CAM Part II: Intersections

Size: px
Start display at page:

Download "CAM Part II: Intersections"

Transcription

1 CAM Part II: Intersections In the previous part, we looked at the computations of derivatives of B-Splines and NURBS. The first derivatives are of interest, since they are used in computin the tanents (and thereby, the normals), to enerate offset points for tool path eneration. The second derivative ives curvature values, that are related to the tool sizes that can cut the surface without ouin. Up till now, we have been able to derive most entities of interest usin eact analytical forms. However, the topic of Surface-Surface-Intersection (SSI) and its special cases all require approimation solutions, and we shall heavily rely upon numerical techniques for solvin equations for eample the Newton-Raphson scheme. Why numerical solutions? Since we would like to develop a uniform alorithm that can handle all the surfacetypes that may occur in a desin. We can easily solve a conic-plane intersection analytically; however, the intersectin of two parametric polynomial vector functions is not easy, in eneral especially since the output may be a point, a 3D curve, or even a 3D surface; in patholoical cases, it may be an arbitrary combination of all these types. But we shall inore strane cases, and concentrate of the eneral case, where the two surfaces are well behaved, and their intersection, if it is not null, is one or more bounded 3D curves. The Newton-Raphson Method The basic step in solvin for intersections is a technique for findin the roots of an equation for the form f() = 0, or f(, y) = 0. The is easy if the function can be factorized, but we only know how to et eact solutions for roots of polynomials up to deree 4; beyond that, we must use numerical methods. Newton-Raphson is the easiest to implement. Newton Raphson for sinle-variable functions: Step 1. Make a startin uess: Step 2. Compute f( ) Step 3. If difference( f( ), 0.0) > tolerance Step 3.1. Compute f ( ) Step 3.2. = f( )/f ( ) Step 3.3. o to Step 2. Else return. The fiure below shows a raphical illustration of how the method converes.

2 f() f( 0 ) tan(θ) = f ( 0 ) X Of course, when doin surface-surface intersections, we need to solve for roots of equations involvin more than one parameter typically, we deal with parametric equations of the form s(u, v). For this, we use some numerically stable etension of Newton-Raphson to multivariate cases. We look at the eneral bi-variate case, find the roots of two equations: F(, y) = (, y) = 0. Let the eact root be at a point, (X, Y), and our first uess of the root be (, y ), such that h = X, and k = Y y. Then, usin Taylor s epansion, 0 = F( X, Y) = F(, y ) + h F (, y ) + k F y (, y ) + hiher order terms of h and k 0 = ( X, Y) = (, y ) + h (, y ) + k y (, y ) + hiher order terms of h and k As the approimation approaches the true roots, h and k approach zero, and therefore the hiher order terms may be inored, ivin (approimate) values, h, k : h k = 1 y D F F y F, F D = det Fy y Note: (1) D is the determinant of the Jacobian matri of F and (2) F,, and the partial derivatives F, F y,, y are computed at (, y ). Usin these values, we improve our uess solution to: +1 = + h ; y +1 = y + k. This sets up the iterative procedure for computin the roots of the simultaneous nonlinear equations F(, y) = (, y) = 0. Surfaces-Surface Intersection (SSI) For two surfaces, s 1 (u 1, v 1 ) and s 2 (u 2, v 2 ), the intersection is the set of points satisfyin simultaneously the equation: s 1 (u 1, v 1 ) - s 2 (u 2, v 2 ) = 0. These are three scalar equations in four variables, so there is, in eneral, one deree of freedom which implies that the intersection is a curve in 3D space (recall that a curve is a function with a sinle deree of freedom).

3 In eneral, solvin for the resultin equation is difficult, so what we do is find a series of points on the intersection curve, and join these points to form the (approimate) result. The joinin procedure can be linear, circular, or spline interpolation. To find the series of points, a simple way would be to intersect the equation of the curve with a series of surfaces for instance, a series of planes parallel to the XY plane, each separated by a small distance δ. Of course, you can see that this choice will potentially be unstable some points will be far apart if the intersection curve itself is nearly parallel to the XY plane. So we eneralize: each additional constraint may be represented as a function, the step constraint function, ( r) = 0. The substitution of r = r 1 ( u, v) into ( r) = 0 ives us the constraint 1 ( u, v) = 0. In other words, we solve, at each step, for u 1, v 1, u 2 and v 2 from: r 1 (u 1, v 1 ) r 2 (u 2, v 2 ) = 0 λ 1 (u 1, v 1 ) + µ 2 ( u 2, v 2 ) = 0 Where λ and µ are chosen at our will to simplify the constraint equation (for eample, to cancel a hiher order term between 1 and 2 ). We may use the Newton-Raphson method for solvin this system. Problem: How do we know a ood set of surfaces, ( r)? Typically, we would like to select the simplest surface for intersections, that is, planes. How do we know whether the separation between each subsequent pair of planes is small enouh? In other words, can we uarantee that the error between, say, a linear interpolation between two intersection points, and the real intersection curve, is less than some pre-determined tolerance level? Let s look at the simplest analysis. Step Lenth Determination P i δ P i-1 P i+1 Pi+2 The fiure above shows the approimations in the process. At each step, we need to know if the error between a linear approimation of the int-curve (shown by black line

