorfer WS 2017 1 Outline Quadrotor control principles Sensors 2 Quadrotor control - Hovering Hovering means quadrotor needs to hold

More information

Vehicle Localization. Hannah Rae Kerner 21 April 2015

Vehicle Localization. Hannah Rae Kerner 21 April 2015 Vehicle Localization Hannah Rae Kerner 21 April 2015 Spotted in Mtn View: Google Car Why precision localization? in order for a robot to follow a road, it needs to know where the road is to stay in a particular

More information

Indoor positioning based on foot-mounted IMU

Indoor positioning based on foot-mounted IMU BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 63, No. 3, 2015 DOI: 10.1515/bpasts-2015-0074 Indoor positioning based on foot-mounted IMU H. GUO 1, M. URADZINSKI 2, H. YIN 1, and M.

More information

Innovative M-Tech projects list

Innovative M-Tech projects list 1 Technologies: Innovative M-Tech projects list 1. ARM-7 TDMI - LPC-2148 2. Image Processing 3. MATLAB Embedded 4. GPRS Mobile internet 5. Touch screen. IEEE 2012-13 papers 6. Global Positioning System

More information

MTRX4700: Experimental Robotics

MTRX4700: Experimental Robotics Stefan B. Williams April, 2013 MTR4700: Experimental Robotics Assignment 3 Note: This assignment contributes 10% towards your final mark. This assignment is due on Friday, May 10 th during Week 9 before

More information

Optimization of the Simultaneous Localization and Map-Building Algorithm for Real-Time Implementation

Optimization of the Simultaneous Localization and Map-Building Algorithm for Real-Time Implementation 242 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 3, JUNE 2001 Optimization of the Simultaneous Localization and Map-Building Algorithm for Real-Time Implementation José E. Guivant and Eduardo

More information

navigation Isaac Skog

navigation Isaac Skog Foot-mounted zerovelocity aided inertial navigation Isaac Skog skog@kth.se Course Outline 1. Foot-mounted inertial navigation a. Basic idea b. Pros and cons 2. Inertial navigation a. The inertial sensors

More information

Robotics. Lecture 5: Monte Carlo Localisation. See course website for up to date information.

Robotics. Lecture 5: Monte Carlo Localisation. See course website  for up to date information. Robotics Lecture 5: Monte Carlo Localisation See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College London Review:

More information

Semantic indoor navigation with a blind-user oriented augmented reality

Semantic indoor navigation with a blind-user oriented augmented reality Semantic indoor navigation with a blind-user oriented augmented reality Samleo L. Joseph, Xiaochen Zhang, Ivan Dryanovski, Jizhong Xiao Robotics and Intelligent systems lab, EE dept. The City College of

More information

Construction Progress Management and Interior Work Analysis Using Kinect 3D Image Sensors

Construction Progress Management and Interior Work Analysis Using Kinect 3D Image Sensors 33 rd International Symposium on Automation and Robotics in Construction (ISARC 2016) Construction Progress Management and Interior Work Analysis Using Kinect 3D Image Sensors Kosei Ishida 1 1 School of

More information

Evaluation and Comparison of Performance Analysis of Indoor Inertial Navigation system Based on Foot Mounted IMU

Evaluation and Comparison of Performance Analysis of Indoor Inertial Navigation system Based on Foot Mounted IMU Evaluation and Comparison of Performance Analysis of Indoor Inertial Navigation system Based on Foot Mounted IMU Feyissa Woyano ab, Soyeon Lee b, Sangjoon Park ab a Department of Computer Software and,

More information

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm Computer Vision Group Prof. Daniel Cremers Dense Tracking and Mapping for Autonomous Quadrocopters Jürgen Sturm Joint work with Frank Steinbrücker, Jakob Engel, Christian Kerl, Erik Bylow, and Daniel Cremers

More information

Exam in DD2426 Robotics and Autonomous Systems

Exam in DD2426 Robotics and Autonomous Systems Exam in DD2426 Robotics and Autonomous Systems Lecturer: Patric Jensfelt KTH, March 16, 2010, 9-12 No aids are allowed on the exam, i.e. no notes, no books, no calculators, etc. You need a minimum of 20

