MATH 417 Homework 8 Instructor: D. Cabrera Due August 4. e i(2z) (z 2 +1) 2 C R. z 1 C 1. 2 (z 2 + 1) dz 2. φ(z) = ei(2z) (z i) 2

Size: px
Start display at page:

Download "MATH 417 Homework 8 Instructor: D. Cabrera Due August 4. e i(2z) (z 2 +1) 2 C R. z 1 C 1. 2 (z 2 + 1) dz 2. φ(z) = ei(2z) (z i) 2"

Transcription

1 MATH 47 Homework 8 Instructor: D. abrera Due August 4. ompute the improper integral cos x (x + ) dx Solution: To evaluate the integral consider the complex integral e i(z) (z + ) dz where is the union of the contours and R shown below. y R -R z R x The complex integral can be split into two integrals: e i(z) (z + ) dz e i(z) (z + ) dz + e R i(z) (z + ) dz Let s compute each integral in turn. (i) The function f(z) ei(z) has singular points at i and i. Only the former is (z +) inside the contour. Therefore, the integral over is e i(z) dz πi Res f(z) (z + ) zi To find the residue, we note that the point i is a pole of order. To see this, we define the function φ(z) as so that φ(z) ei(z) (z + i) f(z) φ(z) (z i)

2 Since φ(z) is analytic and nonzero at i, the point is a pole of order and the residue is Res zi f(z)! φ (i) (z + i) (ie i(z) ) (z + i)e i(z) (z + i) 4 (i + i) (ie i ) (i + i)e i (i + i) 4 8ie 4ie e i zi Therefore, the value of the integral over is e i(z) dz πi Res f(z) (z + ) zi ( πi 3 ) 4 e i (ii) The integral over is e i(z) (z + ) dz R R 3π e e i(x) (x + ) dx cos x (x + ) dx + i R sin x (x + ) dx (iii) Finally, we use the ML-Bound formula to evaluate the integral over R. First, we note that the length of the contour is L πr. Then, we find an upper bound M on f(z) over R by noting that e i(z) (z + ) ei(x+iy) z + < e y (R ) (R ) M where we used the fact that () e y for all z on R since e y takes on its maximum value on R when y and () z + z R using the Triangle Inequality. Thus, the modulus of the integral over R is bounded as follows: R e i(z) (z + ) πr (R )

3 Putting it all together and taking the limit as R we have e i(z) e lim dz lim R (z + ) R i(z) e dz + lim (z + ) R R i(z) (z + ) dz 3π e lim R 3π e P.V. R cos x dx + i lim (x + ) R cos x dx + i P.V. (x + ) R R Taking the real parts of both sides of the above equation gives us 3π e P.V. cos x (x + ) dx sin x (x + ) dx + sin x (x + ) dx cos x Note that the integrand f(x) is an even function so that the principal value (x +) of the integral is the actual value. Furthermore, So our final answer is cos x (x + ) dx cos x (x + ) dx cos x (x + ) dx 3π 4 e. Show that (ln x) π3 dx x + 8 Solution: To evaluate the integral consider the complex integral (log z) z + dz where is the union of the contours, R,, and shown below. Note that we take the branch cut π < θ < 3π in order to avoid the contour. y R z -R - R x 3

4 The complex integral can be split into four integrals: (log z) z + dz (log z) z + R dz + (log z) z + dz + (log z) z + dz + (log z) z + dz Let s compute each integral in turn. (log z) (i) The function f(z) has infinitely many singular points but only z i is z + inside. Therefore, the integral over is (log z) dz πi Res f(z) z + zi To find the residue, we note that the point i is a simple pole. To see this, we define the function φ(z) as (log z) φ(z) z + i so that f(z) φ(z) (z i) Since φ(z) is analytic and nonzero at i, the point is a pole of order and the residue is Res zi f(z) φ(i) (log i) i + i (ln + i π ) i π 8 i Therefore, the value of the integral over is (log z) dz πi Res f(z) z + zi ( ) π πi 8 i π3 4 (ii) The integral over is parametrized by z re i() r, r R so that dz and we get (log z) R z + dz (ln r + i()) r + 4 R (ln r) r +