4 sements) and the actual int-curve (blue line) is less than some iven tolerance, TOL. If the line sements are small, we may approimate the int-curve for that reion by a circular arc. A simple method to do so would be the followin: Step 1. Determine point P i ; Step 2. Determine net point P i+1 ; Step 3. Determine the curvature, κ i, of the intersection curve at P i. Step 4. Fit a circle of radius R i = 1/κ i between P i and P i+1 Step 5. Error δ = R i sqrt( R i 2 - P i P i+1 2 /4) Step 6. If δ > TOL, then discard P i+1 and find a point closer to P i by selectin a new ( r). Notes: The formula for Step 5 can be easily derived by fittin a circular arc between the two points, P i and P i+1. The only problem that remains is to find the curvature κ of the intersection curve at P i. Let the int-curve have tanent, normal and bi-normal vectors T, N and B. since the tanent is perpendicular to both surfaces, T = n 1 X n 2 / n 1 X n 2 κ B = -κ N X T = κ N X (n 1 X n 2 )/ n 1 X n 2 and usin the definitions of normal curvatures for the surfaces, we et: κ B = (κ n1 n 2 - κ n2 n 1 ) / n 1 X n 2 If the anle between the surface normals is q, then we et: κ 2 = (κ n1 2-2 κ n1 κ n2 cosθ + κ n1 2 )/ sin 2 θ All quantities on the RHS of this equation are computable, since we can compute the normal vectors at the surface, and also the normal curvature values. There is one troublin assumption in the epression above we don t really know a point on the surface, Pi. We only know some point close to it (since it is computed usin a numerical method). However, there are techniques to determine a point on the surface closest to a iven point (this is called a Jacobian inversion). In all the above, we assume that the surfaces are well behaved, and the step size we select is reasonable. In reality, the above process is rather unstable and not as robust as we like. The popular variations of that will make the procedure more robust are described in some relatively recent literature, particularly the works of Lee & Fredericks, Barnhill et al, and Pratt & eisow. References Most of the above notes are from Fau and Pratt. Other interestin references follow.

5 Fau, I. D., Pratt, M. J., Computational eometry for Desin & Manufacture, Ellis- Horwood Choi, B. K., Surface Modelin for CAD/CAM, Elsevier Pratt, M. J., eisow, A. D., Surface/Surface Intersection Problems, The Maths of Surfaces, ed. J. A. reory Barnhill, R. E., Farin,., Jordan, M., Piper, B. R., Surface/Surface Intersection, Computer-Aided eometric Desin, 4 (1987), 3-16 Lee, R. B., Fredericks, D. A., Intersection of Parametric Surfaces and a Plane, IEEE Computer raphics and Applications, 4, 8, (1984), 48-51

Straiht Line Detection Any straiht line in 2D space can be represented by this parametric euation: x; y; ; ) =x cos + y sin, =0 To nd the transorm o a

Straiht Line Detection Any straiht line in 2D space can be represented by this parametric euation: x; y; ; ) =x cos + y sin, =0 To nd the transorm o a Houh Transorm E186 Handout Denition The idea o Houh transorm is to describe a certain line shape straiht lines, circles, ellipses, etc.) lobally in a parameter space { the Houh transorm domain. We assume

More information

Almost Curvature Continuous Fitting of B-Spline Surfaces

Almost Curvature Continuous Fitting of B-Spline Surfaces Journal for Geometry and Graphics Volume 2 (1998), No. 1, 33 43 Almost Curvature Continuous Fitting of B-Spline Surfaces Márta Szilvási-Nagy Department of Geometry, Mathematical Institute, Technical University

More information

A second order algorithm for orthogonal projection onto curves and surfaces

A second order algorithm for orthogonal projection onto curves and surfaces A second order algorithm for orthogonal projection onto curves and surfaces Shi-min Hu and Johannes Wallner Dept. of Computer Science and Technology, Tsinghua University, Beijing, China shimin@tsinghua.edu.cn;

More information

Curves and Surfaces. Chapter 7. Curves. ACIS supports these general types of curves:

Curves and Surfaces. Chapter 7. Curves. ACIS supports these general types of curves: Chapter 7. Curves and Surfaces This chapter discusses the types of curves and surfaces supported in ACIS and the classes used to implement them. Curves ACIS supports these general types of curves: Analytic

More information

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018 CLASS NOTES Models, Alorithms and Data: Introduction to computin 2018 Petros Koumoutsakos, Jens Honore Walther (Last update: March 5, 2018) IMPORTANT DISCLAIMERS 1. REFERENCES: Much of the material (ideas,

More information

Visualization and Analysis of Inverse Kinematics Algorithms Using Performance Metric Maps

Visualization and Analysis of Inverse Kinematics Algorithms Using Performance Metric Maps Visualization and Analysis of Inverse Kinematics Algorithms Using Performance Metric Maps Oliver Cardwell, Ramakrishnan Mukundan Department of Computer Science and Software Engineering University of Canterbury

More information

SYSTEMS OF NONLINEAR EQUATIONS

SYSTEMS OF NONLINEAR EQUATIONS SYSTEMS OF NONLINEAR EQUATIONS Widely used in the mathematical modeling of real world phenomena. We introduce some numerical methods for their solution. For better intuition, we examine systems of two

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

Keyword: Quadratic Bézier Curve, Bisection Algorithm, Biarc, Biarc Method, Hausdorff Distances, Tolerance Band.

Keyword: Quadratic Bézier Curve, Bisection Algorithm, Biarc, Biarc Method, Hausdorff Distances, Tolerance Band. Department of Computer Science Approximation Methods for Quadratic Bézier Curve, by Circular Arcs within a Tolerance Band Seminar aus Informatik Univ.-Prof. Dr. Wolfgang Pree Seyed Amir Hossein Siahposhha

More information

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg COMPUTER AIDED GEOMETRIC DESIGN Thomas W. Sederberg January 31, 2011 ii T. W. Sederberg iii Preface This semester is the 24 th time I have taught a course at Brigham Young University titled, Computer Aided

More information

Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur

Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur Email: jrkumar@iitk.ac.in Curve representation 1. Wireframe models There are three types

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

Lecture 9: Introduction to Spline Curves

Lecture 9: Introduction to Spline Curves Lecture 9: Introduction to Spline Curves Splines are used in graphics to represent smooth curves and surfaces. They use a small set of control points (knots) and a function that generates a curve through

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

MATH 1020 WORKSHEET 10.1 Parametric Equations

MATH 1020 WORKSHEET 10.1 Parametric Equations MATH WORKSHEET. Parametric Equations If f and g are continuous functions on an interval I, then the equations x ft) and y gt) are called parametric equations. The parametric equations along with the graph

More information

Polygonal Approximation of Closed Curves across Multiple Views

Polygonal Approximation of Closed Curves across Multiple Views Polyonal Approximation of Closed Curves across Multiple Views M. Pawan Kumar Saurah oyal C. V. Jawahar P. J. Narayanan Centre for Visual Information echnoloy International Institute of Information echnoloy

More information

(ii) Explain how the trapezium rule could be used to obtain a more accurate estimate of the area. [1]

(ii) Explain how the trapezium rule could be used to obtain a more accurate estimate of the area. [1] C Integration. June 00 qu. Use the trapezium rule, with strips each of width, to estimate the area of the region bounded by the curve y = 7 +, the -ais, and the lines = and = 0. Give your answer correct

More information

Lagrange multipliers October 2013

Lagrange multipliers October 2013 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 1 1 3/2 Example: Optimization

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

we wish to minimize this function; to make life easier, we may minimize

we wish to minimize this function; to make life easier, we may minimize Optimization and Lagrange Multipliers We studied single variable optimization problems in Calculus 1; given a function f(x), we found the extremes of f relative to some constraint. Our ability to find

More information

Lagrange multipliers 14.8

Lagrange multipliers 14.8 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 Maximum? 1 1 Minimum? 3/2 Idea:

More information

GRAPHICS OUTPUT PRIMITIVES

GRAPHICS OUTPUT PRIMITIVES CHAPTER 3 GRAPHICS OUTPUT PRIMITIVES LINE DRAWING ALGORITHMS DDA Line Algorithm Bresenham Line Algorithm Midpoint Circle Algorithm Midpoint Ellipse Algorithm CG - Chapter-3 LINE DRAWING Line drawing is

More information

Introduction to Computer Graphics. Farhana Bandukwala, PhD Lecture 11: Surfaces

Introduction to Computer Graphics. Farhana Bandukwala, PhD Lecture 11: Surfaces Introduction to Computer Graphics Farhana Bandukwala, PhD Lecture 11: Surfaces Outline Linear approximation Parametric bicubic surfaces Subdividin surfaces Drawin surfaces Implicit Representation f(x,y,z)0