More information

Blobby: How to Guide a Blind Person Indoors

Blobby: How to Guide a Blind Person Indoors Blobby: How to Guide a Blind Person Indoors Hugo Nicolau Tiago Guerreiro INESC-ID/IST/UTL. INESC-ID/IST/UTL. Avenida Professor Cavaco Silva. Avenida Professor Cavaco Silva. Tagus Park, Room 2-N9, Porto

More information

NAVIGATION SYSTEM OF AN OUTDOOR SERVICE ROBOT WITH HYBRID LOCOMOTION SYSTEM

NAVIGATION SYSTEM OF AN OUTDOOR SERVICE ROBOT WITH HYBRID LOCOMOTION SYSTEM NAVIGATION SYSTEM OF AN OUTDOOR SERVICE ROBOT WITH HYBRID LOCOMOTION SYSTEM Jorma Selkäinaho, Aarne Halme and Janne Paanajärvi Automation Technology Laboratory, Helsinki University of Technology, Espoo,

More information

SENSOR TEAM #3. Miguel Rufino Charlie Hirsch

SENSOR TEAM #3. Miguel Rufino Charlie Hirsch SENSOR TEAM #3 Miguel Rufino marufino@ncsu.edu Charlie Hirsch chirsch8@gmail.com 1. Project Goal: The overall goal of the project was to design and build a drone, capable of flying in an indoor environment

More information

A General Framework for Mobile Robot Pose Tracking and Multi Sensors Self-Calibration

A General Framework for Mobile Robot Pose Tracking and Multi Sensors Self-Calibration A General Framework for Mobile Robot Pose Tracking and Multi Sensors Self-Calibration Davide Cucci, Matteo Matteucci {cucci, matteucci}@elet.polimi.it Dipartimento di Elettronica, Informazione e Bioingegneria,

More information

Towards multi-layer pedestrian behaviour maps for simulation, tracking, interpretation and indoor navigation

Towards multi-layer pedestrian behaviour maps for simulation, tracking, interpretation and indoor navigation Towards multi-layer pedestrian behaviour maps for simulation, tracking, interpretation and indoor navigation A. Borrmann 1, M. Butenuth 2, S. Chakraborty 3, A. Kneidl 2, M. Schäfer 3 Technische Universität

More information

Building Reliable 2D Maps from 3D Features

Building Reliable 2D Maps from 3D Features Building Reliable 2D Maps from 3D Features Dipl. Technoinform. Jens Wettach, Prof. Dr. rer. nat. Karsten Berns TU Kaiserslautern; Robotics Research Lab 1, Geb. 48; Gottlieb-Daimler- Str.1; 67663 Kaiserslautern;

More information

W4. Perception & Situation Awareness & Decision making

W4. Perception & Situation Awareness & Decision making W4. Perception & Situation Awareness & Decision making Robot Perception for Dynamic environments: Outline & DP-Grids concept Dynamic Probabilistic Grids Bayesian Occupancy Filter concept Dynamic Probabilistic

More information

A Integrated Online Localization and Navigation for People with Visual Impairments using Smart Phones

A Integrated Online Localization and Navigation for People with Visual Impairments using Smart Phones A Integrated Online Localization and Navigation for People with Visual Impairments using Smart Phones ILIAS APOSTOLOPOULOS, University of Nevada, Reno NAVID FALLAH, University of Nevada, Reno EELKE FOLMER,

More information

Indoor-Outdoor Navigation System for Visually-Impaired Pedestrians: Preliminary Evaluation of Position Measurement and Obstacle Display

Indoor-Outdoor Navigation System for Visually-Impaired Pedestrians: Preliminary Evaluation of Position Measurement and Obstacle Display Indoor-Outdoor Navigation System for Visually-Impaired Pedestrians: Preliminary Evaluation of Position Measurement and Obstacle Display Takeshi KURATA 12, Masakatsu KOUROGI 1, Tomoya ISHIKAWA 1, Yoshinari

