Creating life in Ancient Sites

Size: px
Start display at page:

Download "Creating life in Ancient Sites"

Transcription

1 Creating life in Ancient Sites Presentation to Dongguk University Nadia MAGNENAT-THALMANN Switzerland Background Human body has been a long time inspiration topics 1

2 Background Generating human models I How to: build geometry to represent human bodies? Methods: by interactive design Surface model, multi-layered by anatomical models physics-based technology Accurate sumulation of muscles, bones and fat tissues reconstruction techniques Capture shapes in real world From 2D or 3D data [Wilhelms97] [Shen [Schroeder92] 95] [Hoppe94] [Heckbert94] [Carr01] [Nedel Commercial and Thalmann98] softwares scanners [Hilton99][Lee00][Sand03] [Lee et al 00] [Aubel et al 02] [Shen95] [Sand et al 03] Background 3D image capture technology - Why? Systematic observation of human bodies. Example: CAESAR (Civilian American and European Surface Anthropometry Resource) project 3D whole body scanners (c.f. tape measure) extract body measurements 3D Anthropometric database Advantages: Accuracy Speed Comfort 2

3 Background 3D image capture technology - Limitations Classical problems Complexity, noise removal, hole-filling Courtesy by Clive Arrowsmith Other requirements body model of desired sizes standards, individuals easily and almost instantly Not quite possible solely by using the capture technology!! Jung-Ang daily manufacture s customers expectation: : Show me a my 3d mannequin 3d model without such and such bothering size me too much!! Background Generating human models II How to: systematically obtain a VARIETY of human shapes? (cf. one model at a time) Methods: by segment scale by variational modeling by using examples Trade-offs between controllability quality of shape time costs [Azuola et al 94] [DeCarlo et al 98] [Blanz and Vetter99] 3

4 Face Cloning Face Cloning: Input: 2 Photographs. Generic head & animation. Method: Feature based. Output: Animatable virtual human. Real photos of Guido Virtual Guido The texture mapping Creating textured cloth body Body Cloning & textured cloth: Input: Three photographs. H-Anim 1.1 generic body. Feature: Edge based. Output: Animatable virtual human. 4

5 Textured cloth body animation Motion capture: Optical motion capturing system (Vicon) Anatomical converter > sensor information in model animation parameters. Motion Capture Textured cloth body animation Some examples 5

6 Research in Mechanical Models for Cloth Current models focus either on realism, Finite elements Continuum mechanics Or speed. Particle systems Implicit integration 6

7 Early Cloth Simulation Models B. Lafleur, N. Magnenat-Thalmann, D. Thalmann, Cloth Animation with self-collision detection, Proc. IFIP Conf. On graphics modelling, Tokyo, 1991 Viscoelastic surfaces using Lagrange equations Carignan, Yang, Magnenat-Thalmann, dressing animated synthetic actors with complex clothes, Proc. SIGGRAPH 92 Modified Terzopoulos model with octree collision detection and advanced pattern-seaming garment design General Mechanical Parameters Internal Forces (From surface deformations) Elasticity (metric, curvature) Viscosity Plasticity External Forces (From environment interactions) Gravity, Air Viscosity Contact reaction, Friction Miscellaneous Interactions 7

8 Mechanical Simulation Systems Particle Systems Discrete representation of the system using a set of masses interacting with forces modeling macroscopic mechanical behavior. Spring-Mass Systems Relevance of mechanical parameters Identify the relevance of mechanical parameters in the motion of fabric: Garments in motion: Dissipative parameters have importance (viscosity, plasticity, aerodynamic interactions). Dissipative parameters are not measured by standard experiments (FAST, KES, ). 8

