Minkowski Sums. Dinesh Manocha Gokul Varadhan. UNC Chapel Hill. NUS CS 5247 David Hsu

Size: px
Start display at page:

Download "Minkowski Sums. Dinesh Manocha Gokul Varadhan. UNC Chapel Hill. NUS CS 5247 David Hsu"

Transcription

1 Minkowski Sums Dinesh Manocha Gokul Varadhan UNC Chapel Hill NUS CS 5247 David Hsu

2 Last Lecture Configuration space workspace configuration space 2

3 Problem Configuration Space of a Translating Robot Input: Polygonal moving object translating in 2-D workspace Polygonal obstacles Output: configuration space obstacles represented as polygons 3

4 Configuration Space of a Translating Robot Workspace Obstacle Robot Configuration Space C-obstacle Robot y x C-obstacle is a polygon. 4

5 Minkowski Sum A B = { a + b a A, b B} A B 5

6 Minkowski Sum A B = { a + b a A, b B} 6

7 Minkowski Sum 7

8 Minkowski Sum A B = { a + b a A, b B} 8

9 Configuration Space Obstacle C-obstacle is O -R Classic result by Lozano-Perez and Wesley 1979 = Obstacle O Robot R C-obstacle O -R 9

10 Properties of Minkowski Sum Minkowski sum of boundary of P and boundary of Q is a subset of boundary of P Q Minkowski of two convex sets is convex 10

11 Minkowski sum of convex polygons The Minkowski sum of two convex polygons P and Q of m and n vertices respectively is a convex polygon P + Q of m + n vertices. The vertices of P + Q are the sums of vertices of P and Q. = 11

12 Gauss Map Gauss map of a convex polygon Edge point on the circle defined by the normal Vertex arc defined by its adjacent edges 12

13 Gauss Map Property of Minkowski Sum p+q belongs to the boundary of Minkowski sum only if the Gauss map of p and q overlap. 13

14 Computational efficiency Running time O(n+m) Space O(n+m) 14

15 Minkowski Sum of Non-convex Polygons Decompose into convex polygons (e.g., triangles or trapezoids), Compute the Minkowski sums, and Take the union Complexity of Minkowski sum O(n 2 m 2 ) 15

16 Worst case example O(n 2 m 2 ) complexity 2D example Agarwal et al

17 3D Minkowski Sum Convex case O(nm) complexity Many methods known for computing Minkowski sum in this case Convex hull method Compute sums of all pairs of vertices of P and Q Compute their convex hull O(mn log(mn)) complexity More efficient methods are known [Guibas and Seidel 1987] 17

18 3D Minkowski Sum Non-convex case O(n 3 m 3 ) complexity Computationally challenging Common approach resorts to convex decomposition 18

19 3D Minkowski Sum Computation Two objects P and Q with m and n convex pieces respectively Compute mn pairwise Minkowski sums between all pairs of convex pieces Compute the union of the pairwise Minkowski sums Main bottleneck Union computation mn is typically large (tens of thousands) Union of mn pairwise Minkowski sums has a complexity close to O(m 3 n 3 ) No practical algorithms known for exact Minkowski sum computation 19

20 Minkowski Sum Approximation We developed an accurate and efficient approximate algorithm [Varadhan and Manocha 2004] Provides certain geometric and topological guarantees on the approximation Approximation is close to the boundary of the Minkowski sum It has the same number of connected components and genus as the exact Minkowski sum 20

21 Brake Hub (4,736 tris) Rod (24 tris) Union of 1,777 primitives 21

22 Anvil (144 tris) Spoon (336 tris) Union of 4,446 primitives 22

23 Knife (516 tris) Scissors (636 tris) Union of 63,790 primitives 23

24 444 tris 1,134 tris 24

25 Union of 66,667 primitives 25

26 Offsetting Cup (1,000 tris) Cup Offset Gear 2,382 tris) Gear Offset 26

27 Configuration Space Approximation - 3D Translation = Obstacle O Robot R C-obstacle O -R 27

28 Assembly Obstacle Robot 28

29 Assembly Obstacle Goal Start Roadmap 16 secs Path Search 0.22 secs 29

30 Assembly 30

31 Path in Configuration Space Goal Start Path 31

32 Other Applications Minkowski sums and configuration spaces have also been used for Interference Detection Morphing Penetration Depth Tolerance Analysis Packing Knee/Joint Modeling 32

33 Applications - Dynamic Simulation Interference Detection Penetration Depth Computation Kim et al

34 Morphing A B Morph (1 t) A tb 34

35 Applications - Packing 35

36 Configuration Space of 2T+1R Robot Dinesh Manocha Gokul Varadhan UNC Chapel Hill

37 Polygonal robot translating & rotating in 2-D workspace workspac e configuration space 37

38 Polygonal robot translating & rotating in 2-D workspace θ y x 38

39 Contact Surfaces (C-surfaces) A C-surface arises from a contact between features of the robot and the obstacle Type A contact Type B contact 39

40 Type A Contact Surface APPL A i,j Contact is feasible when i (q). (b j-1 b j ) 0 Λ i (q). (b j+1 b j ) 0 a i+1 (q) b j-1 b j a i (q) i (q) b j+1 40