More information

Individual Lab Report #6. Pratik Chatrath. Team A / Team Avengers. Teammates: Tushar Agrawal, Sean Bryan. January 28, 2016

Individual Lab Report #6. Pratik Chatrath. Team A / Team Avengers. Teammates: Tushar Agrawal, Sean Bryan. January 28, 2016 Individual Lab Report #6 Pratik Chatrath Team A / Team Avengers Teammates: Tushar Agrawal, Sean Bryan January 28, 2016 I. Individual Progress Overall in the last semester, I worked on developing obstacle

More information

Map Matching and Heuristic Elimination of Gyro Drift for Personal Navigation Systems in GPS-denied Conditions

Map Matching and Heuristic Elimination of Gyro Drift for Personal Navigation Systems in GPS-denied Conditions Published in Journal of Measurement Science and Technology, Vol 22 (2011) Map Matching and Heuristic Elimination of Gyro Drift for Personal Navigation Systems in GPS-denied Conditions By Priyanka Aggarwal*,

More information

Comparison of integrated GPS-IMU aided by map matching and stand-alone GPS aided by map matching for urban and suburban areas

Comparison of integrated GPS-IMU aided by map matching and stand-alone GPS aided by map matching for urban and suburban areas Comparison of integrated GPS-IMU aided by map matching and stand-alone GPS aided by map matching for urban and suburban areas Yashar Balazadegan Sarvrood and Md. Nurul Amin, Milan Horemuz Dept. of Geodesy

More information

UAV Autonomous Navigation in a GPS-limited Urban Environment

UAV Autonomous Navigation in a GPS-limited Urban Environment UAV Autonomous Navigation in a GPS-limited Urban Environment Yoko Watanabe DCSD/CDIN JSO-Aerial Robotics 2014/10/02-03 Introduction 2 Global objective Development of a UAV onboard system to maintain flight

More information

Data Association for SLAM

Data Association for SLAM CALIFORNIA INSTITUTE OF TECHNOLOGY ME/CS 132a, Winter 2011 Lab #2 Due: Mar 10th, 2011 Part I Data Association for SLAM 1 Introduction For this part, you will experiment with a simulation of an EKF SLAM

More information

Intelligent Outdoor Navigation of a Mobile Robot Platform Using a Low Cost High Precision RTK-GPS and Obstacle Avoidance System

Intelligent Outdoor Navigation of a Mobile Robot Platform Using a Low Cost High Precision RTK-GPS and Obstacle Avoidance System Intelligent Outdoor Navigation of a Mobile Robot Platform Using a Low Cost High Precision RTK-GPS and Obstacle Avoidance System Under supervision of: Prof. Dr. -Ing. Klaus-Dieter Kuhnert Dipl.-Inform.

More information

ROTATING IMU FOR PEDESTRIAN NAVIGATION

ROTATING IMU FOR PEDESTRIAN NAVIGATION ROTATING IMU FOR PEDESTRIAN NAVIGATION ABSTRACT Khairi Abdulrahim Faculty of Science and Technology Universiti Sains Islam Malaysia (USIM) Malaysia A pedestrian navigation system using a low-cost inertial

More information

Pose Estimation of Ackerman Steering Vehicles for Outdoors Autonomous Navigation

Pose Estimation of Ackerman Steering Vehicles for Outdoors Autonomous Navigation Pose Estimation of Ackerman Steering Vehicles for Outdoors Autonomous Navigation Alejandro J. Weinstein, Kevin L. Moore Colorado School of Mines Division of Engineering 5 Illinois St. Golden, CO 84, USA

More information

Model-based Real-Time Estimation of Building Occupancy During Emergency Egress

Model-based Real-Time Estimation of Building Occupancy During Emergency Egress Model-based Real-Time Estimation of Building Occupancy During Emergency Egress Robert Tomastik 1, Satish Narayanan 2, Andrzej Banaszuk 3, and Sean Meyn 4 1 Pratt & Whitney 400 Main St., East Hartford,