5 (iii) We use the ML-Bound formula to evaluate the integral over R. First, we note that the length of the contour is L πr. Then, we find an upper bound M on f(z) over R by noting that (log z) z + ln r + iθ z + ( lnr + iθ ) z (ln R + π) R M where we used the Triangle Inequality on both the numerator and denominator. Thus, the modulus of the integral over R is bounded as follows: (log z) R πr(ln R + π) z + R We note that the right hand side of the above inequality goes to as R. (iv) The integral over is parametrized by z re iπ r, r R so that dz and we get (log z) z + dz R R R (lnr + iπ) r + ( ) (lnr) + (π ln r)i π r + (lnr) r + π R R r + + i π ln r r + (v) Finally, we use the ML-Bound formula to evaluate the integral over. First, we note that the length of the contour is L π. Then, we find an upper bound M on f(z) over by noting that (log z) z + lnr + iθ z + ( lnr + iθ ) z ( ln + π) M where we used the Triangle Inequality on both the numerator and denominator. Thus, the modulus of the integral over is bounded as follows: (log z) π( ln + π) z + We note that the right hand side of the above inequality goes to as +. 5

6 Putting it all together and taking the limit as + and R we get (log z) z + dz (log z) z + R dz + (log z) z + dz + (log z) z + dz + (log z) z + dz π3 4 π3 4 (ln r) r (ln r) r π + Taking the real parts of both sides we get (lnr) r + π r + + i (ln r) r π + (ln r) ( π r + π (ln r) π3 r + 4 (ln r) π3 r + 8 Note that in the above steps we used the fact that r + π r + π3 4 ) π3 4 r + + i π ln r r + π ln r r Evaluate the integral π sinθ Solution: We turn the integral into a complex integral by integrating over, the unit circle z oriented counterclockwise, and using the substitutions to rewrite the integral as π dz iz, sin θ 6 sin θ z z i ( z z i ) dz iz 5iz + z dz z + 5iz dz

7 The denominator can be factored into (z + i)(z + i) so the singular points are i and i. Only i lies inside the contour. Therefore, the value of the integral is dz πi Res z + 5iz f(z) z i/ Note that i is a simple pole of f(z). Letting p(z), q(z) z + 5iz, and q (z) 4z + 5i, the residue is The value of the integral is then Res f(z) p( i) z i/ q ( i) 4( i) + 5i 3i π sin θ z + 5iz dz πi Res f(z) z i/ ( ) πi 3i π 3 4. Show that π π + cos θ π Solution: We turn the integral into a complex integral by integrating over, the unit circle z oriented counterclockwise, and using the substitutions to rewrite the integral as π π dz iz, + cos θ cosθ z + z + ( z+ z ) dz iz + z + + dz iz 4 4z i z 3 + 3z + dz 4 4z 4 z i z 4 + 6z + dz 7

8 The singular points of the integrand are solutions to z 4 + 6z +. Using the quaatic formula to solve for z we have z 6 ± 6 4()() () z 6 ± 3 z 3 ± Taking the positive sign, we have z, 3+ which we note is negative. Therefore, two singular points are z, ±i 3 Taking the negative sign, we have z3,4 3 which we note is also negative. Therefore, the other two singular points are z 3,4 ±i 3 + Of the four singular points, only z, lie in the unit circle. These points are simple poles so we can use the formula Res f(z) p(z k) zz k q (z k ) to find the residues at z,. Letting p(z) z, q(z) z 4 +6z +, and q (z) 4z 3 +z we have z k Res f(z) zz k 4zk 3 + z k 4(zk + 3) To simplify the calculations here we ll note that because z, 3 + we have Therefore, the residues at z, are Res f(z) zz, The value of the integral is then π π + cos θ 4 i z, + 3 4(zk + 3) 4( ) 8 z z 4 + 6z + dz 4 (Res i πi f(z) + Res zz ( 8π 8 + ) 8 π ) f(z) zz 8

9 5. Use the formula for the Inverse Laplace Transform to evaluate the inverse of the function F(s) (s + ). Solution: No thanks. 6. Show that z 5 + 8z has exactly four roots in the annulus < z <. Solution: To show that the equation has four roots in the given annulus, we will first show that it has one root inside the circle z and then show that it has five roots inside the circle z. Let be the circle z. Define f(z) 8z and g(z) z 5. Both functions are analytic on and inside. We also have and f(z) 8z 8 z 8 g(z) z 5 z for all z on. So we have established that f(z) > g(z) for all z on. By Rouché s Theorem, since f(z) 8z has one zero inside then so does f(z) + g(z) z 5 + 8z. Now let be the circle z. Define f(z) z 5 and g(z) 8z. Both functions are analytic on and inside. We also have and f(z) z 5 z 5 () 5 64 g(z) 8z 8 z + 8() + 7 for all z on. So we have established that f(z) > g(z) for all z on. By Rouché s Theorem, since f(z) z 5 has five zeros inside (counting multiplicities) then so does f(z) + g(z) z 5 + 8z. Finally, since z 5 + 8z has one zero inside and five zeros inside, it has four zeros in the annulus < z <. 9

Introduction to Complex Analysis

Introduction to Complex Analysis Introduction to Complex Analysis George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 413 George Voutsadakis (LSSU) Complex Analysis October 2014 1 / 50 Outline

More information

Math 407 Solutions to Exam 3 April 24, Let f = u + iv, and let Γ be parmetrized by Γ = (x (t),y(t)) = x (t) +iy (t) for a t b.

