Complex Integration (2A) Young Won Lim 1/29/13

Size: px
Start display at page:

Download "Complex Integration (2A) Young Won Lim 1/29/13"

Transcription

1 omplex Integration (2A)

2 opyright (c) 2012 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free ocumentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-over Texts, and no Back-over Texts. A copy of the license is included in the section entitled "GNU Free ocumentation License". Please send corrections (or suggestions) to youngwlim@hotmail.com. This document was produced by using OpenOffice and Octave.

3 ontour Integrals defined at points of a smooth curve a smooth curve is defined by x = x(t) a t b y = y (t) The contour integral of f along dz = b = a (u +iv)(dx +i dy) = u dx v dy + i v dx +udy [u x'(t) v y '(t)]d t + i[v x '(t) +u y '(t)] dt b dz = a b = (u +iv)(x '(t) +i y '(t))dt a f (z (t))z '(t)dt z (t) = x(t) +i y (t) z '(t) = x '(t) +i y '(t) a t b omplex Integration (2A) 3

4 onnected Region onnected omains Simply onnected oubly onnected Triply onnected losed Paths simple closed path not simple closed path not simple closed path omplex Integration (2A) 4

5 ontour Integration Evaluation (1) Indefinite Integration of Analytic Functions : analytic in a simply connected domain = F '(z) There exists an indefinite integral in : an analytic function F (z) z 1 dz = F(z 1 ) F (z 0 ) z 0 for every path in between z 0 and z 1 (2) Integration by the Use of the Path : a piecewise smooth path represented by z = z (t) (a t b) a continuous function on b dz = a f [ z(t)] z '(t) dt omplex Integration (2A) 5

6 ontour Integration Evaluation f(z) = 1/z (1) Indefinite Integration of Analytic Functions z 1 = z 0 z 1 f (z ) dz = F ( z 1 ) F ( z 0 ) = 0 z 0 But f (z ) = 1 z not analytic at z = 0 cannot apply this method (2) Integration by the Use of the Path : the unit circle z (t) = cost + isin t = e i t (0 t 2π) z '(t) = sint + icost = i e it 2π it f (z ) dz = ie 0 e it 2 π dt = i dt = 2πi 0 omplex Integration (2A) 6

7 ontour Integration Evaluation f(z) = z m (1) Indefinite Integration of Analytic Functions z 1 = z 0 z 1 f (z ) dz = F ( z 1 ) F ( z 0 ) = 0 z 0 But not analytic at f (z ) = z m z = 0 for m < 0 cannot apply this method (2) Integration by the Use of the Path : the unit circle z (t) = cost + isin t = e i t (0 t 2π) z '(t) = sint + icost = i e it 2π f (z ) dz = 0 2 π e mit i e it dt = ie i(m+1)t dt 0 2 π = i[ 0 2 π cos((m+1)t) dt + i sin((m+1)t) dt] 0 z m dz = 2πi 0 (m = 1) (m 1) omplex Integration (2A) 7

8 auchy's Integral Theorem (1) f '(z) : analytic in a simply connected domain : continuous in a simply connected domain for every simple closed contour in dz = 0 dz = (u+iv)(dx+i dy) = udx v dy + iv dx+u dy = ( v x u ) y d A + i ( u x v ) y d A = 0 u y = v x u x = v y omplex Integration (2A) 8

9 auchy's Integral Theorem (2) f '(z) : analytic in a simply connected domain : continuous in a simply connected domain for every simple closed contour in dz = f (z ) dz = f (z ) dz = 0 f (z ) dz = 0 omplex Integration (2A) 9

10 auchy-goursat Theorem (1) auchy-goursat Theorem : analytic in a simply connected domain for every simple closed contour in dz = 0 auchy Theorem f '(z) : analytic in a simply connected domain : continuous in a simply connected domain for every simple closed contour in dz = 0 omplex Integration (2A) 10

11 auchy-goursat Theorem (2) : analytic in a simply connected domain for every simple closed contour in dz = 0 f '(z) : continuous in a simply connected domain simple closed curve a continuously turning tangent except possibly at a finite number of points allow a finite number of corners (not smooth) omplex Integration (2A) 11

12 auchy-goursat Theorem (3) : analytic in a multiply connected domain for every simple closed contour in dz = 0 doubly connected domain simply connected domain ' 1 cut ' 1 ' 1 ccw dz + dz = 0 cw 1 ccw dz = ccw 1 dz omplex Integration (2A) 12