More information

Map Aided Pedestrian Dead Reckoning Using Buildings Information for Indoor Navigation Applications

Map Aided Pedestrian Dead Reckoning Using Buildings Information for Indoor Navigation Applications Positioning, 2013, 4, 227-239 http://dx.doi.org/10.4236/pos.2013.43023 Published Online August 2013 (http://www.scirp.org/journal/pos) 227 Map Aided Pedestrian Dead Reckoning Using Buildings Information

More information

Pedestrian Inertial Navigation System with Terrain Characterization using Information Fusion

Pedestrian Inertial Navigation System with Terrain Characterization using Information Fusion , pp.36-41 http://dx.doi.org/10.14257/astl.205.97.06 Pedestrian Inertial Navigation System with Terrain Characterization using Information Fusion Ricardo Anacleto 1, Lino Figueiredo 1, Ana Almeida 1, Paulo

More information

CSE 527: Introduction to Computer Vision

CSE 527: Introduction to Computer Vision CSE 527: Introduction to Computer Vision Week 10 Class 2: Visual Odometry November 2nd, 2017 Today Visual Odometry Intro Algorithm SLAM Visual Odometry Input Output Images, Video Camera trajectory, motion

More information

PEDESTRIAN MOBILE MAPPING SYSTEM FOR INDOOR ENVIRONMENTS BASED ON MEMS IMU AND RANGE CAMERA

PEDESTRIAN MOBILE MAPPING SYSTEM FOR INDOOR ENVIRONMENTS BASED ON MEMS IMU AND RANGE CAMERA Archives of Photogrammetry, Cartography and Remote Sensing, Vol. 22, 2011, pp. 159-172 ISSN 2083-2214 PEDESTRIAN MOBILE MAPPING SYSTEM FOR INDOOR ENVIRONMENTS BASED ON MEMS IMU AND RANGE CAMERA Norbert

More information

Project 1 : Dead Reckoning and Tracking

Project 1 : Dead Reckoning and Tracking CS3630 Spring 2012 Project 1 : Dead Reckoning and Tracking Group : Wayward Sons Sameer Ansari, David Bernal, Tommy Kazenstein 2/8/2012 Wayward Sons CS3630 Spring 12 Project 1 Page 2 of 12 CS 3630 (Spring

More information

Computationally Efficient Visual-inertial Sensor Fusion for GPS-denied Navigation on a Small Quadrotor

Computationally Efficient Visual-inertial Sensor Fusion for GPS-denied Navigation on a Small Quadrotor Computationally Efficient Visual-inertial Sensor Fusion for GPS-denied Navigation on a Small Quadrotor Chang Liu & Stephen D. Prior Faculty of Engineering and the Environment, University of Southampton,

More information

Master and Slave Nodes (Rigid Link Function)

Master and Slave Nodes (Rigid Link Function) Master and Slave Nodes (Rigid Link Function) The rigid link function specified in Model>Boundaries>Rigid Link constrains geometric, relative movements of a structure. Geometric constraints of relative

More information

PEDESTRIAN NAVIGATION AND MODELING FOR INDOOR ENVIRONMENTS

PEDESTRIAN NAVIGATION AND MODELING FOR INDOOR ENVIRONMENTS PEDESTRIAN NAVIGATION AND MODELING FOR INDOOR ENVIRONMENTS Norbert Haala*, Dieter Fritsch, Michael Peter, Ali Mohammed Khosravani Institute for Photogrammetry (ifp), University of Stuttgart, Geschwister-Scholl-Str.