More information

Chapter 5 THE MODULE FOR DETERMINING AN OBJECT S TRUE GRAY LEVELS

Chapter 5 THE MODULE FOR DETERMINING AN OBJECT S TRUE GRAY LEVELS Qian u Chapter 5. Determinin an Object s True Gray evels 3 Chapter 5 THE MODUE OR DETERMNNG AN OJECT S TRUE GRAY EVES This chapter discusses the module for determinin an object s true ray levels. To compute

More information

COMPUTER AIDED ENGINEERING DESIGN (BFF2612)

COMPUTER AIDED ENGINEERING DESIGN (BFF2612) COMPUTER AIDED ENGINEERING DESIGN (BFF2612) BASIC MATHEMATICAL CONCEPTS IN CAED by Dr. Mohd Nizar Mhd Razali Faculty of Manufacturing Engineering mnizar@ump.edu.my COORDINATE SYSTEM y+ y+ z+ z+ x+ RIGHT

More information

Math 20C. Lecture Examples.

Math 20C. Lecture Examples. Math 20C. Lecture Eamples. (8/7/0) Section 4.4. Linear approimations and tangent planes A function z = f(,) of two variables is linear if its graph in z-space is a plane. Equations of planes were found

More information

Flank Millable Surface Design with Conical and Barrel Tools

Flank Millable Surface Design with Conical and Barrel Tools 461 Computer-Aided Design and Applications 2008 CAD Solutions, LLC http://www.cadanda.com Flank Millable Surface Design with Conical and Barrel Tools Chenggang Li 1, Sanjeev Bedi 2 and Stephen Mann 3 1

More information

Chapter 3 Path Optimization

Chapter 3 Path Optimization Chapter 3 Path Optimization Background information on optimization is discussed in this chapter, along with the inequality constraints that are used for the problem. Additionally, the MATLAB program for

More information

Design considerations

Design considerations Curves Design considerations local control of shape design each segment independently smoothness and continuity ability to evaluate derivatives stability small change in input leads to small change in

More information

Edexcel Core Mathematics 4 Integration

Edexcel Core Mathematics 4 Integration Edecel Core Mathematics 4 Integration Edited by: K V Kumaran kumarmaths.weebly.com Integration It might appear to be a bit obvious but you must remember all of your C work on differentiation if you are

More information

Today s class. Roots of equation Finish up incremental search Open methods. Numerical Methods, Fall 2011 Lecture 5. Prof. Jinbo Bi CSE, UConn

Today s class. Roots of equation Finish up incremental search Open methods. Numerical Methods, Fall 2011 Lecture 5. Prof. Jinbo Bi CSE, UConn Today s class Roots of equation Finish up incremental search Open methods 1 False Position Method Although the interval [a,b] where the root becomes iteratively closer with the false position method, unlike

More information

Editing and Transformation

Editing and Transformation Lecture 5 Editing and Transformation Modeling Model can be produced b the combination of entities that have been edited. D: circle, arc, line, ellipse 3D: primitive bodies, etrusion and revolved of a profile

More information

MATH STUDENT BOOK. 12th Grade Unit 7

MATH STUDENT BOOK. 12th Grade Unit 7 MATH STUDENT BOOK 1th Grade Unit 7 Unit 7 POLAR COORDINATES MATH 107 POLAR COORDINATES INTRODUCTION 1. POLAR EQUATIONS 5 INTRODUCTION TO POLAR COORDINATES 5 POLAR EQUATIONS 1 POLAR CURVES 19 POLAR FORMS

More information

Math 21a Final Exam Solutions Spring, 2009

Math 21a Final Exam Solutions Spring, 2009 Math a Final Eam olutions pring, 9 (5 points) Indicate whether the following statements are True or False b circling the appropriate letter No justifications are required T F The (vector) projection of

More information

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines Math 18.02 (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines February 12 Reading Material: From Simmons: 17.1 and 17.2. Last time: Square Systems. Word problem. How many solutions?