13 auchy-goursat Theorem (4) triply connected domain simply connected domain ' cuts 2 ' ' ccw cw 1 cw 2 f ( z) dz + f ( z) dz + f ( z) dz = 0 1 f ( z ) dz = f (z ) dz + 2 f ( z) dz omplex Integration (2A) 13

14 Independence of the Path z 0, z 1 : points in a domain For all contours in with an initial point z 0 and a terminal point z 1 The value of its contour integral is the same dz : independence of the path z 1 z z 0 1 z 0 1 f (z ) dz = 2 f (z ) dz 1 f (z ) + 2 f ( z) dz = 0 omplex Integration (2A) 14

15 Analyticity Path Independence : analytic in a simply connected domain dz : independence of the path eformation of ontours z z z 1 2 ' ' 1 z omplex Integration (2A) 15

16 Principle of eformation of Path Impose a continuous deformation of the path of an integral As long as deforming path always contains only points at which f(z) is analytic, the integral retains the same value z 2 z 2 m 1 z 1 z 1 (z z 0 ) m dz = 0 z 2 continuous deformation : impossible z 2 m = 1 not necessarily zero (z z 0 ) m dz = 0 z 1 z 0 z 1 (z z 0 ) m dz = 2π i omplex Integration (2A) 16

17 Antiderivative : continuous in a domain = F '(z) for every z in a domain F (z) : antiderivative of F (z) F (z) F (z) : antiderivative of has a derivative at every z in a domain analytic at every z in a domain continuous at every z in a domain ifferentiability implies continuity Fundamental Theorem of alculus b a f (x) dx = F (b) F (a) omplex Integration (2A) 17

18 Fundamental Theorem (1) : continuous in a domain = F '(z) for every z in a domain F (z) : antiderivative of Fundamental Theorem for ontour Integrals F (z) : continuous in a domain : antiderivative of F '(z) = for every z in a domain For any contour in with an initial point z 1 and a terminal point z 2 dz = F(z 2 ) F (z 1 ) omplex Integration (2A) 18

19 Fundamental Theorem (2) F (z) : continuous in a domain : antiderivative of F '(z) = for every z in a domain For any contour in with an initial point z 1 and a terminal point z 2 dz = F(z 2 ) F (z 1 ) b dz = a b = a f (z(t)) z '(t) dt F '(z(t))z '(t) dt b = a d dt F (z(t)) dt = F (z(b)) F (z(a)) = F (z 2 ) F (z 1 ) omplex Integration (2A) 19

20 Antiderivative and Path Independence F (z) : continuous in a domain : antiderivative of F '(z) = for every z in a domain For any contour in with an initial point z 1 and a terminal point z 2 dz = F(z 2 ) F (z 1 ) F (z) : continuous in a domain : antiderivative of F '(z) = for every z in a domain dz : independence of the path omplex Integration (2A) 20

21 Existence of an Antiderivative : analytic in a simply connected domain F (z) : antiderivative of f(z) F '(z) = for every z in a domain z = e w (z 0) w = ln z (z 0) z = x + i y = e u + iv = e u (cosv+isinv) = e u cosv + i e u sinv > 0 0 d d z L n z = 1 z principal value : multiply connected domain : simple closed path L n z : not analytic in 1 L n z is not an antiderivative of z in L n z 1 z dz = 0 1 z dz = 2π i is not continuous on the negative real axis branch cut omplex Integration (2A) 21

22 auchy's Integral Formula (1) f (z ) analytic in ( z z 0 ) not analytic in : simply connected domain ': multiply connected domain z 0 z 0 f (z 0 ) dz = 0 The value of an analytic function f at any point z 0 in a simply connected domain can be represented by a contour integral (z z 0 ) dz = 0 not necessarily zero (z z 0 ) dz = 2πi f (z 0) f (z 0 ) = 1 2π i (z z 0 ) dz omplex Integration (2A) 22

23 auchy's Integral Formula (2) : analytic on and inside simple close curve f (a) = 1 2π i z a d z the value of at a point z = a inside a a ' dz = 0 ccw dz z a + cw ' dz z a = 0 omplex Integration (2A) 23

24 auchy's Integral Formula (3) : analytic on and inside simple close curve f (a) = 1 2π i z a d z the value of at a point z = a inside ccw dz z a + cw ' dz z a = 0 ' ccw dz z a = ccw ' dz z a a omplex Integration (2A) 24