41 2D Translation and Rotation Obstacles Robot 41

42 Contact Surfaces 3,929 contact surfaces 42

43 Representation of C-obstacle How can we represent C-obstacle in terms of C- surfaces? For the case of a convex robot and a convex obstacle, q CO Non-convex case Resort to convex decomposition CONST A i,j (q) Λ CONST B i,j(q) is true for all contacts (edgevertex pairs) 43

44 Free Space and Contact Surfaces F is bounded by the C-surfaces Free space F F C-surface C-obstacle F 44

45 Free Space Computation To obtain the free space requires computing arrangement of the C- surfaces 45

46 Arrangement Arrangement A(S) of a set S of geometric objects [Halperin 1997; Agarwal & Sharir 2000] Decomposition of space into relatively open connected cells of dimensions 0,...,d Arrangement of lines (clipped within a window) 46

47 Free Space Computation Compute an arrangement of the C-surfaces Compute intersections between the C-surfaces Retain the appropriate portions of the arrangement Free space F F C-obstacle 47

48 Free Space Computation Arrangement computation is difficult Computing surface-surface intersection is prone to robustness problems Typically O(n 2 ) number of contact surfaces Contact surfaces are non-linear 48

49 Free Space Approximation We have developed an accurate and efficient approximate algorithm [Varadhan and Manocha 2004] Provides certain geometric and topological guarantees on the approximation Approximation is close to the boundary of the free space It has the same number of connected components and genus as the exact Minkowski sum 49

50 Free Space Approximation 3,929 contact surfaces Free space boundary approximation 50

51 2T+1R: Gears Goal Start 51

52 2T+1R: Gears 52

53 2T+1R: Gears Path in Configuration Space Obstacle Robot Obstacle y x Path Goal Narrow passage Start 53

Accurate Minkowski Sum Approximation of Polyhedral Models

Accurate Minkowski Sum Approximation of Polyhedral Models Accurate Minkowski Sum Approximation of Polyhedral Models Gokul Varadhan Dinesh Manocha University of North Carolina at Chapel Hill {varadhan,dm}@cs.unc.edu http://gamma.cs.unc.edu/recons Brake Hub Rod

More information

Motion Planning. Thanks to Piotr Indyk. Lecture 11: Motion Planning

Motion Planning. Thanks to Piotr Indyk. Lecture 11: Motion Planning Motion Planning Thanks to Piotr Indyk Piano Mover s Problem Given: A set of obstacles The initial position of a robot The final position of a robot Goal: find a path that Moves the robot from the initial

More information

Generalized Penetration Depth Computation

Generalized Penetration Depth Computation Generalized Penetration Depth Computation Liangjun Zhang 1 Young J. Kim 2 Gokul Varadhan 1 Dinesh Manocha 1 1 Dept. of Computer Science, University of North Carolina at Chapel Hill, USA, {zlj,varadhan,dm}@cs.unc.edu

More information

Abstract. 1 Introduction. 2 Translational Penetration Depth

Abstract. 1 Introduction. 2 Translational Penetration Depth Fast Penetration Depth Computation and its Applications (http://gamma.cs.unc.edu/deep PD PDG) Young J. Kim Dept. of Computer Sci. and Eng. Ewha Womans Univ., Seoul, Korea kimy@ewha.ac.kr Liangjun Zhang

More information

Closest Point Query Among The Union Of Convex Polytopes Using Rasterization Hardware

Closest Point Query Among The Union Of Convex Polytopes Using Rasterization Hardware Closest Point Query Among The Union Of Convex Polytopes Using Rasterization Hardware Young J. Kim Kenneth Hoff Ming C. Lin and Dinesh Manocha Department of Computer Science University of North Carolina

More information

Path Planning for Point Robots. NUS CS 5247 David Hsu

Path Planning for Point Robots. NUS CS 5247 David Hsu Path Planning for Point Robots NUS CS 5247 David Hsu Problem Input Robot represented as a point in the plane Obstacles represented as polygons Initial and goal positions Output A collision-free path between

More information

Real-time Continuous Collision Detection and Penetration Depth Computation

Real-time Continuous Collision Detection and Penetration Depth Computation Real-time Continuous Collision Detection and Penetration Depth Computation Young J. Kim http://graphics.ewha.ac.kr Ewha Womans University Non-penetration Constraint No overlap between geometric objects

More information

Exact Minkowski sums of polyhedra and exact and efficient decomposition of polyhedra in convex pieces

Exact Minkowski sums of polyhedra and exact and efficient decomposition of polyhedra in convex pieces Exact Minkowski sums of polyhedra and exact and efficient decomposition of polyhedra in convex pieces Citation for published version (APA): Hachenberger, P. (2007). Exact Minkowski sums of polyhedra and

More information

ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space

ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Tianyu Wang: tiw161@eng.ucsd.edu Yongxi Lu: yol070@eng.ucsd.edu

More information

Motion Planning. O Rourke, Chapter 8

Motion Planning. O Rourke, Chapter 8 O Rourke, Chapter 8 Outline Translating a polygon Moving a ladder Shortest Path (Point-to-Point) Goal: Given disjoint polygons in the plane, and given positions s and t, find the shortest path from s to

More information

Star-shaped Roadmaps - A Deterministic Sampling Approach for Complete Motion Planning

Star-shaped Roadmaps - A Deterministic Sampling Approach for Complete Motion Planning Star-shaped Roadmaps - A Deterministic Sampling Approach for Complete Motion Planning Gokul Varadhan Dinesh Manocha University of North Carolina at Chapel Hill http://gamma.cs.unc.edu/motion/ Email: {varadhan,dm}@cs.unc.edu