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometr and Camera Calibration 3D Coordinate Sstems Right-handed vs. left-handed 2D Coordinate Sstems ais up vs. ais down Origin at center vs. corner Will often write (u, v) for image coordinates v

More information

MACHINING OF ARCHIMEDEAN SPIRAL BY PARAMETRIC PROGRAMMING

MACHINING OF ARCHIMEDEAN SPIRAL BY PARAMETRIC PROGRAMMING International Journal of Modern Manufacturing Technologies ISSN 067 3604, Vol. VIII, No. / 016 MACHINING OF ARCHIMEDEAN SPIRAL BY PARAMETRIC PROGRAMMING Vratraj Joshi 1, Keyur Desai, Harit Raval 3 1 Department

More information

Machining Feature Based Geometric Modeling of. Twist Drills

Machining Feature Based Geometric Modeling of. Twist Drills Machinin Feature Based Geometric Modelin of Twist Drills Jian Zhu A Thesis in The Department of Mechanical & Industrial Enineerin Presented in Partial Fulfillment of the Requirements for the Deree of Master

More information

Dgp _ lecture 2. Curves

Dgp _ lecture 2. Curves Dgp _ lecture 2 Curves Questions? This lecture will be asking questions about curves, their Relationship to surfaces, and how they are used and controlled. Topics of discussion will be: Free form Curves

More information

Midterm Review II Math , Fall 2018

Midterm Review II Math , Fall 2018 Midterm Review II Math 2433-3, Fall 218 The test will cover section 12.5 of chapter 12 and section 13.1-13.3 of chapter 13. Examples in class, quizzes and homework problems are the best practice for the

More information

Multipatched B-Spline Surfaces and Automatic Rough Cut Path Generation

Multipatched B-Spline Surfaces and Automatic Rough Cut Path Generation Int J Adv Manuf Technol (2000) 16:100 106 2000 Springer-Verlag London Limited Multipatched B-Spline Surfaces and Automatic Rough Cut Path Generation S. H. F. Chuang and I. Z. Wang Department of Mechanical

More information

Central issues in modelling

Central issues in modelling Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction includes: manual modelling; fitting to

More information

Applications of Differentiation

Applications of Differentiation Contents 1 Applications of Differentiation 1.1 Tangents and Normals 1. Maima and Minima 14 1. The Newton-Raphson Method 8 1.4 Curvature 47 1.5 Differentiation of Vectors 54 1.6 Case Stud: Comple Impedance

More information

SPIRAL TRANSITION CURVES AND THEIR APPLICATIONS. Zulfiqar Habib and Manabu Sakai. Received August 21, 2003

SPIRAL TRANSITION CURVES AND THEIR APPLICATIONS. Zulfiqar Habib and Manabu Sakai. Received August 21, 2003 Scientiae Mathematicae Japonicae Online, e-2004, 25 262 25 SPIRAL TRANSITION CURVES AND THEIR APPLICATIONS Zulfiqar Habib and Manabu Sakai Received August 2, 200 Abstract. A method for family of G 2 planar

More information

SBG SDG. An Accurate Error Control Mechanism for Simplification Before Generation Algorihms

SBG SDG. An Accurate Error Control Mechanism for Simplification Before Generation Algorihms An Accurate Error Control Mechanism for Simplification Before Generation Alorihms O. Guerra, J. D. Rodríuez-García, E. Roca, F. V. Fernández and A. Rodríuez-Vázquez Instituto de Microelectrónica de Sevilla,

More information

MATH 209, Lab 5. Richard M. Slevinsky

MATH 209, Lab 5. Richard M. Slevinsky MATH 209, Lab 5 Richard M. Slevinsky Problems 1. Say the temperature T at any point (x, y, z) in space is given by T = 4 x y z 2. Find the hottest point on the sphere F = x 2 + y 2 + z 2 100 = 0; We equate

More information

NURBS: Non-Uniform Rational B-Splines AUI Course Denbigh Starkey

NURBS: Non-Uniform Rational B-Splines AUI Course Denbigh Starkey NURBS: Non-Uniform Rational B-Splines AUI Course Denbigh Starkey 1. Background 2 2. Definitions 3 3. Using NURBS to define a circle 4 4. Homogeneous coordinates & control points at infinity 9 5. Constructing

More information

Bezier Curves. An Introduction. Detlef Reimers

Bezier Curves. An Introduction. Detlef Reimers Bezier Curves An Introduction Detlef Reimers detlefreimers@gmx.de http://detlefreimers.de September 1, 2011 Chapter 1 Bezier Curve Basics 1.1 Linear Interpolation This section will give you a basic introduction

More information

Preliminary Mathematics of Geometric Modeling (3)

Preliminary Mathematics of Geometric Modeling (3) Preliminary Mathematics of Geometric Modeling (3) Hongxin Zhang and Jieqing Feng 2006-11-27 State Key Lab of CAD&CG, Zhejiang University Differential Geometry of Surfaces Tangent plane and surface normal

More information

Quiz 6 Practice Problems

Quiz 6 Practice Problems Quiz 6 Practice Problems Practice problems are similar, both in difficulty and in scope, to the type of problems you will see on the quiz. Problems marked with a are for your entertainment and are not