25 auchy's Integral Formula (4) ccw dz z a = ccw ' dz z a = 2π i f (a) along ' z a = ρe iθ as z a ρ 0 ' z = a ρe iθ dz = iρe i θ dθ z a '' d z z a = iρei θ dθ ρe iθ a ccw f ( z) dz z a 2π = 0 f ( z)i dθ = 2π i f (a) omplex Integration (2A) 25

26 auchy's Integral Formula (5) d z ( z a) = iρeiθ dθ 2 (ρe i θ ) 2 along ' z a = ρe iθ ccw f ( z) dz (z a) 2 2 π = 0 f ( z )i dθ ρe i θ a z = a ρe iθ dz = iρe i θ dθ 2 π = 0 f ( z ) ρ ie i θ dθ = [ f (z ρ ) e i θ ] 2 π 0 = f ( z) ρ (e i2 π e i 0 ) = 0 d z = iρe iθ dθ ccw 2 π f ( z) dz = 0 = [ f (z )ρe i θ ] 0 2 π f ( z)iρe i θ dθ = f ( z)ρ(e i2 π e i0 ) = 0 (z a) d z = ρ e iθ iρe iθ dθ ccw 2 π = 0 2 π ( z a) f ( z) dz = 0 f ( z)ρ 2 ie i 2θ dθ = f ( z) ρ 2 (e i4 π e i 0 ) = 0 f ( z)i(ρe iθ ) 2 dθ = [ f (z ) ρ 2 ei2 θ ] 0 2 π omplex Integration (2A) 26

27 auchy's Integral Formula (6) : analytic on and inside simple close curve f (a) = 1 2π i z a d z the value of at a point z = a inside = 1 2π i f (w) w z dw omplex Integration (2A) 27

28 auchy's Integral Formula for erivatives : analytic on and inside simple close curve f (a) = 1 2π i z a d z the value of at a point z = a inside f (n) (a) = n! 2π i (z a) n+1 d z omplex Integration (2A) 28

29 References [1] [2] [3] M.L. Boas, Mathematical Methods in the Physical Sciences [4] E. Kreyszig, Advanced Engineering Mathematics [5]. G. Zill, W. S. Wright, Advanced Engineering Mathematics

Complex Integration (2B) Young Won Lim 1/17/14

Complex Integration (2B) Young Won Lim 1/17/14 omplex Integration (B) /7/ opyright (c) Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version. or any later

More information

Math 407 Solutions to Exam 3 April 24, Let f = u + iv, and let Γ be parmetrized by Γ = (x (t),y(t)) = x (t) +iy (t) for a t b.

Math 407 Solutions to Exam 3 April 24, Let f = u + iv, and let Γ be parmetrized by Γ = (x (t),y(t)) = x (t) +iy (t) for a t b. Math 7 Solutions to Exam 3 April, 3 1. (1 Define the following: (a f (z dz, where Γ is a smooth curve with finite length. Γ Let f u + iv, and let Γ be parmetrized by Γ (x (t,y(t x (t +iy (t for a t b.

More information

MATH 417 Homework 8 Instructor: D. Cabrera Due August 4. e i(2z) (z 2 +1) 2 C R. z 1 C 1. 2 (z 2 + 1) dz 2. φ(z) = ei(2z) (z i) 2

MATH 417 Homework 8 Instructor: D. Cabrera Due August 4. e i(2z) (z 2 +1) 2 C R. z 1 C 1. 2 (z 2 + 1) dz 2. φ(z) = ei(2z) (z i) 2 MATH 47 Homework 8 Instructor: D. abrera Due August 4. ompute the improper integral cos x (x + ) dx Solution: To evaluate the integral consider the complex integral e i(z) (z + ) dz where is the union

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

Introduction to Complex Analysis

Introduction to Complex Analysis Introduction to Complex Analysis George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 413 George Voutsadakis (LSSU) Complex Analysis October 2014 1 / 50 Outline

More information

This exam will be cumulative. Consult the review sheets for the midterms for reviews of Chapters

This exam will be cumulative. Consult the review sheets for the midterms for reviews of Chapters Final exam review Math 265 Fall 2007 This exam will be cumulative. onsult the review sheets for the midterms for reviews of hapters 12 15. 16.1. Vector Fields. A vector field on R 2 is a function F from

More information

Functions (4A) Young Won Lim 5/8/17

Functions (4A) Young Won Lim 5/8/17 Functions (4A) Copyright (c) 2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