More information

Stable Vision-Aided Navigation for Large-Area Augmented Reality

Stable Vision-Aided Navigation for Large-Area Augmented Reality Stable Vision-Aided Navigation for Large-Area Augmented Reality Taragay Oskiper, Han-Pang Chiu, Zhiwei Zhu Supun Samarasekera, Rakesh Teddy Kumar Vision and Robotics Laboratory SRI-International Sarnoff,

More information

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz Humanoid Robotics Monte Carlo Localization Maren Bennewitz 1 Basis Probability Rules (1) If x and y are independent: Bayes rule: Often written as: The denominator is a normalizing constant that ensures

More information

A Wireless Indoor Navigation Aid for Visually Impaired People using UWB Localization Infrastructure and an Original Wayfinding Algorithm

A Wireless Indoor Navigation Aid for Visually Impaired People using UWB Localization Infrastructure and an Original Wayfinding Algorithm Research Collection Conference Paper A Wireless Indoor Navigation Aid for Visually Impaired People using UWB Localization Infrastructure and an Original Wayfinding Algorithm Author(s): Milici, Stefano;

More information

A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models

A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models Emanuele Ruffaldi Lorenzo Peppoloni Alessandro Filippeschi Carlo Alberto Avizzano 2014 IEEE International

More information

A USABILITY EVALUATION OF A 3D MAP DISPLAY FOR PEDESTRIAN NAVIGATION

A USABILITY EVALUATION OF A 3D MAP DISPLAY FOR PEDESTRIAN NAVIGATION September 29 th, 2018 A USABILITY EVALUATION OF A 3D MAP DISPLAY FOR PEDESTRIAN NAVIGATION Key words: Pedestrian Navigation, LOD 1, 3D, 2D, Usability Department of Geodetic Engineering, Universitas Gadjah

More information

Presented by Dr. Mark Woods. 15 th May 2013 ESTEC

Presented by Dr. Mark Woods. 15 th May 2013 ESTEC Presented by Dr. Mark Woods 15 th May 2013 ESTEC Seeker Long Range Autonomous Navigation in the Atacama Desert - Chile Field Trial Team - Andy Shaw, Brian Maddison, Aron Kisdi, Wayne Tubbey, Estelle Tidey,

More information

Hybrid Indoor Geolocation for Robotic Applications

Hybrid Indoor Geolocation for Robotic Applications Hybrid Indoor Geolocation for Robotic Applications A Major Qualifying Project Report Submitted to the faculty of Worcester Polytechnic Institute In partial fulfillment of the requirements for the Degree

More information

Indoor Localization Algorithms for a Human-Operated Backpack System

Indoor Localization Algorithms for a Human-Operated Backpack System Indoor Localization Algorithms for a Human-Operated Backpack System George Chen, John Kua, Stephen Shum, Nikhil Naikal, Matthew Carlberg, Avideh Zakhor Video and Image Processing Lab, University of California,

More information

Inertial-Based Joint Mapping and Positioning for Pedestrian Navigation

Inertial-Based Joint Mapping and Positioning for Pedestrian Navigation Positioning for Pedestrian Navigation Michael Angermann, Patric Robertson Institute for Communications Technology German Aerospace Center (DLR) PO Box 1116 D-82234 Wessling GERMANY michael.angermann@dlr.de

More information

On A Traffic Control Problem Using Cut-Set of Graph

On A Traffic Control Problem Using Cut-Set of Graph 1240 On A Traffic Control Problem Using Cut-Set of Graph Niky Baruah Department of Mathematics, Dibrugarh University, Dibrugarh : 786004, Assam, India E-mail : niky_baruah@yahoo.com Arun Kumar Baruah Department

More information

Indoor Localization Algorithms for an Ambulatory Human Operated 3D Mobile Mapping System

Indoor Localization Algorithms for an Ambulatory Human Operated 3D Mobile Mapping System Remote Sens. 2013, 5, 6611-6646; doi:10.3390/rs5126611 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Indoor Localization Algorithms for an Ambulatory Human Operated

More information

Satellite and Inertial Navigation and Positioning System

Satellite and Inertial Navigation and Positioning System Satellite and Inertial Navigation and Positioning System Project Proposal By: Luke Pfister Dan Monroe Project Advisors: Dr. In Soo Ahn Dr. Yufeng Lu EE 451 Senior Capstone Project December 10, 2009 PROJECT