9 Simulated Mechanical Parameters Elasticity: stress/strain curve. Viscosity: stress/(δstrain/δt) curve. Poisson coefficient Aerodynamic effects: force dependent on the relative speed of the air. Plasticity: hysteresis in stress/strain curve. Gravity Material (internal) parameters Metric elasticity: measurement of the fabric elongation elasticity (N.m-1) Weft and Warp elasticity: elasticity along the Weft and Warp directions Shear elasticity: elasticity for a shearing deformation between weft and warp directions Bending elasticity: measurement of the fabric bending elasticity (N.m) Weft and Warp bending: bending along the Weft and Warp directions Viscosity parameters: defined for each elastic parameter Density: mass per surface unit of the fabric (Kg.m-2) 9

10 Contact & Environment parameters Thickness of the fabric (m) Coulombian friction: ratio between the maximum tangential contact force and the normal pressure force between two surfaces in contact Gravity: nominal acceleration of objects left at rest (9.81 m.s-2) Aerodynamic viscosity: force exerted on a fabric per surface unit and per velocity unit between the fabric speed and the air speed: wind Normal (Flowing: N.m-3.s) and tangential (Damping: N.m- 2.(m.s-1)-1) components relative to the orientation of the fabric surface Example of material parameters Weft Elasticity N.m -1 Weft Elasticity 25 N.m -1 Weft Elasticity 50 N.m -1 Warp Elasticity N.m -1 Warp Elasticity 25 N.m -1 Warp Elasticity 50 N.m -1 Shear G 60 N.m -1 Shear G 86 N.m -1 Shear G 55 N.m -1 Weft Bending N.m Weft Bending N.m Weft Bending N.m Warp Bending N.m Warp Bending N.m Warp Bending N.m Density Kg.m -2 Density Kg.m -2 Density Kg.m -2 Cotton Tencel Linen 10

11 The making of clothes with our Fashionizer platform DEMO 2D patterns 3D garments from 2D patterns 11

12 «Prêt-à-porter» Collection Garment Creation Tools Interactive tools for creating, draping, animating and prototyping garments on animated virtual characters [1] [1] P. Volino, N. Magnenat-Thalmann, Accurate Garment Prototyping and Simulation, Computer-Aided Design and Applications journal, CAD Solutions, 2(5), pp ,

13 Research collaboration with Adidas Garment Prototyping Accurate Simulation of Parameters Evaluation of strain, stress and contact pressure all over all over the cloth surface. 13

14 Color coded visualizations of deformation parameters Deformation in Warp direction Deformation in Weft direction Deformation in Shear direction Color coded visualizations of deformation parameters Pressure 14

15 Haute Couture Garments Mode, Passion et Collection - Le regard d une femme Musée d Art et d histoire, Genève Haute Couture Garments Lacroix Lanvin Nina Ricci Paco Rabanne 15

16 Haute Couture Garments Exhibition Robert Piguet/Yverdon Modèle designed by Bohan 16

17 Exhibition Robert Piguet/Yverdon Modèle designed by Givenchy Exhibition Robert Piguet/Yverdon Modèle designed by Givenchy 17

18 Open Problems in Hair Simulation Hair Shape Modeling Many recent attempts, however not yet matured Hair Dynamics Stiffness dynamics of individual hair was grossly approximated considering current computing power (1GHz, 1GB RAM) Hair-hair interaction not attempted until recently Open Problems in Hair Simulation Hair Rendering Fairly matured and is available through commercial systems. However, global-illumination for hair with detailed shading models is not yet attempted. Real-time hair animation and rendering With possible compromise on the realism Hair interaction with a user (hairdresser for example) 18

19 Our Non Real-Time Approach Hair Shape Modeling* Hair shape as streamlines of fluid flow Hair Rendering Single iteration hair rendering including volumetric shadows using graphics hardware *Sunil Hadap and. "Interactive Hair Styler based on Fluid Flow", Eurographics Workshop on Computer Animation and Simulation'2000, Interlaken 2000 Making of Placement of smoothed particles to realize hair-fluid 19