RAM (1A) Young Won Lim 11/12/13

RAM (1A) Young Won Lim 11/12/13 RAM (1A) Young Won Lim 11/12/13 opyright (c) 2011-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

Chapter 15 Vector Calculus

Chapter 15 Vector Calculus Chapter 15 Vector Calculus 151 Vector Fields 152 Line Integrals 153 Fundamental Theorem and Independence of Path 153 Conservative Fields and Potential Functions 154 Green s Theorem 155 urface Integrals

More information

Math 814 HW 2. September 29, p. 43: 1,4,6,13,15, p. 54 1, 3 (cos z only). u(x, y) = x 3 3xy 2, u(x, y) = x/(x 2 + y 2 ),

Math 814 HW 2. September 29, p. 43: 1,4,6,13,15, p. 54 1, 3 (cos z only). u(x, y) = x 3 3xy 2, u(x, y) = x/(x 2 + y 2 ), Math 814 HW 2 September 29, 2007 p. 43: 1,4,6,13,15, p. 54 1, 3 (cos z only). u(x, y) = x 3 3xy 2, u(x, y) = x/(x 2 + y 2 ), p.43, Exercise 1. Show that the function f(z) = z 2 = x 2 + y 2 has a derivative

More information

Functions (4A) Young Won Lim 3/16/18

Functions (4A) Young Won Lim 3/16/18 Functions (4A) Copyright (c) 2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Equation of tangent plane: for implicitly defined surfaces section 12.9

Equation of tangent plane: for implicitly defined surfaces section 12.9 Equation of tangent plane: for implicitly defined surfaces section 12.9 Some surfaces are defined implicitly, such as the sphere x 2 + y 2 + z 2 = 1. In general an implicitly defined surface has the equation

More information

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv.

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv. MAC2313 Final A (5 pts) 1. Let f(x, y, z) be a function continuous in R 3 and let S be a surface parameterized by r(u, v) with the domain of the parameterization given by R; how many of the following are

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

Planar Graph (7A) Young Won Lim 5/21/18

Planar Graph (7A) Young Won Lim 5/21/18 Planar Graph (7A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Planar Graph (7A) Young Won Lim 6/20/18

Planar Graph (7A) Young Won Lim 6/20/18 Planar Graph (7A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Math 241, Final Exam. 12/11/12.

Math 241, Final Exam. 12/11/12. Math, Final Exam. //. No notes, calculator, or text. There are points total. Partial credit may be given. ircle or otherwise clearly identify your final answer. Name:. (5 points): Equation of a line. Find

More information

Kevin James. MTHSC 206 Section 15.6 Directional Derivatives and the Gra

Kevin James. MTHSC 206 Section 15.6 Directional Derivatives and the Gra MTHSC 206 Section 15.6 Directional Derivatives and the Gradient Vector Definition We define the directional derivative of the function f (x, y) at the point (x 0, y 0 ) in the direction of the unit vector

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

Triple Integrals in Rectangular Coordinates

Triple Integrals in Rectangular Coordinates Triple Integrals in Rectangular Coordinates P. Sam Johnson April 10, 2017 P. Sam Johnson (NIT Karnataka) Triple Integrals in Rectangular Coordinates April 10, 2017 1 / 28 Overview We use triple integrals

More information

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals Section 16.4 Parametrized Surfaces and Surface Integrals (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals MATH 127 (Section 16.4) Parametrized Surfaces and Surface Integrals

More information

Chapter 10 Homework: Parametric Equations and Polar Coordinates

Chapter 10 Homework: Parametric Equations and Polar Coordinates Chapter 1 Homework: Parametric Equations and Polar Coordinates Name Homework 1.2 1. Consider the parametric equations x = t and y = 3 t. a. Construct a table of values for t =, 1, 2, 3, and 4 b. Plot the

More information

Kevin James. MTHSC 206 Section 14.5 The Chain Rule

Kevin James. MTHSC 206 Section 14.5 The Chain Rule MTHSC 206 Section 14.5 The Chain Rule Theorem (Chain Rule - Case 1) Suppose that z = f (x, y) is a differentiable function and that x(t) and y(t) are both differentiable functions as well. Then, dz dt

More information

Multiple Integrals. max x i 0

Multiple Integrals. max x i 0 Multiple Integrals 1 Double Integrals Definite integrals appear when one solves Area problem. Find the area A of the region bounded above by the curve y = f(x), below by the x-axis, and on the sides by