Math 407 Solutions to Exam 3 April 24, Let f = u + iv, and let Γ be parmetrized by Γ = (x (t),y(t)) = x (t) +iy (t) for a t b. Math 7 Solutions to Exam 3 April, 3 1. (1 Define the following: (a f (z dz, where Γ is a smooth curve with finite length. Γ Let f u + iv, and let Γ be parmetrized by Γ (x (t,y(t x (t +iy (t for a t b.

More information

Math 814 HW 2. September 29, p. 43: 1,4,6,13,15, p. 54 1, 3 (cos z only). u(x, y) = x 3 3xy 2, u(x, y) = x/(x 2 + y 2 ),

Math 814 HW 2. September 29, p. 43: 1,4,6,13,15, p. 54 1, 3 (cos z only). u(x, y) = x 3 3xy 2, u(x, y) = x/(x 2 + y 2 ), Math 814 HW 2 September 29, 2007 p. 43: 1,4,6,13,15, p. 54 1, 3 (cos z only). u(x, y) = x 3 3xy 2, u(x, y) = x/(x 2 + y 2 ), p.43, Exercise 1. Show that the function f(z) = z 2 = x 2 + y 2 has a derivative

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

Complex Integration (2A) Young Won Lim 1/29/13

Complex Integration (2A) Young Won Lim 1/29/13 omplex Integration (2A) opyright (c) 2012 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free ocumentation License, Version 1.2 or any later

More information

Math 2374 Spring 2007 Midterm 3 Solutions - Page 1 of 6 April 25, 2007

Math 2374 Spring 2007 Midterm 3 Solutions - Page 1 of 6 April 25, 2007 Math 374 Spring 7 Midterm 3 Solutions - Page of 6 April 5, 7. (3 points) Consider the surface parametrized by (x, y, z) Φ(x, y) (x, y,4 (x +y )) between the planes z and z 3. (i) (5 points) Set up the

More information

Math 21a Final Exam Solutions Spring, 2009

Math 21a Final Exam Solutions Spring, 2009 Math a Final Eam olutions pring, 9 (5 points) Indicate whether the following statements are True or False b circling the appropriate letter No justifications are required T F The (vector) projection of

More information

Chapter 11. Parametric Equations And Polar Coordinates

Chapter 11. Parametric Equations And Polar Coordinates Instructor: Prof. Dr. Ayman H. Sakka Chapter 11 Parametric Equations And Polar Coordinates In this chapter we study new ways to define curves in the plane, give geometric definitions of parabolas, ellipses,

More information

Math 265 Exam 3 Solutions

Math 265 Exam 3 Solutions C Roettger, Fall 16 Math 265 Exam 3 Solutions Problem 1 Let D be the region inside the circle r 5 sin θ but outside the cardioid r 2 + sin θ. Find the area of D. Note that r and θ denote polar coordinates.

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Homework 8. Due: Tuesday, March 31st, 2009

Homework 8. Due: Tuesday, March 31st, 2009 MATH 55 Applied Honors Calculus III Winter 9 Homework 8 Due: Tuesday, March 3st, 9 Section 6.5, pg. 54: 7, 3. Section 6.6, pg. 58:, 3. Section 6.7, pg. 66: 3, 5, 47. Section 6.8, pg. 73: 33, 38. Section

More information

Worksheet #1 Fractions

Worksheet #1 Fractions Worksheet # Fractions " Evaluate each expression and leave your answer in simplest form. ] 7 ] = ] + 8 ] + ] 7 ] 7 8 + 7] 7 8] 8 9] 8 0] 9 0 ] ] 9 ] 0 #" Worksheet # Simplifying/Evaluating Expressions

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals MATH 234 Excercises on Integration in everal Variables I. Double Integrals Problem 1. D = {(x, y) : y x 1, 0 y 1}. Compute D ex3 da. Problem 2. Find the volume of the solid bounded above by the plane 3x

More information

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 33 Notes These notes correspond to Section 9.3 in the text. Polar Coordinates Throughout this course, we have denoted a point in the plane by an ordered