More information

MAPPING ALGORITHM FOR AUTONOMOUS NAVIGATION OF LAWN MOWER USING SICK LASER

MAPPING ALGORITHM FOR AUTONOMOUS NAVIGATION OF LAWN MOWER USING SICK LASER MAPPING ALGORITHM FOR AUTONOMOUS NAVIGATION OF LAWN MOWER USING SICK LASER A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering By SHASHIDHAR

More information

Loose Coupling of Wearable-Based INSs with Automatic Heading Evaluation. and Estefania Munoz Diaz

Loose Coupling of Wearable-Based INSs with Automatic Heading Evaluation. and Estefania Munoz Diaz sensors Article Loose Coupling of Wearable-Based INSs with Automatic Heading Evaluation Dina Bousdar Ahmed * ID and Estefania Munoz Diaz Institute of Communications and Navigation, German Aerospace Centre

More information

Localization and Map Building

Localization and Map Building Localization and Map Building Noise and aliasing; odometric position estimation To localize or not to localize Belief representation Map representation Probabilistic map-based localization Other examples

More information

Simultaneous local and global state estimation for robotic navigation

Simultaneous local and global state estimation for robotic navigation Simultaneous local and global state estimation for robotic navigation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As

More information

VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem

VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem Presented by: Justin Gorgen Yen-ting Chen Hao-en Sung Haifeng Huang University of California, San Diego May 23, 2017 Original

More information

Review Paper: Inertial Measurement

Review Paper: Inertial Measurement Review Paper: Inertial Measurement William T. Conlin (wtconlin@gmail.com) arxiv:1708.04325v1 [cs.ro] 8 Aug 2017 May 2017 Abstract Applications of inertial measurement units are extremely diverse, and are

More information

ONALIN: Ontology and Algorithm for Indoor Routing

ONALIN: Ontology and Algorithm for Indoor Routing 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware ONALIN: Ontology and Algorithm for Indoor Routing Patrick M. Dudas Geoinformatics Laboratory - School of

More information

Strap-Down Pedestrian Dead-Reckoning System

Strap-Down Pedestrian Dead-Reckoning System Strap-Down Pedestrian Dead-Reckoning System Pragun Goyal, Vinay J. Ribeiro, Huzur Saran and Anshul Kumar Department of Computer Science and Engineering Indian Institute of Technology Delhi, New Delhi 1116

More information

IMU and Encoders. Team project Robocon 2016

IMU and Encoders. Team project Robocon 2016 IMU and Encoders Team project Robocon 2016 Harsh Sinha, 14265, harshsin@iitk.ac.in Deepak Gangwar, 14208, dgangwar@iitk.ac.in Swati Gupta, 14742, swatig@iitk.ac.in March 17 th 2016 IMU and Encoders Module

More information

AWireless sensor network has been successfully applied to. Vision-Based Coordinated Localization for Mobile Sensor Networks

AWireless sensor network has been successfully applied to. Vision-Based Coordinated Localization for Mobile Sensor Networks Vision-Based Coordinated Localization for Mobile Sensor Networks Junghun Suh, Student Member, IEEE, Seungil You, Student Member, IEEE, Sungjoon Choi, Student Member, IEEE and Songhwai Oh, Member, IEEE

More information

DYNAMIC POSITIONING OF A MOBILE ROBOT USING A LASER-BASED GONIOMETER. Joaquim A. Batlle*, Josep Maria Font*, Josep Escoda**

DYNAMIC POSITIONING OF A MOBILE ROBOT USING A LASER-BASED GONIOMETER. Joaquim A. Batlle*, Josep Maria Font*, Josep Escoda** DYNAMIC POSITIONING OF A MOBILE ROBOT USING A LASER-BASED GONIOMETER Joaquim A. Batlle*, Josep Maria Font*, Josep Escoda** * Department of Mechanical Engineering Technical University of Catalonia (UPC)