More information

Homework 8. Due: Tuesday, March 31st, 2009

Homework 8. Due: Tuesday, March 31st, 2009 MATH 55 Applied Honors Calculus III Winter 9 Homework 8 Due: Tuesday, March 3st, 9 Section 6.5, pg. 54: 7, 3. Section 6.6, pg. 58:, 3. Section 6.7, pg. 66: 3, 5, 47. Section 6.8, pg. 73: 33, 38. Section

More information

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures Grad operator, triple and line integrals Notice: this material must not be used as a substitute for attending the lectures 1 .1 The grad operator Let f(x 1, x,..., x n ) be a function of the n variables

More information

Cauchy's Integral Formula

Cauchy's Integral Formula Cauchy's Integral Formula Thursday, October 24, 2013 1:57 PM Last time we discussed functions defined by integration over complex contours, and let's look at a particularly important example: Where C is

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46 Polar Coordinates Polar Coordinates: Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ)

More information

Tiny CPU Data Path (2B) Young Won Lim 5/2/16

Tiny CPU Data Path (2B) Young Won Lim 5/2/16 Tiny CPU Data Path (2B) Copyright (c) 24-26 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

More information

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper. MA 174: Multivariable alculus Final EXAM (practice) NAME lass Meeting Time: NO ALULATOR, BOOK, OR PAPER ARE ALLOWED. Use the back of the test pages for scrap paper. Points awarded 1. (5 pts). (5 pts).

More information

Eulerian Cycle (2A) Young Won Lim 4/26/18

Eulerian Cycle (2A) Young Won Lim 4/26/18 Eulerian Cycle (2A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

Topic 5.1: Line Elements and Scalar Line Integrals. Textbook: Section 16.2

Topic 5.1: Line Elements and Scalar Line Integrals. Textbook: Section 16.2 Topic 5.1: Line Elements and Scalar Line Integrals Textbook: Section 16.2 Warm-Up: Derivatives of Vector Functions Suppose r(t) = x(t) î + y(t) ĵ + z(t) ˆk parameterizes a curve C. The vector: is: r (t)

More information

Accessibility (1A) Young Won Lim 8/22/13

Accessibility (1A) Young Won Lim 8/22/13 Accessibility (1A) Copyright (c) 2011-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Directional Derivatives and the Gradient Vector Part 2

Directional Derivatives and the Gradient Vector Part 2 Directional Derivatives and the Gradient Vector Part 2 Lecture 25 February 28, 2007 Recall Fact Recall Fact If f is a dierentiable function of x and y, then f has a directional derivative in the direction

More information

2. Use the above table to transform the integral into a new integral problem using the integration by parts formula below:

2. Use the above table to transform the integral into a new integral problem using the integration by parts formula below: Integration by Parts: Basic (1238178) Due: Mon Aug 27 218 9:1 AM MDT Question 1 2 3 4 5 6 7 8 9 1 11 12 13 Instructions Read today's tes and Learning Goals 1. Question Details sp16 by parts intro 1 [34458]

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Math 136 Exam 1 Practice Problems

Math 136 Exam 1 Practice Problems Math Exam Practice Problems. Find the surface area of the surface of revolution generated by revolving the curve given by around the x-axis? To solve this we use the equation: In this case this translates

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley FINAL EXAMINATION, Fall 2012 DURATION: 3 hours Department of Mathematics MATH 53 Multivariable Calculus Examiner: Sean Fitzpatrick Total: 100 points Family Name: Given

More information

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations Lecture 15 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Length of a Curve and Parametric Equations Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 5 Lecture 15 1 Length of a

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

Math Exam III Review

Math Exam III Review Math 213 - Exam III Review Peter A. Perry University of Kentucky April 10, 2019 Homework Exam III is tonight at 5 PM Exam III will cover 15.1 15.3, 15.6 15.9, 16.1 16.2, and identifying conservative vector

More information

Binary Search Tree (3A) Young Won Lim 6/2/18

Binary Search Tree (3A) Young Won Lim 6/2/18 Binary Search Tree (A) /2/1 Copyright (c) 2015-201 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals)

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals) MA 43 Calculus III Fall 8 Dr. E. Jacobs Assignments Reading assignments are found in James Stewart s Calculus (Early Transcendentals) Assignment. Spheres and Other Surfaces Read. -. and.6 Section./Problems