More information

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals Section 16.4 Parametrized Surfaces and Surface Integrals (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals MATH 127 (Section 16.4) Parametrized Surfaces and Surface Integrals

More information

Study Guide for Test 2

Study Guide for Test 2 Study Guide for Test Math 6: Calculus October, 7. Overview Non-graphing calculators will be allowed. You will need to know the following:. Set Pieces 9 4.. Trigonometric Substitutions (Section 7.).. Partial

More information

MATH 261 EXAM III PRACTICE PROBLEMS

MATH 261 EXAM III PRACTICE PROBLEMS MATH 6 EXAM III PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 3 typically has 5 (not 6!) problems on it, with no more than one problem of any given

More information

Line Integration in the Complex Plane

Line Integration in the Complex Plane න f z dz C Engineering Math EECE 3640 1 A Review of Integration of Functions of Real Numbers: a b f x dx is the area under the curve in the figure below: The interval of integration is the path along the

More information

Math 206 First Midterm October 5, 2012

Math 206 First Midterm October 5, 2012 Math 206 First Midterm October 5, 2012 Name: EXAM SOLUTIONS Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 8 pages including this cover AND IS DOUBLE SIDED.

More information

1 Double Integrals over Rectangular Regions

1 Double Integrals over Rectangular Regions Contents ouble Integrals over Rectangular Regions ouble Integrals Over General Regions 7. Introduction.................................... 7. Areas of General Regions............................. 9.3 Region

More information

Math 241, Final Exam. 12/11/12.

Math 241, Final Exam. 12/11/12. Math, Final Exam. //. No notes, calculator, or text. There are points total. Partial credit may be given. ircle or otherwise clearly identify your final answer. Name:. (5 points): Equation of a line. Find

More information

MATH 010B - Spring 2018 Worked Problems - Section 6.2. ze x2 +y 2

MATH 010B - Spring 2018 Worked Problems - Section 6.2. ze x2 +y 2 MATH B - Spring 8 orked Problems - Section 6.. Compute the following double integral x +y 9 z 3 ze x +y dv Solution: Here, we can t hope to integrate this directly in Cartesian coordinates, since the the

More information

Calculus IV. Exam 2 November 13, 2003

Calculus IV. Exam 2 November 13, 2003 Name: Section: Calculus IV Math 1 Fall Professor Ben Richert Exam November 1, Please do all your work in this booklet and show all the steps. Calculators and note-cards are not allowed. Problem Possible

More information

Polar Coordinates

Polar Coordinates Polar Coordinates 7-7-2 Polar coordinates are an alternative to rectangular coordinates for referring to points in the plane. A point in the plane has polar coordinates r,θ). r is roughly) the distance

More information

Chapter 7: Analytic Trigonometry

Chapter 7: Analytic Trigonometry Chapter 7: Analytic Trigonometry 7. Trigonometric Identities Below are the basic trig identities discussed in previous chapters. Reciprocal csc(x) sec(x) cot(x) sin(x) cos(x) tan(x) Quotient sin(x) cos(x)

More information

Cauchy's Integral Formula

Cauchy's Integral Formula Cauchy's Integral Formula Thursday, October 24, 2013 1:57 PM Last time we discussed functions defined by integration over complex contours, and let's look at a particularly important example: Where C is

More information

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Fall 2018 Instructor: Dr. Sateesh Mane

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Fall 2018 Instructor: Dr. Sateesh Mane Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 36 / 76 Fall 28 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 28 6 Homework lecture 6: numerical integration If you write the

More information

MEI STRUCTURED MATHEMATICS METHODS FOR ADVANCED MATHEMATICS, C3. Practice Paper C3-B

MEI STRUCTURED MATHEMATICS METHODS FOR ADVANCED MATHEMATICS, C3. Practice Paper C3-B MEI Mathematics in Education and Industry MEI STRUCTURED MATHEMATICS METHODS FOR ADVANCED MATHEMATICS, C3 Practice Paper C3-B Additional materials: Answer booklet/paper Graph paper List of formulae (MF)

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper. MA 174: Multivariable alculus Final EXAM (practice) NAME lass Meeting Time: NO ALULATOR, BOOK, OR PAPER ARE ALLOWED. Use the back of the test pages for scrap paper. Points awarded 1. (5 pts). (5 pts).