More information

Accurate Sampling-Based Algorithms for Surface Extraction and Motion Planning

Accurate Sampling-Based Algorithms for Surface Extraction and Motion Planning Accurate Sampling-Based Algorithms for Surface Extraction and Motion Planning by Gokul Varadhan A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment

More information

f-v v-f f-e e-f f-f e-e-cross e-v v-e degenerate PCs e-e-touch v-v

f-v v-f f-e e-f f-f e-e-cross e-v v-e degenerate PCs e-e-touch v-v Planning Motion Compliant to Complex Contact States Λ uerong Ji, Jing iao Computer Science Department University of North Carolina - Charlotte Charlotte, NC 28223, US xji@uncc.edu, xiao@uncc.edu bstract

More information

A Simple Method for Computing Minkowski Sum Boundary in 3D Using Collision Detection

A Simple Method for Computing Minkowski Sum Boundary in 3D Using Collision Detection A Simple Method for Computing Minkowski Sum Boundary in 3D Using Collision Detection Jyh-Ming Lien Abstract: Computing the Minkowski sum of two polyhedra exactly has been shown difficult. Despite its fundamental

More information

Motion Planning 2D. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Motion Planning 2D. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Motion Planning 2D Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Tratto dai corsi: CS 326A: Motion Planning ai.stanford.edu/~latombe/cs326/2007/index.htm Prof. J.C. Latombe Stanford

More information

CS 763 F16. Moving objects in space with obstacles/constraints.

CS 763 F16. Moving objects in space with obstacles/constraints. Moving objects in space with obstacles/constraints. Objects = robots, vehicles, jointed linkages (robot arm), tools (e.g. on automated assembly line), foldable/bendable objects. Objects need not be physical

More information

Fast and Robust 2D Minkowski Sum Using Reduced Convolution

Fast and Robust 2D Minkowski Sum Using Reduced Convolution Fast and Robust 2D Minkowski Sum Using Reduced Convolution Evan Behar Jyh-Ming Lien Abstract We propose a new method for computing the 2-d Minkowski sum of non-convex polygons. Our method is convolution

More information

Lecture 11 Combinatorial Planning: In the Plane

Lecture 11 Combinatorial Planning: In the Plane CS 460/560 Introduction to Computational Robotics Fall 2017, Rutgers University Lecture 11 Combinatorial Planning: In the Plane Instructor: Jingjin Yu Outline Convex shapes, revisited Combinatorial planning

More information

DYNAMIC MINKOWSKI SUM OPERATIONS

DYNAMIC MINKOWSKI SUM OPERATIONS DYNAMIC MINKOWSKI SUM OPERATIONS by Evan Behar A Dissertation Submitted to the Graduate Faculty of George Mason University In Partial fulfillment of The Requirements for the Degree of Doctor of Philosophy

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) Path Planning for Point Robots Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/mpa Class Objectives Motion planning framework Classic motion planning approaches 2 3 Configuration Space:

More information

Collision Detection. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill

Collision Detection. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill Collision Detection These slides are mainly from Ming Lin s course notes at UNC Chapel Hill http://www.cs.unc.edu/~lin/comp259-s06/ Computer Animation ILE5030 Computer Animation and Special Effects 2 Haptic

More information

Collision and Proximity Queries

Collision and Proximity Queries Collision and Proximity Queries Dinesh Manocha (based on slides from Ming Lin) COMP790-058 Fall 2013 Geometric Proximity Queries l Given two object, how would you check: If they intersect with each other

More information

A Hybrid Approach for Complete Motion Planning

A Hybrid Approach for Complete Motion Planning A Hybrid Approach for Complete Motion Planning Liangjun Zhang 1 Young J. Kim 2 Dinesh Manocha 1 1 Dept. of Computer Science, University of North Carolina at Chapel Hill, USA, {zlj,dm}@cs.unc.edu 2 Dept.

More information

Feature-Sensitive Subdivision and Isosurface Reconstruction

Feature-Sensitive Subdivision and Isosurface Reconstruction Feature-Sensitive Subdivision and Isosurface Reconstruction Gokul Varadhan University of North Carolina at Chapel Hill Shankar Krishnan AT&T Research Labs Young J. Kim Dinesh Manocha University of North

More information

Fast Penetration Depth Computation Using Rasterization Hardware and Hierarchical Refinement

Fast Penetration Depth Computation Using Rasterization Hardware and Hierarchical Refinement Fast Penetration Depth Computation Using Rasterization Hardware and Hierarchical Refinement Young J. Kim Miguel A. Otaduy Ming C. Lin and Dinesh Manocha Department of Computer Science University of North

More information

Six-Degree-of-Freedom Haptic Rendering Using Incremental and Localized Computations

Six-Degree-of-Freedom Haptic Rendering Using Incremental and Localized Computations Six-Degree-of-Freedom Haptic Rendering Using Incremental and Localized Computations Young J. Kim Miguel A. Otaduy Ming C. Lin Dinesh Manocha Department of Computer Science University of North Carolina

More information

Interference-Free Polyhedral Configurations for Stacking

Interference-Free Polyhedral Configurations for Stacking IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 2, APRIL 2002 147 Interference-Free Polyhedral Configurations for Stacking Venkateswara R. Ayyadevara, David A. Bourne, Kenji Shimada, and Robert