20 Our Non Real-Time Approach Hair Dynamics** Stiffness dynamics of non-straight hair strand Elaborate inertial dynamics using reduced coordinate formulation Hair-hair, hair-body and hair-air interaction dynamics **Sunil Hadap,, "Modeling Dynamic Hair as a Continuum", Computer Graphics Forum, Volume 20, Issue 3, Eurographics 2001 Proceedings, Manchester, United Kingdom, September 2001 Individual Hair Dynamics Body forces Without stiffness Collision as fluid boundary With stiffness 20

21 Results Computer Animations Bunch of hair Virtual Experimental Setup (collaboration with Unilever) Switch length 24cm Number of hair strands 1000 Hair segment length 0.9cm Amplitude 4cm Frequency 1Hz Number of cycles - 2, 21

22 Variations in Strand Stiffness Increase in stiffness gives considerable phase difference. In reality, it is the change in hair thickness which varies the bending stiffness. However, it is hard to model various hair thickness We may simulate the process by changing the stiffness coefficient E Observe the tip movement with respect to the movement of the base E E=250 E=500 E=750 Simulation - Adjusting the air drag Normal hair makes 5-6 oscillations before coming to rest. When hair is treated with styling products, air drag increases to reduce number of oscillations to merely

23 Variations in Internal Damping The internal damping is associated to energy loss as elastic material undergoes deformation Though the large change in internal damping has minute effect on the hair movement, it is important to increase stability of the simulation ID ID=0.1 ID=0.2 ID=0.3 Variations in Hair-hair Interaction The spread in the bunch of hair is a result of hair-hair interaction One can vary the constant Kc to change this interaction An immediate effect is on the spread of the tip One can also observe how the tip makes a bouncy movement as Kc increases. K c Equation of state K=200 K=1000 K=5000 K c ρ0 ρc 23

24 Results Computer Animations Hair fall Results Computer Animations Blown by wind 24

25 Result Real-Time Animation of Hairstyles Managing Complexity of Hair Simulation More than hair strands Mechanical behavior of individual strands Collisions and friction on the skull Collisions and friction between strands Physical state (wetness, styling products) Aerodynamics No chance to simulate an explicit mechanical model in real-time. 25

26 Real-Time Animation of Hairstyles Ideas for Speeding Up Hair Simulation Simplification of the mechanical model Reduction of the degrees of freedom Macroscopic approximations Interpolation Techniques Wisp or Cluster models Particle systems of variable topology Volume hair models Free-Form Deformations 1. Real-Time FFD Hair Animation(Research with Kao Corporation, Japan) The main idea: Deforming the complete hairstyle using a mechanically-animated Free-Form Deformation lattice. 26

27 1. Real-Time FFD Hair Animation Main advantages: Drastic and controllable reduction of the number of degrees of freedom of the mechanical model => Real-time mechanical simulation Simple and fast interpolation scheme for computing the deformed hairstyle => Real-time motion of any feature of the hairstyle Any hairstyle can be animated => Versatility and design simplicity 2. FFD Hairstyle Deformation Building the lattice around the hairstyle The lattice is attached to the rigid-body motion R of the skull The lattice is then deformed by mechanical simulation 27

28 3. Animating the FFD Lattice Mechanical Properties to be Simulated Mechanical behavior of hair: Density, Elasticity Interactions between strands External forces exerted on hair: Gravity Aerodynamic effects Collisions between hairs and other objects: Body parts: Skull, shoulders Other objects 3. Animating the FFD Lattice Collision Effects Between the hair and the body Head Shoulders Metaball-based model of body parts Approximate modeling with a low number of primitives Easy animation of body deformations Attached to the rigid head motion (skull) or the body skeleton (shoulders) 28