More information

MIDTERM. Section: Signature:

MIDTERM. Section: Signature: MIDTERM Math 32B 8/8/2 Name: Section: Signature: Read all of the following information before starting the exam: Check your exam to make sure all pages are present. NO CALCULATORS! Show all work, clearly

More information

MATH 2400, Analytic Geometry and Calculus 3

MATH 2400, Analytic Geometry and Calculus 3 MATH 2400, Analytic Geometry and Calculus 3 List of important Definitions and Theorems 1 Foundations Definition 1. By a function f one understands a mathematical object consisting of (i) a set X, called

More information

Three Dimensional Geometry. Linear Programming

Three Dimensional Geometry. Linear Programming Three Dimensional Geometry Linear Programming A plane is determined uniquely if any one of the following is known: The normal to the plane and its distance from the origin is given, i.e. equation of a

More information

Math Triple Integrals in Cylindrical Coordinates

Math Triple Integrals in Cylindrical Coordinates Math 213 - Triple Integrals in Cylindrical Coordinates Peter A. Perry University of Kentucky November 2, 218 Homework Re-read section 15.7 Work on section 15.7, problems 1-13 (odd), 17-21 (odd) from Stewart

More information

Math 113 Exam 1 Practice

Math 113 Exam 1 Practice Math Exam Practice January 6, 00 Exam will cover sections 6.-6.5 and 7.-7.5 This sheet has three sections. The first section will remind you about techniques and formulas that you should know. The second

More information

MAT137 Calculus! Lecture 31

MAT137 Calculus! Lecture 31 MAT137 Calculus! Lecture 31 Today: Next: Integration Methods: Integration Methods: Trig. Functions (v. 9.10-9.12) Rational Functions Trig. Substitution (v. 9.13-9.15) (v. 9.16-9.17) Integration by Parts

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations 1 Definition of polar coordinates Let us first recall the definition of Cartesian coordinates: to each point in the plane we can

More information

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier Calculus I Review Handout 1.3 Introduction to Calculus - Limits by Kevin M. Chevalier We are now going to dive into Calculus I as we take a look at the it process. While precalculus covered more static

More information

Math Boot Camp: Coordinate Systems

Math Boot Camp: Coordinate Systems Math Boot Camp: Coordinate Systems You can skip this boot camp if you can answer the following question: Staying on a sphere of radius R, what is the shortest distance between the point (0, 0, R) on the

More information

MAC2313 Test 3 A E g(x, y, z) dy dx dz

MAC2313 Test 3 A E g(x, y, z) dy dx dz MAC2313 Test 3 A (5 pts) 1. If the function g(x, y, z) is integrated over the cylindrical solid bounded by x 2 + y 2 = 3, z = 1, and z = 7, the correct integral in Cartesian coordinates is given by: A.

More information

University of Saskatchewan Department of Mathematics & Statistics MATH Final Instructors: (01) P. J. Browne (03) B. Friberg (05) H.

University of Saskatchewan Department of Mathematics & Statistics MATH Final Instructors: (01) P. J. Browne (03) B. Friberg (05) H. University of Saskatchewan Department of Mathematics & Statistics MATH. Final Instructors: (0) P. J. Browne (0) B. Friberg (0) H. Teismann December 9, 000 Time: :00-:00 pm This is an open book exam. Students

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

Coordinate Transformations in Advanced Calculus

Coordinate Transformations in Advanced Calculus Coordinate Transformations in Advanced Calculus by Sacha Nandlall T.A. for MATH 264, McGill University Email: sacha.nandlall@mail.mcgill.ca Website: http://www.resanova.com/teaching/calculus/ Fall 2006,

More information

Preliminary Mathematics of Geometric Modeling (3)

Preliminary Mathematics of Geometric Modeling (3) Preliminary Mathematics of Geometric Modeling (3) Hongxin Zhang and Jieqing Feng 2006-11-27 State Key Lab of CAD&CG, Zhejiang University Differential Geometry of Surfaces Tangent plane and surface normal

More information

Multiple Integrals. max x i 0

Multiple Integrals. max x i 0 Multiple Integrals 1 Double Integrals Definite integrals appear when one solves Area problem. Find the area A of the region bounded above by the curve y = f(x), below by the x-axis, and on the sides by

More information

Aspects of Geometry. Finite models of the projective plane and coordinates

Aspects of Geometry. Finite models of the projective plane and coordinates Review Sheet There will be an exam on Thursday, February 14. The exam will cover topics up through material from projective geometry through Day 3 of the DIY Hyperbolic geometry packet. Below are some

More information

Lesson 27: Angles in Standard Position

Lesson 27: Angles in Standard Position Lesson 27: Angles in Standard Position PreCalculus - Santowski PreCalculus - Santowski 1 QUIZ Draw the following angles in standard position 50 130 230 320 770-50 2 radians PreCalculus - Santowski 2 Fast

More information

Final Exam Review. Name: Class: Date: Short Answer

Final Exam Review. Name: Class: Date: Short Answer Name: Class: Date: ID: A Final Exam Review Short Answer 1. Find the distance between the sphere (x 1) + (y + 1) + z = 1 4 and the sphere (x 3) + (y + ) + (z + ) = 1. Find, a a + b, a b, a, and 3a + 4b

More information

Unit 2: Trigonometry. This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses.