More information

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Motion Planning 1 Retraction and Cell Decomposition

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Motion Planning 1 Retraction and Cell Decomposition Autonomous and Mobile Robotics Prof. Giuseppe Oriolo Motion Planning 1 Retraction and Cell Decomposition motivation robots are expected to perform tasks in workspaces populated by obstacles autonomy requires

More information

High-performance Penetration Depth Computation for Haptic Rendering

High-performance Penetration Depth Computation for Haptic Rendering High-performance Penetration Depth Computation for Haptic Rendering Young J. Kim http://graphics.ewha.ac.kr Ewha Womans University Issues of Interpenetration Position and orientation of the haptic probe,

More information

3 A Brute Force Method 4 DYNAMIC MINKOWSKI SUMS (DYMSUM)

3 A Brute Force Method 4 DYNAMIC MINKOWSKI SUMS (DYMSUM) 4400 University Drive MS#4A5 Fairfax, VA 22030-4444 USA http://cs.gmu.edu/ 703-993-1530 Department of Computer Science George Mason University Technical Report Series Dynamic Minkowski Sum of Convex Shapes

More information

Line segment intersection. Family of intersection problems

Line segment intersection. Family of intersection problems CG Lecture 2 Line segment intersection Intersecting two line segments Line sweep algorithm Convex polygon intersection Boolean operations on polygons Subdivision overlay algorithm 1 Family of intersection

More information

APPLIED aspects of COMPUTATIONAL GEOMETRY. Dan Halperin School of Computer Science Tel Aviv University

APPLIED aspects of COMPUTATIONAL GEOMETRY. Dan Halperin School of Computer Science Tel Aviv University APPLIED aspects of COMPUTATIONAL GEOMETRY Introduction Dan Halperin School of Computer Science Tel Aviv University Lesson overview Background The main topics Course mechanics Additional topics 2 Background

More information

A Survey on Techniques for Computing Penetration Depth.

A Survey on Techniques for Computing Penetration Depth. A Survey on Techniques for Computing Penetration Depth. Shashidhara K. Ganjugunte Abstract. Penetration depth (PD) is a measure that indicates the amount of overlap between two objects. The most popular

More information

Geometric Computations for Simulation

Geometric Computations for Simulation 1 Geometric Computations for Simulation David E. Johnson I. INTRODUCTION A static virtual world would be boring and unlikely to draw in a user enough to create a sense of immersion. Simulation allows things

More information

PolyDepth: Real-Time Penetration Depth Computation Using Iterative Contact-Space Projection

PolyDepth: Real-Time Penetration Depth Computation Using Iterative Contact-Space Projection ACM Transactions on Graphics (ToG), Vol. 31, No. 1, Article 5, 2012 PolyDepth: Real-Time Penetration Depth Computation Using Iterative Contact-Space Projection Changsoo Je Ewha Womans University and Sogang

More information

P Q. outer boundary of P

P Q. outer boundary of P The Complexity of a Single Face of a Minkowski Sum Sariel Har-Peled Timothy M. Chan y Boris Aronov z Dan Halperin x Jack Snoeyink { Abstract This note considers the complexity of a free region in the conguration

More information

Figure 2: If P is one convex polygon, then a result of Kedem et al. [10] implies that P Φ Q has (mn) vertices. Figure 3: Tight passage: the desired ta

Figure 2: If P is one convex polygon, then a result of Kedem et al. [10] implies that P Φ Q has (mn) vertices. Figure 3: Tight passage: the desired ta Robust and Efficient Construction of Planar Minkowski Sums Λ Eyal Flato y Dan Halperin z January 4, 2000 Abstract The Minkowski sum (also known as the vector sum) of two sets P and Q in IR 2 is the set

More information

Collision Detection II. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill

Collision Detection II. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill Collision Detection II These slides are mainly from Ming Lin s course notes at UNC Chapel Hill http://www.cs.unc.edu/~lin/comp259-s06/ Some Possible Approaches Geometric methods Algebraic techniques Hierarchical

More information

A Hybrid Approach for Complete Motion Planning

A Hybrid Approach for Complete Motion Planning A Hybrid Approach for Complete Motion Planning Liangjun Zhang 1 Young J. Kim 2 Dinesh Manocha 1 1 Dept. of Computer Science, University of North Carolina at Chapel Hill, USA, {zlj,dm}@cs.unc.edu 2 Dept.

More information

Computer-Aided Design. Contributing vertices-based Minkowski sum computation of convex polyhedra

Computer-Aided Design. Contributing vertices-based Minkowski sum computation of convex polyhedra Computer-Aided Design 41 (2009) 525 538 Contents lists available at ScienceDirect Computer-Aided Design journal homepage: www.elsevier.com/locate/cad Contributing vertices-based Minkowski sum computation

More information

6.141: Robotics systems and science Lecture 9: Configuration Space and Motion Planning

6.141: Robotics systems and science Lecture 9: Configuration Space and Motion Planning 6.141: Robotics systems and science Lecture 9: Configuration Space and Motion Planning Lecture Notes Prepared by Daniela Rus EECS/MIT Spring 2011 Figures by Nancy Amato, Rodney Brooks, Vijay Kumar Reading:

More information

Lesson 05. Mid Phase. Collision Detection

Lesson 05. Mid Phase. Collision Detection Lesson 05 Mid Phase Collision Detection Lecture 05 Outline Problem definition and motivations Generic Bounding Volume Hierarchy (BVH) BVH construction, fitting, overlapping Metrics and Tandem traversal

More information

References. Additional lecture notes for 2/18/02.