More information

Geometry. Chapter 5. Types of Curves and Surfaces

Geometry. Chapter 5. Types of Curves and Surfaces Chapter 5. Geometry Geometry refers to the physical items represented by the model (such as points, curves, and surfaces), independent of their spatial or topological relationships. The ACIS free form

More information

Accurate Trajectory Control for Five-Axis Tool-Path Planning

Accurate Trajectory Control for Five-Axis Tool-Path Planning Accurate Trajectory Control for Five-Axis Tool-Path Planning Rong-Shine Lin* and Cheng-Bing Ye Abstract Computer-Aided Manufacturing technology has been widely used for three-axis CNC machining in industry

More information

Math 136 Exam 1 Practice Problems

Math 136 Exam 1 Practice Problems Math Exam Practice Problems. Find the surface area of the surface of revolution generated by revolving the curve given by around the x-axis? To solve this we use the equation: In this case this translates

More information

ME 261: Numerical Analysis

ME 261: Numerical Analysis ME 6: Numerical Analysis Dr. A.B.M. Toufique Hasan Associate Professor Department of Mechanical Engineering, BUET Term: July 06 04 September 06 Lecture-: Approimation and Errors http://teacher.buet.ac.bd/toufiquehasan/courses.php

More information

Coordinate Transformations in Advanced Calculus

Coordinate Transformations in Advanced Calculus Coordinate Transformations in Advanced Calculus by Sacha Nandlall T.A. for MATH 264, McGill University Email: sacha.nandlall@mail.mcgill.ca Website: http://www.resanova.com/teaching/calculus/ Fall 2006,

More information

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π M408D (54690/95/00), Midterm #2 Solutions Multiple choice questions (20 points) See last two pages. Question #1 (25 points) Dene the vector-valued function r(t) = he t ; 2; 3e t i: a) At what point P (x

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

(Refer Slide Time: 00:02:24 min)

(Refer Slide Time: 00:02:24 min) CAD / CAM Prof. Dr. P. V. Madhusudhan Rao Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture No. # 9 Parametric Surfaces II So these days, we are discussing the subject

More information

Constructing Blending Surfaces for Two Arbitrary Surfaces

Constructing Blending Surfaces for Two Arbitrary Surfaces MM Research Preprints, 14 28 MMRC, AMSS, Academia, Sinica, Beijing No. 22, December 2003 Constructing Blending Surfaces for Two Arbitrary Surfaces Jinsan Cheng and Xiao-Shan Gao 1) Institute of System

More information

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations 1 Definition of polar coordinates Let us first recall the definition of Cartesian coordinates: to each point in the plane we can

More information

4.1 Angles and Angle Measure. 1, multiply by

4.1 Angles and Angle Measure. 1, multiply by 4.1 Angles and Angle Measure Angles can be measured in degrees or radians. Angle measures without units are considered to be in radians. Radian: One radian is the measure of the central angle subtended

More information

Generating Tool Paths for Free-Form Pocket Machining Using z-buffer-based Voronoi Diagrams

Generating Tool Paths for Free-Form Pocket Machining Using z-buffer-based Voronoi Diagrams Int J Adv Manuf Technol (1999) 15:182 187 1999 Springer-Verlag London Limited Generating Tool Paths for Free-Form Pocket Machining Using z-buffer-based Voronoi Diagrams Jaehun Jeong and Kwangsoo Kim Department

More information

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 Lecture 25: Bezier Subdivision And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 1. Divide and Conquer If we are going to build useful

More information

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let Calculus Lia Vas Polar Coordinates If P = (x, y) is a point in the xy-plane and O denotes the origin, let r denote the distance from the origin O to the point P = (x, y). Thus, x + y = r ; θ be the angle

More information

Part I: Single and Two View Geometry Internal camera parameters

Part I: Single and Two View Geometry Internal camera parameters !! 43 1!???? Imaging eometry Multiple View eometry Perspective projection Richard Hartley Andrew isserman O p y VPR June 1999 where image plane This can be written as a linear mapping between homogeneous

More information

B-spline Curves. Smoother than other curve forms

B-spline Curves. Smoother than other curve forms Curves and Surfaces B-spline Curves These curves are approximating rather than interpolating curves. The curves come close to, but may not actually pass through, the control points. Usually used as multiple,

More information

B15 Enhancement of Linear Features from Gravity Anomalies by Using Curvature Gradient Tensor Matrix

B15 Enhancement of Linear Features from Gravity Anomalies by Using Curvature Gradient Tensor Matrix B5 Enhancement of Linear Features from Gravity Anomalies by Usin Curvature Gradient Tensor Matrix B. Oruç* (Kocaeli University) SUMMARY In this study, a new ede enhancement technique based on the eienvalues