29 3. Animating the FFD Lattice Numerical Integration Particle system integrated by using the implicit Inverse Euler method Using the Conjugate Gradient as linear system solver On-the-fly matrix assembly for capturing all the nonlinearities of the mechanical system Good robustness with any mechanical system when using constant time steps 4. Scalability and Level-of-Detail Options for Adjusting the Accuracy Tradeoff Number of lattice attachments The more attachments, the more accurate the mechanical behavior of the hairs Size of the free-form deformation grid The finer the grid, the richer and diverse the deformation patterns of the hair Number of metaballs The more metaballs, the more accurate the collisions between the hair and the body 29

30 4. Scalability and Level-of-Detail Performance and Level-of-Detail Level-of-Detail schemes have to be combined with adequate multiresolution rendering techniques 4. Scalability and Level-of-Detail Benefits of the FFD Model Scalability, for efficient LOD implementations Compatible with any hair rendering method Weak reliance on the strand nature of hairs Total freedom of hairstyle design using any standard design tool 30

31 CULTURAL HERITAGE: European Research Project Lifeplus: augmented life in Pompei LIFEPLUS proposes new Augmented Reality narrative spaces for the innovative revival of life in ancient frescospaintings in Pompeii 31

32 Scenario 3, e.g. La Villa dei Misteri Scenario 1, e.g. Thermopolio di Vetuzio Placido Scenario 2, e.g. La Casa dei Vettii Research in CLOTHES AND FACIAL ANIMATION Real-time Cloth and hair simulation Hybrid deformation Real-time Facial emotion expression and Speech animation 32

33 33

34 movie 34

35 Research in HUMANS Simulation Real-time realistic skin rendering and interactive programmable shading module movie Artificial life methods for behavioural animation of virtual characters 35

36 Early Mixed Realities simulations in ancient Pompeii (offline AR) movie 36

37 AR Life: User Experience 73 User arrives at the AR Life hot spot inform about AR Life Simulation option start theater-like immersive AR simulation User participation and interaction using: HMD + head mounted camera watching AR revival of the ancient life dramatic scenario featuring high quality Virtual Humans blended into the real scenery moving around the scene, changing point of view AR Life: Functional Elements 74 main functional elements real-time camera tracking: marker-less real-time VR simulation: advanced Virtual Humans blending track camera blend Camera and VR result generate VR 37

38 38

39 Making of 39

CS 231. Deformation simulation (and faces)

CS 231. Deformation simulation (and faces) CS 231 Deformation simulation (and faces) 1 Cloth Simulation deformable surface model Represent cloth model as a triangular or rectangular grid Points of finite mass as vertices Forces or energies of points

More information

Cloth Simulation. Tanja Munz. Master of Science Computer Animation and Visual Effects. CGI Techniques Report

Cloth Simulation. Tanja Munz. Master of Science Computer Animation and Visual Effects. CGI Techniques Report Cloth Simulation CGI Techniques Report Tanja Munz Master of Science Computer Animation and Visual Effects 21st November, 2014 Abstract Cloth simulation is a wide and popular area of research. First papers

More information

CS 231. Deformation simulation (and faces)

CS 231. Deformation simulation (and faces) CS 231 Deformation simulation (and faces) Deformation BODY Simulation Discretization Spring-mass models difficult to model continuum properties Simple & fast to implement and understand Finite Element

More information

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123 2.7 Cloth Animation 320491: Advanced Graphics - Chapter 2 123 Example: Cloth draping Image Michael Kass 320491: Advanced Graphics - Chapter 2 124 Cloth using mass-spring model Network of masses and springs

More information

A Layered Wisp Model for Simulating Interactions inside Long Hair

A Layered Wisp Model for Simulating Interactions inside Long Hair A Layered Wisp Model for Simulating Interactions inside Long Hair Eric Plante Taarna Studios Inc. Current affiliation: discreet. Eric.Plante@discreet.com Marie-Paule Cani imagis-gravir/imag, joint lab