More information

Plane Curve [Parametric Equation]

Plane Curve [Parametric Equation] Plane Curve [Parametric Equation] Bander Almutairi King Saud University December 1, 2015 Bander Almutairi (King Saud University) Plane Curve [Parametric Equation] December 1, 2015 1 / 8 1 Parametric Equation

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

MATH 261 EXAM III PRACTICE PROBLEMS

MATH 261 EXAM III PRACTICE PROBLEMS MATH 6 EXAM III PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 3 typically has 5 (not 6!) problems on it, with no more than one problem of any given

More information

Calculus on the complex plane C

Calculus on the complex plane C Calculus on the complex plane C Let z = x + iy be the complex variable on the complex plane C == R ir where i = 1. Definition A function f : C C is holomorphic if it is complex differentiable, i.e., for

More information

MATH 2400, Analytic Geometry and Calculus 3

MATH 2400, Analytic Geometry and Calculus 3 MATH 2400, Analytic Geometry and Calculus 3 List of important Definitions and Theorems 1 Foundations Definition 1. By a function f one understands a mathematical object consisting of (i) a set X, called

More information

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002 Math 13 Calculus III Practice Exam Solutions Fall 00 1. Let g(x, y, z) = e (x+y) + z (x + y). (a) What is the instantaneous rate of change of g at the point (,, 1) in the direction of the origin? We want

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

Binary Search Tree (2A) Young Won Lim 5/17/18

Binary Search Tree (2A) Young Won Lim 5/17/18 Binary Search Tree (2A) Copyright (c) 2015-2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Directional Derivatives and the Gradient Vector Part 2

Directional Derivatives and the Gradient Vector Part 2 Directional Derivatives and the Gradient Vector Part 2 Marius Ionescu October 26, 2012 Marius Ionescu () Directional Derivatives and the Gradient Vector Part October 2 26, 2012 1 / 12 Recall Fact Marius

More information

Lecture 23. Surface integrals, Stokes theorem, and the divergence theorem. Dan Nichols

Lecture 23. Surface integrals, Stokes theorem, and the divergence theorem. Dan Nichols Lecture 23 urface integrals, tokes theorem, and the divergence theorem an Nichols nichols@math.umass.edu MATH 233, pring 218 University of Massachusetts April 26, 218 (2) Last time: Green s theorem Theorem

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2 PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Summary...1 3. Assignments...2 i PMTH212, Multivariable Calculus Assignment Summary 2010 Assignment Date to be Posted

More information

Math 241, Exam 3 Information.

Math 241, Exam 3 Information. Math 241, xam 3 Information. 11/28/12, LC 310, 11:15-12:05. xam 3 will be based on: Sections 15.2-15.4, 15.6-15.8. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Chapter Seven. Chapter Seven

Chapter Seven. Chapter Seven Chapter Seven Chapter Seven ConcepTests for Section 7. CHAPTER SEVEN 7. Which of the following is an antiderivative of + 7? + 7 + 7 + 7 (e) + C. The most general antiderivative is + 7 + C, so is one possible

More information

Functions of Two variables.

Functions of Two variables. Functions of Two variables. Ferdinánd Filip filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 27 February 217 Ferdinánd Filip 27 February 217 Functions of Two variables. 1 / 36 Table of contents

More information

F dr = f dx + g dy + h dz. Using that dz = q x dx + q y dy we get. (g + hq y ) x (f + hq x ) y da.

F dr = f dx + g dy + h dz. Using that dz = q x dx + q y dy we get. (g + hq y ) x (f + hq x ) y da. Math 55 - Vector alculus II Notes 14.7 tokes Theorem tokes Theorem is the three-dimensional version of the circulation form of Green s Theorem. Let s quickly recall that theorem: Green s Theorem: Let be

More information

Structure (1A) Component

Structure (1A) Component Component Copyright (c) 2012 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

Minimum Spanning Tree (5A) Young Won Lim 5/11/18

Minimum Spanning Tree (5A) Young Won Lim 5/11/18 Minimum Spanning Tree (5A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Curves: We always parameterize a curve with a single variable, for example r(t) =

Curves: We always parameterize a curve with a single variable, for example r(t) = Final Exam Topics hapters 16 and 17 In a very broad sense, the two major topics of this exam will be line and surface integrals. Both of these have versions for scalar functions and vector fields, and

More information

INTRODUCTION TO LINE INTEGRALS

INTRODUCTION TO LINE INTEGRALS INTRODUTION TO LINE INTEGRALS PROF. MIHAEL VANVALKENBURGH Last week we discussed triple integrals. This week we will study a new topic of great importance in mathematics and physics: line integrals. 1.