References. Additional lecture notes for 2/18/02. References Additional lecture notes for 2/18/02. I-COLLIDE: Interactive and Exact Collision Detection for Large-Scale Environments, by Cohen, Lin, Manocha & Ponamgi, Proc. of ACM Symposium on Interactive

More information

Manipula0on Algorithms Mo0on Planning. Mo#on Planning I. Katharina Muelling (NREC, Carnegie Mellon University) 1

Manipula0on Algorithms Mo0on Planning. Mo#on Planning I. Katharina Muelling (NREC, Carnegie Mellon University) 1 16-843 Manipula0on Algorithms Mo0on Planning Mo#on Planning I Katharina Muelling (NREC, Carnegie Mellon University) 1 Configura0on Space Obstacles Star Algorithm Convex robot, transla#on C obs : convex

More information

EE631 Cooperating Autonomous Mobile Robots

EE631 Cooperating Autonomous Mobile Robots EE631 Cooperating Autonomous Mobile Robots Lecture 3: Path Planning Algorithm Prof. Yi Guo ECE Dept. Plan Representing the Space Path Planning Methods A* Search Algorithm D* Search Algorithm Representing

More information

Planning in Mobile Robotics

Planning in Mobile Robotics Planning in Mobile Robotics Part I. Miroslav Kulich Intelligent and Mobile Robotics Group Gerstner Laboratory for Intelligent Decision Making and Control Czech Technical University in Prague Tuesday 26/07/2011

More information

6.141: Robotics systems and science Lecture 9: Configuration Space and Motion Planning

6.141: Robotics systems and science Lecture 9: Configuration Space and Motion Planning 6.141: Robotics systems and science Lecture 9: Configuration Space and Motion Planning Lecture Notes Prepared by Daniela Rus EECS/MIT Spring 2012 Figures by Nancy Amato, Rodney Brooks, Vijay Kumar Reading:

More information

for Motion Planning RSS Lecture 10 Prof. Seth Teller

for Motion Planning RSS Lecture 10 Prof. Seth Teller Configuration Space for Motion Planning RSS Lecture 10 Monday, 8 March 2010 Prof. Seth Teller Siegwart & Nourbahksh S 6.2 (Thanks to Nancy Amato, Rod Brooks, Vijay Kumar, and Daniela Rus for some of the

More information

Computational Geometry Algorithms Library. Geographic information Systems

Computational Geometry Algorithms Library. Geographic information Systems Computational Geometry Algorithms Library in Geographic information Systems Edward Verbree, Peter van Oosterom and Wilko Quak TU Delft, Department of Geodesy, Thijsseweg 11, 2629 JA Delft, the Netherlands

More information

Fast Penetration Depth Computation for Physically-based Animation

Fast Penetration Depth Computation for Physically-based Animation Fast Penetration Depth Computation for Physically-based Animation Young J. Kim Miguel A. Otaduy Ming C. Lin Dinesh Manocha Department of Computer Science University of North Carolina at Chapel Hill {youngkim,otaduy,lin,dm}@cs.unc.edu

More information

Distance and Collision Detection

Distance and Collision Detection Distance and Collision Detection Efi Fogel efif@post.tau.ac.il School of computer science, Tel Aviv University Fall 2003/4 Motion Planning seminar 1/33 The Papers A Fast Procedure for Computing the Distance

More information

DiFi: Distance Fields - Fast Computation Using Graphics Hardware

DiFi: Distance Fields - Fast Computation Using Graphics Hardware DiFi: Distance Fields - Fast Computation Using Graphics Hardware Avneesh Sud Dinesh Manocha UNC-Chapel Hill http://gamma.cs.unc.edu/difi Distance Fields Distance Function For a site a scalar function f:r

More information

Robot Motion Planning

Robot Motion Planning Robot Motion Planning slides by Jan Faigl Department of Computer Science and Engineering Faculty of Electrical Engineering, Czech Technical University in Prague lecture A4M36PAH - Planning and Games Dpt.

More information

Road Map Methods. Including material from Howie Choset / G.D. Hager S. Leonard

Road Map Methods. Including material from Howie Choset / G.D. Hager S. Leonard Road Map Methods Including material from Howie Choset The Basic Idea Capture the connectivity of Q free by a graph or network of paths. 16-735, Howie Choset, with significant copying from who loosely based

More information

Simplified Voronoi diagrams for motion planning of quadratically-solvable Gough-Stewart platforms

Simplified Voronoi diagrams for motion planning of quadratically-solvable Gough-Stewart platforms Simplified Voronoi diagrams for motion planning of quadratically-solvable Gough-Stewart platforms Rubén Vaca, Joan Aranda, and Federico Thomas Abstract The obstacles in Configuration Space of quadratically-solvable

More information

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams in the Plane Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams As important as convex hulls Captures the neighborhood (proximity) information of geometric objects

More information

FIMS: a New and Efficient Algorithm for the Computation of Minkowski Sum of Convex Polyhedra

FIMS: a New and Efficient Algorithm for the Computation of Minkowski Sum of Convex Polyhedra 1 FIMS: a New and Efficient Algorithm for the Computation of Minkowski Sum of Convex Polyhedra Hichem Barki, Florence Denis, and Florent Dupont LIRIS UMR CNRS 5205 Université de Lyon Université Claude

More information

: Mesh Processing. Chapter 8

: Mesh Processing. Chapter 8 600.657: Mesh Processing Chapter 8 Handling Mesh Degeneracies [Botsch et al., Polygon Mesh Processing] Class of Approaches Geometric: Preserve the mesh where it s good. Volumetric: Can guarantee no self-intersection.