More information

Evaluation of a Coupled Laser Inertial Navigation System for Pedestrian Tracking

Evaluation of a Coupled Laser Inertial Navigation System for Pedestrian Tracking Evaluation of a Coupled Laser Inertial Navigation System for Pedestrian Tracking Christoph Degen, Hichem El Mokni, Felix Govaers, Sensor Data- and Information Fusion, Fraunhofer-Institut für Kommunikation,

More information

INDOOR NAVIGATION AND MODELING USING PHOTOGRAPHED EVACUATION PLANS AND MEMS IMU

INDOOR NAVIGATION AND MODELING USING PHOTOGRAPHED EVACUATION PLANS AND MEMS IMU INDOOR NAVIGATION AND MODELING USING PHOTOGRAPHED EVACUATION PLANS AND MEMS IMU Michael Peter a, *, Norbert Haala a, Markus Schenk b, Tim Otto b a Institute for Photogrammetry (ifp), University of Stuttgart,

More information

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models Introduction ti to Embedded dsystems EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping Gabe Hoffmann Ph.D. Candidate, Aero/Astro Engineering Stanford University Statistical Models

More information

LOAM: LiDAR Odometry and Mapping in Real Time

LOAM: LiDAR Odometry and Mapping in Real Time LOAM: LiDAR Odometry and Mapping in Real Time Aayush Dwivedi (14006), Akshay Sharma (14062), Mandeep Singh (14363) Indian Institute of Technology Kanpur 1 Abstract This project deals with online simultaneous

More information

RoboCupRescue - Simulation League Team RescueRobots Freiburg (Germany)

RoboCupRescue - Simulation League Team RescueRobots Freiburg (Germany) RoboCupRescue - Simulation League Team RescueRobots Freiburg (Germany) Alexander Kleiner and Vittorio Amos Ziparo Institut für Informatik Foundations of AI Universität Freiburg, 79110 Freiburg, Germany

More information

Autonomous Multi-Floor Indoor Navigation with a Computationally Constrained MAV

Autonomous Multi-Floor Indoor Navigation with a Computationally Constrained MAV 11 IEEE International Conference on Robotics and Automation Shanghai International Conference Center May 9-13, 11, Shanghai, China Autonomous Multi-Floor Indoor Navigation with a Computationally Constrained

More information

Date: January 25, 2018 Time: 10:45-11:45PM EST

Date: January 25, 2018 Time: 10:45-11:45PM EST Figure 1: International Orientation and Mobility Online Symposium Logo, Sun encircled in a compass with arrows pointing up, down, left, and right. Date: January 25, 2018 Time: 10:45-11:45PM EST Title:

More information

Indoor real-time localisation for multiple autonomous vehicles fusing vision, odometry and IMU data

Indoor real-time localisation for multiple autonomous vehicles fusing vision, odometry and IMU data Indoor real-time localisation for multiple autonomous vehicles fusing vision, odometry and IMU data Alessandro Faralli, Niko Giovannini, Simone Nardi, and Lucia Pallottino. Research Center E.Piaggio, Faculty

More information

Matching Evaluation of 2D Laser Scan Points using Observed Probability in Unstable Measurement Environment

Matching Evaluation of 2D Laser Scan Points using Observed Probability in Unstable Measurement Environment Matching Evaluation of D Laser Scan Points using Observed Probability in Unstable Measurement Environment Taichi Yamada, and Akihisa Ohya Abstract In the real environment such as urban areas sidewalk,

More information

UNIVERSITY OF CALGARY. Map Aided Indoor and Outdoor Navigation Applications. Mohamed Ali Attia A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

UNIVERSITY OF CALGARY. Map Aided Indoor and Outdoor Navigation Applications. Mohamed Ali Attia A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES UNIVERSITY OF CALGARY Map Aided Indoor and Outdoor Navigation Applications by Mohamed Ali Attia A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

More information

Robot Mapping. SLAM Front-Ends. Cyrill Stachniss. Partial image courtesy: Edwin Olson 1