Unit 2: Trigonometry. This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses. Unit 2: Trigonometry This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses. Pythagorean Theorem Recall that, for any right angled triangle, the square

More information

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv.

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv. MAC2313 Final A (5 pts) 1. Let f(x, y, z) be a function continuous in R 3 and let S be a surface parameterized by r(u, v) with the domain of the parameterization given by R; how many of the following are

More information

Lesson 34 Solving Linear Trigonometric Equations

Lesson 34 Solving Linear Trigonometric Equations Lesson 34 Solving Linear Trigonometric Equations PreCalculus 4/12/14 PreCalculus 1 FAST FIVE Skills/Concepts Review EXPLAIN the difference between the following 2 equations: (a) Solve sin(x) = 0.75 (b)

More information

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002 Math 13 Calculus III Practice Exam Solutions Fall 00 1. Let g(x, y, z) = e (x+y) + z (x + y). (a) What is the instantaneous rate of change of g at the point (,, 1) in the direction of the origin? We want

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

Math 32B Discussion Session Week 2 Notes January 17 and 24, 2017

Math 32B Discussion Session Week 2 Notes January 17 and 24, 2017 Math 3B Discussion Session Week Notes January 7 and 4, 7 This week we ll finish discussing the double integral for non-rectangular regions (see the last few pages of the week notes) and then we ll touch

More information

8-1 Simple Trigonometric Equations. Objective: To solve simple Trigonometric Equations and apply them

8-1 Simple Trigonometric Equations. Objective: To solve simple Trigonometric Equations and apply them Warm Up Use your knowledge of UC to find at least one value for q. 1) sin θ = 1 2 2) cos θ = 3 2 3) tan θ = 1 State as many angles as you can that are referenced by each: 1) 30 2) π 3 3) 0.65 radians Useful

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Section 10.1 Polar Coordinates

Section 10.1 Polar Coordinates Section 10.1 Polar Coordinates Up until now, we have always graphed using the rectangular coordinate system (also called the Cartesian coordinate system). In this section we will learn about another system,

More information

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k I.f Tangent Planes and Normal Lines Again we begin by: Recall: (1) Given two vectors A = a 1 i + a 2 j + a 3 k, B = b 1 i + b 2 j + b 3 k then A B is a vector perpendicular to both A and B. Then length

More information

Math 5BI: Problem Set 2 The Chain Rule

Math 5BI: Problem Set 2 The Chain Rule Math 5BI: Problem Set 2 The Chain Rule April 5, 2010 A Functions of two variables Suppose that γ(t) = (x(t), y(t), z(t)) is a differentiable parametrized curve in R 3 which lies on the surface S defined

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

Chapter 15 Vector Calculus

Chapter 15 Vector Calculus Chapter 15 Vector Calculus 151 Vector Fields 152 Line Integrals 153 Fundamental Theorem and Independence of Path 153 Conservative Fields and Potential Functions 154 Green s Theorem 155 urface Integrals

More information

Santiago AP Calculus AB/BC Summer Assignment 2018 AB: complete problems 1 64, BC: complete problems 1 73

Santiago AP Calculus AB/BC Summer Assignment 2018 AB: complete problems 1 64, BC: complete problems 1 73 Santiago AP Calculus AB/BC Summer Assignment 2018 AB: complete problems 1 64, BC: complete problems 1 73 AP Calculus is a rigorous college level math course. It will be necessary to do some preparatory

More information

Transformations: 2D Transforms

Transformations: 2D Transforms 1. Translation Transformations: 2D Transforms Relocation of point WRT frame Given P = (x, y), translation T (dx, dy) Then P (x, y ) = T (dx, dy) P, where x = x + dx, y = y + dy Using matrix representation

More information

Efficacy of Numerically Approximating Pi with an N-sided Polygon

Efficacy of Numerically Approximating Pi with an N-sided Polygon Peter Vu Brewer MAT66 Honors Topic Efficacy of umerically Approximating Pi with an -sided Polygon The quest for precisely finding the irrational number pi has been an endeavor since early human history.