More information

Spring 2010: Lecture 9. Ashutosh Saxena. Ashutosh Saxena

Spring 2010: Lecture 9. Ashutosh Saxena. Ashutosh Saxena CS 4758/6758: Robot Learning Spring 2010: Lecture 9 Why planning and control? Video Typical Architecture Planning 0.1 Hz Control 50 Hz Does it apply to all robots and all scenarios? Previous Lecture: Potential

More information

Polynomial/Rational Approximation of Minkowski Sum Boundary Curves 1

Polynomial/Rational Approximation of Minkowski Sum Boundary Curves 1 GRAPHICAL MODELS AND IMAGE PROCESSING Vol. 60, No. 2, March, pp. 136 165, 1998 ARTICLE NO. IP970464 Polynomial/Rational Approximation of Minkowski Sum Boundary Curves 1 In-Kwon Lee and Myung-Soo Kim Department

More information

Algorithmic Semi-algebraic Geometry and its applications. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology.

Algorithmic Semi-algebraic Geometry and its applications. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 1 Algorithmic Semi-algebraic Geometry and its applications Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 2 Introduction: Three problems 1. Plan the motion of

More information

Computer Game Programming Basic Path Finding

Computer Game Programming Basic Path Finding 15-466 Computer Game Programming Basic Path Finding Robotics Institute Path Planning Sven Path Planning needs to be very fast (especially for games with many characters) needs to generate believable paths

More information

Parametric and Kinetic Minimum Spanning Trees

Parametric and Kinetic Minimum Spanning Trees Parametric and Kinetic Minimum Spanning Trees Pankaj K. Agarwal David Eppstein Leonidas J. Guibas Monika R. Henzinger 1 Parametric Minimum Spanning Tree: Given graph, edges labeled by linear functions

More information

ICS 161 Algorithms Winter 1998 Final Exam. 1: out of 15. 2: out of 15. 3: out of 20. 4: out of 15. 5: out of 20. 6: out of 15.

ICS 161 Algorithms Winter 1998 Final Exam. 1: out of 15. 2: out of 15. 3: out of 20. 4: out of 15. 5: out of 20. 6: out of 15. ICS 161 Algorithms Winter 1998 Final Exam Name: ID: 1: out of 15 2: out of 15 3: out of 20 4: out of 15 5: out of 20 6: out of 15 total: out of 100 1. Solve the following recurrences. (Just give the solutions;

More information

Polygon Partitioning. Lecture03

Polygon Partitioning. Lecture03 1 Polygon Partitioning Lecture03 2 History of Triangulation Algorithms 3 Outline Monotone polygon Triangulation of monotone polygon Trapezoidal decomposition Decomposition in monotone mountain Convex decomposition

More information

Lecture notes: Object modeling

Lecture notes: Object modeling Lecture notes: Object modeling One of the classic problems in computer vision is to construct a model of an object from an image of the object. An object model has the following general principles: Compact

More information

A Cell Decomposition Approach to Cooperative Path Planning and Collision Avoidance via Disjunctive Programming

A Cell Decomposition Approach to Cooperative Path Planning and Collision Avoidance via Disjunctive Programming 49th IEEE Conference on Decision Control December 15-17, 21 Hilton Atlanta Hotel, Atlanta, GA, USA A Cell Decomposition Approach to Cooperative Path Planning Collision Avoidance via Disjunctive Programming

More information

Shorter, Smaller, Tighter Old and New Challenges

Shorter, Smaller, Tighter Old and New Challenges How can Computational Geometry help Robotics and Automation: Shorter, Smaller, Tighter Old and New Challenges Dan Halperin School of Computer Science Tel Aviv University Algorithms in the Field/CG, CG

More information

Path Planning Based on Closed-Form Characterization of Collision-Free Configuration-Spaces for Ellipsoidal Bodies, Obstacles, and Environments

Path Planning Based on Closed-Form Characterization of Collision-Free Configuration-Spaces for Ellipsoidal Bodies, Obstacles, and Environments Proceedings of the 1 st International Workshop on Robot Learning and Planning (RLP 216) in conjunction with 216 Robotics: Science and Systems June 18, 216 Ann Arbor, Michigan, USA Path Planning Based on

More information

Geometric Streaming Algorithms with a Sorting Primitive (TR CS )

Geometric Streaming Algorithms with a Sorting Primitive (TR CS ) Geometric Streaming Algorithms with a Sorting Primitive (TR CS-2007-17) Eric Y. Chen School of Computer Science University of Waterloo Waterloo, ON N2L 3G1, Canada, y28chen@cs.uwaterloo.ca Abstract. We

More information

Relative Convex Hulls in Semi-Dynamic Subdivisions

Relative Convex Hulls in Semi-Dynamic Subdivisions Relative Convex Hulls in Semi-Dynamic Subdivisions Mashhood Ishaque 1 and Csaba D. Tóth 2 1 Dept. of Comp. Sci., Tufts University, Medford, MA, mishaq01@cs.tufts.edu 2 Dept. of Mathematics, University