Robot Mapping. SLAM Front-Ends. Cyrill Stachniss. Partial image courtesy: Edwin Olson 1 Robot Mapping SLAM Front-Ends Cyrill Stachniss Partial image courtesy: Edwin Olson 1 Graph-Based SLAM Constraints connect the nodes through odometry and observations Robot pose Constraint 2 Graph-Based

More information

Control of a quadrotor manipulating a beam (2 projects available)

Control of a quadrotor manipulating a beam (2 projects available) Control of a quadrotor manipulating a beam (2 projects available) Supervisor: Emanuele Garone (egarone@ulb.ac.be), Tam Nguyen, Laurent Catoire General Goal: The goal of this project is to complete from

More information

Zürich. Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza. ETH Master Course: L Autonomous Mobile Robots Summary

Zürich. Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza. ETH Master Course: L Autonomous Mobile Robots Summary Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza ETH Master Course: 151-0854-00L Autonomous Mobile Robots Summary 2 Lecture Overview Mobile Robot Control Scheme knowledge, data base mission

More information

Particle Filter Localization

Particle Filter Localization E190Q Autonomous Mobile Robots Lab 4 Particle Filter Localization INTRODUCTION Determining a robots position in a global coordinate frame is one of the most important and difficult problems to overcome

More information

Mobility Models. Larissa Marinho Eglem de Oliveira. May 26th CMPE 257 Wireless Networks. (UCSC) May / 50

Mobility Models. Larissa Marinho Eglem de Oliveira. May 26th CMPE 257 Wireless Networks. (UCSC) May / 50 Mobility Models Larissa Marinho Eglem de Oliveira CMPE 257 Wireless Networks May 26th 2015 (UCSC) May 2015 1 / 50 1 Motivation 2 Mobility Models 3 Extracting a Mobility Model from Real User Traces 4 Self-similar

More information

CSE 490R P1 - Localization using Particle Filters Due date: Sun, Jan 28-11:59 PM

CSE 490R P1 - Localization using Particle Filters Due date: Sun, Jan 28-11:59 PM CSE 490R P1 - Localization using Particle Filters Due date: Sun, Jan 28-11:59 PM 1 Introduction In this assignment you will implement a particle filter to localize your car within a known map. This will

More information

Ian Mitchell. Department of Computer Science The University of British Columbia

Ian Mitchell. Department of Computer Science The University of British Columbia CPSC 542D: Level Set Methods Dynamic Implicit Surfaces and the Hamilton-Jacobi Equation or What Water Simulation, Robot Path Planning and Aircraft Collision Avoidance Have in Common Ian Mitchell Department

More information

Prof. Dr. Pedro José Marrón

Prof. Dr. Pedro José Marrón Prof. Dr. Pedro José Marrón Location-Based-Services Information services Accessible through mobile devices Using a data network / channel Combining position information with different data sources Correlation

More information

The Internet of Things: Roadmap to a Connected World. IoT and Localization

The Internet of Things: Roadmap to a Connected World. IoT and Localization IoT and Localization Daniela Rus Andrew (1956) and Erna Viterbi Prof., EECS Director, CSAIL Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology 4x 4x

More information

Robotics. Chapter 25. Chapter 25 1

Robotics. Chapter 25. Chapter 25 1 Robotics Chapter 25 Chapter 25 1 Outline Robots, Effectors, and Sensors Localization and Mapping Motion Planning Chapter 25 2 Mobile Robots Chapter 25 3 Manipulators P R R R R R Configuration of robot

More information

EE565:Mobile Robotics Lecture 3

EE565:Mobile Robotics Lecture 3 EE565:Mobile Robotics Lecture 3 Welcome Dr. Ahmad Kamal Nasir Today s Objectives Motion Models Velocity based model (Dead-Reckoning) Odometry based model (Wheel Encoders) Sensor Models Beam model of range

More information

Robotics. Haslum COMP3620/6320

Robotics. Haslum COMP3620/6320 Robotics P@trik Haslum COMP3620/6320 Introduction Robotics Industrial Automation * Repetitive manipulation tasks (assembly, etc). * Well-known, controlled environment. * High-power, high-precision, very

More information