More information

Chapter 7 curve. 3. x=y-y 2, x=0, about the y axis. 6. y=x, y= x,about y=1

Chapter 7 curve. 3. x=y-y 2, x=0, about the y axis. 6. y=x, y= x,about y=1 Chapter 7 curve Find the volume of the solid obtained by rotating the region bounded by the given cures about the specified line. Sketch the region, the solid, and a typical disk or washer.. y-/, =, =;

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

ADAPTIVE APPROACH IN NONLINEAR CURVE DESIGN PROBLEM. Simo Virtanen Rakenteiden Mekaniikka, Vol. 30 Nro 1, 1997, s

ADAPTIVE APPROACH IN NONLINEAR CURVE DESIGN PROBLEM. Simo Virtanen Rakenteiden Mekaniikka, Vol. 30 Nro 1, 1997, s ADAPTIVE APPROACH IN NONLINEAR CURVE DESIGN PROBLEM Simo Virtanen Rakenteiden Mekaniikka, Vol. 30 Nro 1, 1997, s. 14-24 ABSTRACT In recent years considerable interest has been shown in the development

More information

Circular Arc Approximation by Quartic H-Bézier Curve

Circular Arc Approximation by Quartic H-Bézier Curve Circular Arc Approximation by Quartic H-Bézier Curve Maria Hussain Department of Mathematics Lahore College for Women University, Pakistan maria.hussain@lcwu.edu.pk W. E. Ong School of Mathematical Sciences

More information

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6 Math background 2D Geometric Transformations CS 4620 Lecture 6 Read: Chapter 2: Miscellaneous Math Chapter 5: Linear Algebra Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector

More information

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA:

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA: MA 114 Exam 3 Spring 217 Exam 3 Name: Section and/or TA: Last Four Digits of Student ID: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test.

More information

Functions bs3_curve Aa thru Lz

Functions bs3_curve Aa thru Lz Chapter 18. Functions bs3_curve Aa thru Lz Topic: Ignore bs3_curve_accurate_derivs Action: Gets the number of derivatives that bs3_curve_evaluate can calculate. Prototype: int bs3_curve_accurate_derivs

More information

Key properties of local features

Key properties of local features Key properties of local features Locality, robust against occlusions Must be highly distinctive, a good feature should allow for correct object identification with low probability of mismatch Easy to etract

More information

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions 76 CHAPTER Graphs and Functions Find the equation of each line. Write the equation in the form = a, = b, or = m + b. For Eercises through 7, write the equation in the form f = m + b.. Through (, 6) and

More information

Introduction to the Mathematical Concepts of CATIA V5

Introduction to the Mathematical Concepts of CATIA V5 CATIA V5 Training Foils Introduction to the Mathematical Concepts of CATIA V5 Version 5 Release 19 January 2009 EDU_CAT_EN_MTH_FI_V5R19 1 About this course Objectives of the course Upon completion of this

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

SPECIAL TECHNIQUES-II

SPECIAL TECHNIQUES-II SPECIAL TECHNIQUES-II Lecture 19: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Method of Images for a spherical conductor Example :A dipole near aconducting sphere The

More information

OUTLINE. Quadratic Bezier Curves Cubic Bezier Curves

OUTLINE. Quadratic Bezier Curves Cubic Bezier Curves BEZIER CURVES 1 OUTLINE Introduce types of curves and surfaces Introduce the types of curves Interpolating Hermite Bezier B-spline Quadratic Bezier Curves Cubic Bezier Curves 2 ESCAPING FLATLAND Until

More information

Trigonometry Review Day 1

Trigonometry Review Day 1 Name Trigonometry Review Day 1 Algebra II Rotations and Angle Terminology II Terminal y I Positive angles rotate in a counterclockwise direction. Reference Ray Negative angles rotate in a clockwise direction.

More information

GEODESIC RECONSTRUCTION, SADDLE ZONES & HIERARCHICAL SEGMENTATION

GEODESIC RECONSTRUCTION, SADDLE ZONES & HIERARCHICAL SEGMENTATION Imae Anal Stereol 2001;20:xx-xx Oriinal Research Paper GEODESIC RECONSTRUCTION, SADDLE ZONES & HIERARCHICAL SEGMENTATION SERGE BEUCHER Centre de Morpholoie Mathématique, Ecole des Mines de Paris, 35, Rue

More information

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

(i) Find the exact value of p. [4] Show that the area of the shaded region bounded by the curve, the x-axis and the line

(i) Find the exact value of p. [4] Show that the area of the shaded region bounded by the curve, the x-axis and the line H Math : Integration Apps 0. M p The diagram shows the curve e e and its maimum point M. The -coordinate of M is denoted b p. (i) Find the eact value of p. [] (ii) Show that the area of the shaded region

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1 PRACTICE FINAL - MATH 2, Spring 22 The Final will have more material from Chapter 4 than other chapters. To study for chapters -3 you should review the old practice eams IN ADDITION TO what appears here.