More information

Topology Preserving Surface Extraction Using Adaptive Subdivision

Topology Preserving Surface Extraction Using Adaptive Subdivision Eurographics Symposium on Geometry Processing (2004) R. Scopigno, D. Zorin, (Editors) Topology Preserving Surface Extraction Using Adaptive Subdivision Gokul Varadhan 1, Shankar Krishnan 2, TVN Sriram

More information

CS Path Planning

CS Path Planning Why Path Planning? CS 603 - Path Planning Roderic A. Grupen 4/13/15 Robotics 1 4/13/15 Robotics 2 Why Motion Planning? Origins of Motion Planning Virtual Prototyping! Character Animation! Structural Molecular

More information

Mobile Robot Path Planning: an Efficient Distance Computation between Obstacles using Discrete Boundary Model (DBM)

Mobile Robot Path Planning: an Efficient Distance Computation between Obstacles using Discrete Boundary Model (DBM) Mobile Robot Path Planning: an Efficient Distance Computation between Obstacles using Discrete Boundary Model (DBM) Md. Nasir Uddin Laskar, TaeChoong Chung Artificial Intelligence Lab, Dept. of Computer

More information

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling Welcome to the lectures on computer graphics. We have

More information

Minkowski Sums of Simple Polygons

Minkowski Sums of Simple Polygons TEL-AVIV UNIVERSITY RAYMOND AND BEVERLY SACKLER FACULTY OF EXACT SCIENCES SCHOOL OF COMPUTER SCIENCE Minkowski Sums of Simple Polygons Thesis submitted in partial fulfillment of the requirements for the

More information

Geometric Modeling Mortenson Chapter 11. Complex Model Construction

Geometric Modeling Mortenson Chapter 11. Complex Model Construction Geometric Modeling 91.580.201 Mortenson Chapter 11 Complex Model Construction Topics Topology of Models Connectivity and other intrinsic properties Graph-Based Models Emphasize topological structure Boolean

More information

Improved Bounds for Intersecting Triangles and Halving Planes

Improved Bounds for Intersecting Triangles and Halving Planes Improved Bounds for Intersecting Triangles and Halving Planes David Eppstein Department of Information and Computer Science University of California, Irvine, CA 92717 Tech. Report 91-60 July 15, 1991 Abstract

More information

NEXT-GENERATION SWEEP TOOL: A METHOD FOR GENERATING ALL-HEX MESHES ON TWO-AND-ONE-HALF DIMENSIONAL GEOMTRIES

NEXT-GENERATION SWEEP TOOL: A METHOD FOR GENERATING ALL-HEX MESHES ON TWO-AND-ONE-HALF DIMENSIONAL GEOMTRIES NEXT-GENERATION SWEEP TOOL: A METHOD FOR GENERATING ALL-HEX MESHES ON TWO-AND-ONE-HALF DIMENSIONAL GEOMTRIES PATRICK M. KNUPP PARALLEL COMPUTING SCIENCES DEPARTMENT SANDIA NATIONAL LABORATORIES M/S 0441,

More information

Planning Movement of a Robotic Arm for Assembly of Products

Planning Movement of a Robotic Arm for Assembly of Products Journal of Mechanics Engineering and Automation 5 (2015) 257-262 doi: 10.17265/2159-5275/2015.04.008 D DAVID PUBLISHING Planning Movement of a Robotic Arm for Assembly of Products Jose Ismael Ojeda Campaña

More information

Smallest Intersecting Circle for a Set of Polygons

Smallest Intersecting Circle for a Set of Polygons Smallest Intersecting Circle for a Set of Polygons Peter Otfried Joachim Christian Marc Esther René Michiel Antoine Alexander 31st August 2005 1 Introduction Motivated by automated label placement of groups

More information

Robot motion planning using exact cell decomposition and potential field methods

Robot motion planning using exact cell decomposition and potential field methods Robot motion planning using exact cell decomposition and potential field methods DUŠAN GLAVAŠKI, MARIO VOLF, MIRJANA BONKOVIĆ Laboratory for Robotics and Intelligent Systems Faculty of Electrical Engineering,

More information

Some Open Problems in Graph Theory and Computational Geometry

Some Open Problems in Graph Theory and Computational Geometry Some Open Problems in Graph Theory and Computational Geometry David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science ICS 269, January 25, 2002 Two Models of Algorithms Research

More information

Speeding Up the Incremental Construction of the Union of Geometric Objects in Practice

Speeding Up the Incremental Construction of the Union of Geometric Objects in Practice Speeding Up the Incremental Construction of the Union of Geometric Objects in Practice Eti Ezra Dan Halperin Micha Sharir School of Computer Science Tel Aviv University {estere,danha,michas}@post.tau.ac.il

More information

Critique for CS 448B: Topics in Modeling The Voronoi-clip Collision Detection Algorithm

Critique for CS 448B: Topics in Modeling The Voronoi-clip Collision Detection Algorithm Critique for CS 448B: Topics in Modeling The Voronoi-clip Collision Detection Algorithm 1. Citation Richard Bragg March 3, 2000 Mirtich B. (1997) V-Clip: Fast and Robust Polyhedral Collision Detection.