More information

Algorithms (7A) Young Won Lim 4/18/17

Algorithms (7A) Young Won Lim 4/18/17 Algorithms (7A) Copyright (c) 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

Surfaces and Integral Curves

Surfaces and Integral Curves MODULE 1: MATHEMATICAL PRELIMINARIES 16 Lecture 3 Surfaces and Integral Curves In Lecture 3, we recall some geometrical concepts that are essential for understanding the nature of solutions of partial

More information

minutes/question 26 minutes

minutes/question 26 minutes st Set Section I (Multiple Choice) Part A (No Graphing Calculator) 3 problems @.96 minutes/question 6 minutes. What is 3 3 cos cos lim? h hh (D) - The limit does not exist.. At which of the five points

More information

Math 2374 Spring 2007 Midterm 3 Solutions - Page 1 of 6 April 25, 2007

Math 2374 Spring 2007 Midterm 3 Solutions - Page 1 of 6 April 25, 2007 Math 374 Spring 7 Midterm 3 Solutions - Page of 6 April 5, 7. (3 points) Consider the surface parametrized by (x, y, z) Φ(x, y) (x, y,4 (x +y )) between the planes z and z 3. (i) (5 points) Set up the

More information

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT:

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT: CALCULUS WITH PARAMETERIZED CURVES In calculus I we learned how to differentiate and integrate functions. In the chapter covering the applications of the integral, we learned how to find the length of

More information

MAC2313 Test 3 A E g(x, y, z) dy dx dz

MAC2313 Test 3 A E g(x, y, z) dy dx dz MAC2313 Test 3 A (5 pts) 1. If the function g(x, y, z) is integrated over the cylindrical solid bounded by x 2 + y 2 = 3, z = 1, and z = 7, the correct integral in Cartesian coordinates is given by: A.

More information

Algorithms Bubble Sort (1B) Young Won Lim 4/5/18

Algorithms Bubble Sort (1B) Young Won Lim 4/5/18 Algorithms Bubble Sort (1B) Young Won Lim 4/5/18 Copyright (c) 2017 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

More information

1 Double Integral. 1.1 Double Integral over Rectangular Domain

1 Double Integral. 1.1 Double Integral over Rectangular Domain Double Integral. Double Integral over Rectangular Domain As the definite integral of a positive function of one variable represents the area of the region between the graph and the x-asis, the double integral

More information

Binary Search Tree (3A) Young Won Lim 6/4/18

Binary Search Tree (3A) Young Won Lim 6/4/18 Binary Search Tree (A) /4/1 Copyright (c) 2015-201 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Surfaces. Ron Goldman Department of Computer Science Rice University

Surfaces. Ron Goldman Department of Computer Science Rice University Surfaces Ron Goldman Department of Computer Science Rice University Representations 1. Parametric Plane, Sphere, Tensor Product x = f (s,t) y = g(s,t) z = h(s,t) 2. Algebraic Plane, Sphere, Torus F(x,

More information

FPGA Configuration (1C) Young Won Lim 12/1/13

FPGA Configuration (1C) Young Won Lim 12/1/13 (1C) Young Won Lim 12/1/13 Copyright (c) 2011-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Solution of final examination

Solution of final examination of final examination Math 20, pring 201 December 9, 201 Problem 1 Let v(t) (2t e t ) i j + π cos(πt) k be the velocity of a particle with initial position r(0) ( 1, 0, 2). Find the accelaration at the

More information

Binary Search Tree (3A) Young Won Lim 6/6/18

Binary Search Tree (3A) Young Won Lim 6/6/18 Binary Search Tree (A) //1 Copyright (c) 2015-201 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points.

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. 1. Evaluate the area A of the triangle with the vertices

More information

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1 PRACTICE FINAL - MATH 2, Spring 22 The Final will have more material from Chapter 4 than other chapters. To study for chapters -3 you should review the old practice eams IN ADDITION TO what appears here.