More information

Polar Coordinates. 2, π and ( )

Polar Coordinates. 2, π and ( ) Polar Coordinates Up to this point we ve dealt exclusively with the Cartesian (or Rectangular, or x-y) coordinate system. However, as we will see, this is not always the easiest coordinate system to work

More information

Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter

More information

Trigonometry and the Unit Circle. Chapter 4

Trigonometry and the Unit Circle. Chapter 4 Trigonometry and the Unit Circle Chapter 4 Topics Demonstrate an understanding of angles in standard position, expressed in degrees and radians. Develop and apply the equation of the unit circle. Solve

More information

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim Chapter 14 Multiple Integrals..1 Double Integrals, Iterated Integrals, Cross-sections.2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals.3

More information

Math 209, Fall 2009 Homework 3

Math 209, Fall 2009 Homework 3 Math 209, Fall 2009 Homework 3 () Find equations of the tangent plane and the normal line to the given surface at the specified point: x 2 + 2y 2 3z 2 = 3, P (2,, ). Solution Using implicit differentiation

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

MH2800/MAS183 - Linear Algebra and Multivariable Calculus

MH2800/MAS183 - Linear Algebra and Multivariable Calculus MH28/MAS83 - Linear Algebra and Multivariable Calculus SEMESTER II EXAMINATION 2-22 Solved by Tao Biaoshuai Email: taob@e.ntu.edu.sg QESTION Let A 2 2 2. Solve the homogeneous linear system Ax and write

More information

MATH 104 First Midterm Exam - Fall (d) A solid has as its base the region in the xy-plane the region between the curve y = 1 x2

MATH 104 First Midterm Exam - Fall (d) A solid has as its base the region in the xy-plane the region between the curve y = 1 x2 MATH 14 First Midterm Exam - Fall 214 1. Find the area between the graphs of y = x 2 + x + 5 and y = 2x 2 x. 1. Find the area between the graphs of y = x 2 + 4x + 6 and y = 2x 2 x. 1. Find the area between

More information

Hw 4 Due Feb 22. D(fg) x y z (

Hw 4 Due Feb 22. D(fg) x y z ( Hw 4 Due Feb 22 2.2 Exercise 7,8,10,12,15,18,28,35,36,46 2.3 Exercise 3,11,39,40,47(b) 2.4 Exercise 6,7 Use both the direct method and product rule to calculate where f(x, y, z) = 3x, g(x, y, z) = ( 1

More information

Topics in Analytic Geometry Part II

Topics in Analytic Geometry Part II Name Chapter 9 Topics in Analytic Geometry Part II Section 9.4 Parametric Equations Objective: In this lesson you learned how to evaluate sets of parametric equations for given values of the parameter

More information

Quiz problem bank. Quiz 1 problems. 1. Find all solutions (x, y) to the following:

Quiz problem bank. Quiz 1 problems. 1. Find all solutions (x, y) to the following: Quiz problem bank Quiz problems. Find all solutions x, y) to the following: xy x + y = x + 5x + 4y = ) x. Let gx) = ln. Find g x). sin x 3. Find the tangent line to fx) = xe x at x =. 4. Let hx) = x 3

More information

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA:

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA: MA 114 Exam 3 Spring 217 Exam 3 Name: Section and/or TA: Last Four Digits of Student ID: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test.

More information

Calculus 234. Problems. May 15, 2003

Calculus 234. Problems. May 15, 2003 alculus 234 Problems May 15, 23 A book reference marked [TF] indicates this semester s official text; a book reference marked [VPR] indicates the official text for next semester. These are [TF] Thomas

More information

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t.

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t. MATH 127 ALULU III Name: 1. Let r(t) = e t i + e t sin t j + e t cos t k (a) Find r (t) Final Exam Review (b) Reparameterize r(t) with respect to arc length measured for the point (1,, 1) in the direction

More information

AP Calculus Summer Review Packet School Year. Name

AP Calculus Summer Review Packet School Year. Name AP Calculus Summer Review Packet 016-017 School Year Name Objectives for AP/CP Calculus Summer Packet 016-017 I. Solving Equations & Inequalities (Problems # 1-6) Using the properties of equality Solving

More information

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota Questions to:

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota   Questions to: Lab_B.nb Lab B Parametrizing Surfaces Math 37 University of Minnesota http://www.math.umn.edu/math37 Questions to: rogness@math.umn.edu Introduction As in last week s lab, there is no calculus in this

More information

AQA GCSE Further Maths Topic Areas

AQA GCSE Further Maths Topic Areas AQA GCSE Further Maths Topic Areas This document covers all the specific areas of the AQA GCSE Further Maths course, your job is to review all the topic areas, answering the questions if you feel you need

More information

38. Triple Integration over Rectangular Regions

38. Triple Integration over Rectangular Regions 8. Triple Integration over Rectangular Regions A rectangular solid region S in R can be defined by three compound inequalities, a 1 x a, b 1 y b, c 1 z c, where a 1, a, b 1, b, c 1 and c are constants.