More information

Technical Section. Tribox bounds for three-dimensional objects

Technical Section. Tribox bounds for three-dimensional objects PERGAMON Computers & Graphics 23 (1999) 429-437 Technical Section Tribox bounds for three-dimensional objects A. Crosnier a, *, J.R. Rossignac b a LIMM, 161 rue Ada, 34392 Montpellier Cedex 5, France b

More information

Computational Geometry

Computational Geometry Lecture 1: Introduction and convex hulls Geometry: points, lines,... Geometric objects Geometric relations Combinatorial complexity Computational geometry Plane (two-dimensional), R 2 Space (three-dimensional),

More information

ALGORITHMS FOR BALL HULLS AND BALL INTERSECTIONS IN NORMED PLANES

ALGORITHMS FOR BALL HULLS AND BALL INTERSECTIONS IN NORMED PLANES ALGORITHMS FOR BALL HULLS AND BALL INTERSECTIONS IN NORMED PLANES Pedro Martín and Horst Martini Abstract. Extending results of Hershberger and Suri for the Euclidean plane, we show that ball hulls and

More information

Aalborg Universitet. Generating Approximative Minimum Length Paths in 3D for UAVs Schøler, Flemming; La Cour-Harbo, Anders; Bisgaard, Morten

Aalborg Universitet. Generating Approximative Minimum Length Paths in 3D for UAVs Schøler, Flemming; La Cour-Harbo, Anders; Bisgaard, Morten Aalborg Universitet Generating Approximative Minimum Length Paths in 3D for UAVs Schøler, Flemming; La Cour-Harbo, Anders; Bisgaard, Morten Published in: Intelligent Vehicles Symposium (IV), 2012 IEEE

More information

Coverage and Search Algorithms. Chapter 10

Coverage and Search Algorithms. Chapter 10 Coverage and Search Algorithms Chapter 10 Objectives To investigate some simple algorithms for covering the area in an environment To understand how to break down an environment into simple convex pieces

More information

Topology Preserving Surface Extraction Using Star-shaped Subdivision

Topology Preserving Surface Extraction Using Star-shaped Subdivision Topology Preserving Surface Extraction Using Star-shaped Subdivision Gokul Varadhan Shankar Krishnan T.V.N. Sriram Dinesh Manocha Turbine(exterior) Turbine(interior) Simplified Turbine Boolean Operations

More information

Name: Let the Catmull-Rom curve q(u) be defined by the following control points: p 1 = 0, 1 p 2 = 1, 1 p 3 = 1, 0. p 2. p 1.

Name: Let the Catmull-Rom curve q(u) be defined by the following control points: p 1 = 0, 1 p 2 = 1, 1 p 3 = 1, 0. p 2. p 1. Name: 2 1. Let the Catmull-Rom curve q(u) be defined by the following control points: p 0 = 0, 0 p 1 = 0, 1 p 2 = 1, 1 p 3 = 1, 0 p 4 = 2, 0 y p 1 p 2 p 0 p 3 p 4 x Thus, q(i) =p i for i =1, 2, 3. For

More information

Lecture 4: Dynamic programming I

Lecture 4: Dynamic programming I Lecture : Dynamic programming I Dynamic programming is a powerful, tabular method that solves problems by combining solutions to subproblems. It was introduced by Bellman in the 950 s (when programming

More information

Robotic Motion Planning: Cell Decompositions (with some discussion on coverage and pursuer/evader)

Robotic Motion Planning: Cell Decompositions (with some discussion on coverage and pursuer/evader) Robotic Motion Planning: Cell Decompositions (with some discussion on coverage and pursuer/evader) Robotics Institute 16-735 http://voronoi.sbp.ri.cmu.edu/~motion Howie Choset http://voronoi.sbp.ri.cmu.edu/~choset

More information

Contents. Preface... VII. Part I Classical Topics Revisited

Contents. Preface... VII. Part I Classical Topics Revisited Contents Preface........................................................ VII Part I Classical Topics Revisited 1 Sphere Packings........................................... 3 1.1 Kissing Numbers of Spheres..............................

More information

Robot Motion Planning in Eight Directions

Robot Motion Planning in Eight Directions Robot Motion Planning in Eight Directions Miloš Šeda and Tomáš Březina Abstract In this paper, we investigate the problem of 8-directional robot motion planning where the goal is to find a collision-free

More information

Collision Detection with Bounding Volume Hierarchies

Collision Detection with Bounding Volume Hierarchies Simulation in Computer Graphics Collision Detection with Bounding Volume Hierarchies Matthias Teschner Computer Science Department University of Freiburg Outline introduction bounding volumes BV hierarchies

More information

Geometric Rounding. Snap rounding arrangements of segments. Dan Halperin. Tel Aviv University. AGC-CGAL05 Rounding 1

Geometric Rounding. Snap rounding arrangements of segments. Dan Halperin. Tel Aviv University. AGC-CGAL05 Rounding 1 Geometric Rounding Snap rounding arrangements of segments Dan Halperin danha@tau.ac.il Tel Aviv University AGC-CGAL05 Rounding 1 Rounding geometric objects transforming an arbitrary precision object into

More information

Triangulation by Ear Clipping

Triangulation by Ear Clipping Triangulation by Ear Clipping David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To

More information

Motion Planning via Manifold Samples

Motion Planning via Manifold Samples The Raymond and Beverly Sackler Faculty of Exact Sciences The Blavatnik School of Computer Science Motion Planning via Manifold Samples Thesis submitted in partial fulfillment of the requirements for the

More information