More information

Polar Coordinates. 2, π and ( )

Polar Coordinates. 2, π and ( ) Polar Coordinates Up to this point we ve dealt exclusively with the Cartesian (or Rectangular, or x-y) coordinate system. However, as we will see, this is not always the easiest coordinate system to work

More information

Animation. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 4/23/07 1

Animation. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 4/23/07 1 Animation Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 4/23/07 1 Today s Topics Interpolation Forward and inverse kinematics Rigid body simulation Fluids Particle systems Behavioral

More information

Texture Un mapping. Computer Vision Project May, Figure 1. The output: The object with texture.

Texture Un mapping. Computer Vision Project May, Figure 1. The output: The object with texture. Texture Un mappin Shinjiro Sueda sueda@cs.ruters.edu Dinesh K. Pai dpai@cs.ruters.edu Computer Vision Project May, 2003 Abstract In computer raphics, texture mappin refers to the technique where an imae

More information

A Singular Example for the Averaged Mean Curvature Flow

A Singular Example for the Averaged Mean Curvature Flow To appear in Experimental Mathematics Preprint Vol. No. () pp. 3 7 February 9, A Singular Example for the Averaged Mean Curvature Flow Uwe F. Mayer Abstract An embedded curve is presented which under numerical

More information

2-D Geometry for Programming Contests 1

2-D Geometry for Programming Contests 1 2-D Geometry for Programming Contests 1 1 Vectors A vector is defined by a direction and a magnitude. In the case of 2-D geometry, a vector can be represented as a point A = (x, y), representing the vector

More information

Approximation of 3D-Parametric Functions by Bicubic B-spline Functions

Approximation of 3D-Parametric Functions by Bicubic B-spline Functions International Journal of Mathematical Modelling & Computations Vol. 02, No. 03, 2012, 211-220 Approximation of 3D-Parametric Functions by Bicubic B-spline Functions M. Amirfakhrian a, a Department of Mathematics,

More information

Journal of Young Scientist, Volume II, 2014 ISSN ; ISSN CD-ROM ; ISSN Online ; ISSN-L

Journal of Young Scientist, Volume II, 2014 ISSN ; ISSN CD-ROM ; ISSN Online ; ISSN-L Journal of Youn Scientist, Volume II, 014 ISSN 344-183; ISSN CD-ROM 344-191; ISSN Online 344-1305; ISSN-L 344 183 COMPARATIVE ANALYSIS OF ARC-TO-CHORD CORRECTIONS BETWEEN THE GAUSS-KRUGER PROJECTED SYSTEM

More information

Parametric Representation of Scroll Geometry with Variable Wall Thickness. * Corresponding Author: ABSTRACT 1.

Parametric Representation of Scroll Geometry with Variable Wall Thickness. * Corresponding Author: ABSTRACT 1. 1268, Page 1 Parametric Representation of Scroll Geometry with Variable Wall Thickness Bryce R. Shaffer 1 * and Eckhard A. Groll 2 1 Air Squared Inc. Broomfield, CO, USA 2 Purdue University, Mechanical

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS480: Computer Graphics Curves and Surfaces Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/cg Today s Topics Surface representations Smooth curves Subdivision 2 Smooth Curves and

More information

CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2

CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University 1 Outline Math review Introduction to 2D curves

More information

CS F-07 Objects in 2D 1

CS F-07 Objects in 2D 1 CS420-2010F-07 Objects in 2D 1 07-0: Representing Polgons We want to represent a simple polgon Triangle, rectangle, square, etc Assume for the moment our game onl uses these simple shapes No curves for

More information

Numerical integration of discontinuous functions: moment fitting and smart octree

Numerical integration of discontinuous functions: moment fitting and smart octree Noname manuscript No. (will be inserted by the editor) Numerical interation of discontinuous functions: moment fittin and smart octree Simeon Hubrich Paolo Di Stolfo László Kudela Stefan Kollmannsberer

More information

Regional Precalculus/Trigonometry Contest 2006

Regional Precalculus/Trigonometry Contest 2006 Regional Precalculus/Trigonometry Contest 006 Select the best answer for each of the following questions and mark it on the answer sheet provided. Be sure to read all the answer choices before making your

More information