More information

From early draping to haute couture models: 20 years of research

From early draping to haute couture models: 20 years of research Visual Comput (2005) 21: 506 519 DOI 10.1007/s00371-005-0347-6 INVITED PAPER Nadia Magnenat-Thalmann Pascal Volino From early draping to haute couture models: 20 years of research Published online: 1 September

More information

Comparing Efficiency of Integration Methods for Cloth Simulation

Comparing Efficiency of Integration Methods for Cloth Simulation Comparing Efficiency of Integration Methods for Cloth Simulation Pascal VOLINO, Nadia MAGNENAT-THALMANN MIRALab, C.U.I., University of Geneva - CH-2, Switzerland Web: http://miralabwww.unige.ch Email:

More information

Cloth Simulation. COMP 768 Presentation Zhen Wei

Cloth Simulation. COMP 768 Presentation Zhen Wei Cloth Simulation COMP 768 Presentation Zhen Wei Outline Motivation and Application Cloth Simulation Methods Physically-based Cloth Simulation Overview Development References 2 Motivation Movies Games VR

More information

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based Animation Forward and

More information

Modeling Hair Movement with Mass-Springs

Modeling Hair Movement with Mass-Springs Modeling Hair Movement with Mass-Springs Anna Sokol ansokol@cs.sunysb.edu Computer Science Department SUY Stony Brook Abstract: This paper is presenting a framework for modeling hair movement using mass-springs.

More information

INTERACTIVE VIRTUAL HAIR-DRESSING ROOM Nadia Magnenat-Thalmann, Melanie Montagnol, Rajeev Gupta, and Pascal Volino

INTERACTIVE VIRTUAL HAIR-DRESSING ROOM Nadia Magnenat-Thalmann, Melanie Montagnol, Rajeev Gupta, and Pascal Volino 1 INTERACTIVE VIRTUAL HAIR-DRESSING ROOM Nadia Magnenat-Thalmann, Melanie Montagnol, Rajeev Gupta, and Pascal Volino MIRALab - University of Geneva (thalmann, montagnol, gupta, volino)@miralab.unige.ch

More information

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Deformable Objects Matthias Teschner Computer Science Department University of Freiburg Outline introduction forces performance collision handling visualization University

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Pop Worksheet! Teams of 2. Hand in to Jeramey after we discuss. Sketch the first few frames of a 2D explicit Euler mass-spring simulation for a 2x3 cloth network

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

A PLASTIC-VISCO-ELASTIC MODEL FOR WRINKLES IN FACIAL ANIMATION AND SKIN AGING

A PLASTIC-VISCO-ELASTIC MODEL FOR WRINKLES IN FACIAL ANIMATION AND SKIN AGING MIRALab Copyright Information 1998 A PLASTIC-VISCO-ELASTIC MODEL FOR WRINKLES IN FACIAL ANIMATION AND SKIN AGING YIN WU, NADIA MAGNENAT THALMANN MIRALab, CUI, University of Geneva DANIEL THALMAN Computer

More information

Computer Animation. Algorithms and Techniques. z< MORGAN KAUFMANN PUBLISHERS. Rick Parent Ohio State University AN IMPRINT OF ELSEVIER SCIENCE

Computer Animation. Algorithms and Techniques. z< MORGAN KAUFMANN PUBLISHERS. Rick Parent Ohio State University AN IMPRINT OF ELSEVIER SCIENCE Computer Animation Algorithms and Techniques Rick Parent Ohio State University z< MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF ELSEVIER SCIENCE AMSTERDAM BOSTON LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO

More information

Mass-Spring Systems. Last Time?