More information

Math 5320, 3/28/18 Worksheet 26: Ruler and compass constructions. 1. Use your ruler and compass to construct a line perpendicular to the line below:

Math 5320, 3/28/18 Worksheet 26: Ruler and compass constructions. 1. Use your ruler and compass to construct a line perpendicular to the line below: Math 5320, 3/28/18 Worksheet 26: Ruler and compass constructions Name: 1. Use your ruler and compass to construct a line perpendicular to the line below: 2. Suppose the following two points are spaced

More information

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let Calculus Lia Vas Polar Coordinates If P = (x, y) is a point in the xy-plane and O denotes the origin, let r denote the distance from the origin O to the point P = (x, y). Thus, x + y = r ; θ be the angle

More information

Math 52 - Fall Final Exam PART 1

Math 52 - Fall Final Exam PART 1 Math 52 - Fall 2013 - Final Exam PART 1 Name: Student ID: Signature: Instructions: Print your name and student ID number and write your signature to indicate that you accept the Honor Code. This exam consists

More information

Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z = (Simplify your answer.) ID: 14.1.

Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z = (Simplify your answer.) ID: 14.1. . Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z 2 (a) f(2, 4,5) = (b) f 2,, 3 9 = (c) f 0,,0 2 (d) f(4,4,00) = = ID: 4..3 2. Given the function f(x,y)

More information

Chapter 9 Topics in Analytic Geometry

Chapter 9 Topics in Analytic Geometry Chapter 9 Topics in Analytic Geometry What You ll Learn: 9.1 Introduction to Conics: Parabolas 9.2 Ellipses 9.3 Hyperbolas 9.5 Parametric Equations 9.6 Polar Coordinates 9.7 Graphs of Polar Equations 9.1

More information

Math 26: Fall (part 1) The Unit Circle: Cosine and Sine (Evaluating Cosine and Sine, and The Pythagorean Identity)

Math 26: Fall (part 1) The Unit Circle: Cosine and Sine (Evaluating Cosine and Sine, and The Pythagorean Identity) Math : Fall 0 0. (part ) The Unit Circle: Cosine and Sine (Evaluating Cosine and Sine, and The Pthagorean Identit) Cosine and Sine Angle θ standard position, P denotes point where the terminal side of

More information

MATH 261 EXAM I PRACTICE PROBLEMS

MATH 261 EXAM I PRACTICE PROBLEMS MATH 261 EXAM I PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 1 typically has 6 problems on it, with no more than one problem of any given type (e.g.,

More information

1.(6pts) Which integral computes the area of the quarter-disc of radius a centered at the origin in the first quadrant? rdr d

1.(6pts) Which integral computes the area of the quarter-disc of radius a centered at the origin in the first quadrant? rdr d .(6pts) Which integral computes the area of the quarter-disc of radius a centered at the origin in the first quadrant? (a) / Z a rdr d (b) / Z a rdr d (c) Z a dr d (d) / Z a dr d (e) / Z a a rdr d.(6pts)

More information

Chapter 10 Homework: Parametric Equations and Polar Coordinates

Chapter 10 Homework: Parametric Equations and Polar Coordinates Chapter 1 Homework: Parametric Equations and Polar Coordinates Name Homework 1.2 1. Consider the parametric equations x = t and y = 3 t. a. Construct a table of values for t =, 1, 2, 3, and 4 b. Plot the

More information

Chapter 15 Notes, Stewart 7e

Chapter 15 Notes, Stewart 7e Contents 15.2 Iterated Integrals..................................... 2 15.3 Double Integrals over General Regions......................... 5 15.4 Double Integrals in Polar Coordinates..........................

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

RELEASED. Student Booklet. Precalculus. Fall 2015 NC Final Exam. Released Items

RELEASED. Student Booklet. Precalculus. Fall 2015 NC Final Exam. Released Items Released Items Public Schools of North arolina State oard of Education epartment of Public Instruction Raleigh, North arolina 27699-6314 Fall 2015 N Final Exam Precalculus Student ooklet opyright 2015

More information