More information

NAME: Section # SSN: X X X X

NAME: Section # SSN: X X X X Math 155 FINAL EXAM A May 5, 2003 NAME: Section # SSN: X X X X Question Grade 1 5 (out of 25) 6 10 (out of 25) 11 (out of 20) 12 (out of 20) 13 (out of 10) 14 (out of 10) 15 (out of 16) 16 (out of 24)

More information

3.1 Maxima/Minima Values

3.1 Maxima/Minima Values 3.1 Maxima/Minima Values Ex 1: Find all critical points for the curve given by f (x)=x 5 25 3 x3 +20x 1 on the interval [-3, 2]. Identify the min and max values. We're guaranteed max and min points if

More information

Directional Derivatives as Vectors

Directional Derivatives as Vectors Directional Derivatives as Vectors John Ganci 1 Al Lehnen 2 1 Richland College Dallas, TX jganci@dcccd.edu 2 Madison Area Technical College Madison, WI alehnen@matcmadison.edu Statement of problem We are

More information

Lecture 11 Differentiable Parametric Curves

Lecture 11 Differentiable Parametric Curves Lecture 11 Differentiable Parametric Curves 11.1 Definitions and Examples. 11.1.1 Definition. A differentiable parametric curve in R n of class C k (k 1) is a C k map t α(t) = (α 1 (t),..., α n (t)) of

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

University of Saskatchewan Department of Mathematics & Statistics MATH Final Instructors: (01) P. J. Browne (03) B. Friberg (05) H.

University of Saskatchewan Department of Mathematics & Statistics MATH Final Instructors: (01) P. J. Browne (03) B. Friberg (05) H. University of Saskatchewan Department of Mathematics & Statistics MATH. Final Instructors: (0) P. J. Browne (0) B. Friberg (0) H. Teismann December 9, 000 Time: :00-:00 pm This is an open book exam. Students

More information

Math 52 - Fall Final Exam PART 1

Math 52 - Fall Final Exam PART 1 Math 52 - Fall 2013 - Final Exam PART 1 Name: Student ID: Signature: Instructions: Print your name and student ID number and write your signature to indicate that you accept the Honor Code. This exam consists

More information

Memory Arrays (4H) Gate Level Design. Young Won Lim 3/15/16

Memory Arrays (4H) Gate Level Design. Young Won Lim 3/15/16 Arrays (4H) Gate Level Design Young Won Lim 3/15/16 Copyright (c) 2011, 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

More information

Final Exam Review. Name: Class: Date: Short Answer

Final Exam Review. Name: Class: Date: Short Answer Name: Class: Date: ID: A Final Exam Review Short Answer 1. Find the distance between the sphere (x 1) + (y + 1) + z = 1 4 and the sphere (x 3) + (y + ) + (z + ) = 1. Find, a a + b, a b, a, and 3a + 4b

More information

Triple Integrals. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Triple Integrals

Triple Integrals. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Triple Integrals Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 211 Riemann Sum Approach Suppose we wish to integrate w f (x, y, z), a continuous function, on the box-shaped region

More information

Math Line Integrals I

Math Line Integrals I Mth 213 - Line Integrls I Peter A. Perry University of Kentucky November 16, 2018 Homework Re-Red Section 16.2 for Mondy Work on Stewrt problems for 16.2: 1-21 (odd), 33-41 (odd), 49, 50 Begin Webwork

More information

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables 302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.8 Chapter Review 3.8.1 Concepts to Know You should have an understanding of, and be able to explain the concepts listed below. 1. Boundary and interior points

More information

Calculus 234. Problems. May 15, 2003

Calculus 234. Problems. May 15, 2003 alculus 234 Problems May 15, 23 A book reference marked [TF] indicates this semester s official text; a book reference marked [VPR] indicates the official text for next semester. These are [TF] Thomas

More information

MIDTERM. Section: Signature:

MIDTERM. Section: Signature: MIDTERM Math 32B 8/8/2 Name: Section: Signature: Read all of the following information before starting the exam: Check your exam to make sure all pages are present. NO CALCULATORS! Show all work, clearly

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

Integration using Transformations in Polar, Cylindrical, and Spherical Coordinates

Integration using Transformations in Polar, Cylindrical, and Spherical Coordinates ections 15.4 Integration using Transformations in Polar, Cylindrical, and pherical Coordinates Cylindrical Coordinates pherical Coordinates MATH 127 (ection 15.5) Applications of Multiple Integrals The

More information

Gradient and Directional Derivatives

Gradient and Directional Derivatives Gradient and Directional Derivatives MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Given z = f (x, y) we understand that f : gives the rate of change of z in

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information