Mass-Spring Systems. Last Time? Mass-Spring Systems Last Time? Implicit Surfaces & Marching Cubes/Tetras Collision Detection & Conservative Bounding Regions Spatial Acceleration Data Structures Octree, k-d tree, BSF tree 1 Today Particle

More information

Introduction to Computer Graphics. Animation (2) May 26, 2016 Kenshi Takayama

Introduction to Computer Graphics. Animation (2) May 26, 2016 Kenshi Takayama Introduction to Computer Graphics Animation (2) May 26, 2016 Kenshi Takayama Physically-based deformations 2 Simple example: single mass & spring in 1D Mass m, position x, spring coefficient k, rest length

More information

Interactive Virtual Hair-Dressing Room

Interactive Virtual Hair-Dressing Room 535 Interactive Virtual Hair-Dressing Room Nadia Magnenat-Thalmann, Melanie Montagnol, Rajeev Gupta and Pascal Volino MIRALab - University of Geneva (TUthalmannUT, TUmontagnolUT, TUguptaUT, TUvolinoUT)U@miralab.unige.chU

More information

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO F ^ k.^

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO F ^ k.^ Computer a jap Animation Algorithms and Techniques Second Edition Rick Parent Ohio State University AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

More information

Example 24 Spring-back

Example 24 Spring-back Example 24 Spring-back Summary The spring-back simulation of sheet metal bent into a hat-shape is studied. The problem is one of the famous tests from the Numisheet 93. As spring-back is generally a quasi-static

More information

Interaction of Fluid Simulation Based on PhysX Physics Engine. Huibai Wang, Jianfei Wan, Fengquan Zhang

Interaction of Fluid Simulation Based on PhysX Physics Engine. Huibai Wang, Jianfei Wan, Fengquan Zhang 4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015) Interaction of Fluid Simulation Based on PhysX Physics Engine Huibai Wang, Jianfei Wan, Fengquan Zhang College

More information

Chapter 3: Computer Animation Reminder: Descriptive animation. Procedural animation : Examples. Towards methods that generate motion?

Chapter 3: Computer Animation Reminder: Descriptive animation. Procedural animation : Examples. Towards methods that generate motion? Chapter 3 : Computer Animation (continued) Chapter 3: Computer Animation Reminder: Descriptive animation Describes a single motion, with manual control Ex: direct kinematics with key-frames, inverse kinematics

More information

Synthesizing Realistic Facial Expressions from Photographs

Synthesizing Realistic Facial Expressions from Photographs Synthesizing Realistic Facial Expressions from Photographs 1998 F. Pighin, J Hecker, D. Lischinskiy, R. Szeliskiz and D. H. Salesin University of Washington, The Hebrew University Microsoft Research 1

More information

Cloth and Hair Collisions

Cloth and Hair Collisions algorithm (presented in Section IV-C.2), by using the recent capabilities of GPUs. Koster et al. [78] exploited graphics hardware by storing all the opacity maps in a 3D texture, to have the hair self-shadow

More information

A Method of Drawing Cloth Patterns With Fabric Behavior

A Method of Drawing Cloth Patterns With Fabric Behavior A Method of Drawing Cloth Patterns With Fabric Behavior SHIH-WEN HSIAO, RONG-QI CHEN Department of Industrial Design National Cheng Kung University Tainan 70101 TAIWAN ABSTRACT: - Computer-aided cloth

More information

Tube stamping simulation for the crossmember of rear suspension system

Tube stamping simulation for the crossmember of rear suspension system Tube stamping simulation for the crossmember of rear suspension system G. Borgna A. Santini P. Monchiero Magneti Marelli Suspension Systems Abstract: A recent innovation project at Magneti Marelli Suspension

More information

Index FEATURES LIST 2

Index FEATURES LIST 2 FULL FEATURES LIST Index RealFlow 10 Features 4 Liquids 4 Elastics 4 Granulars 4 Rigids 5 Fibres 5 Built-in Basic Primitives 5 Particle Emitters 6 Rigid Bodies 6 Soft Bodies 6 Fracture Tools 7 Joints 7

More information

C O M P U T E R G R A P H I C S. Computer Animation. Guoying Zhao 1 / 66

C O M P U T E R G R A P H I C S. Computer Animation. Guoying Zhao 1 / 66 Computer Animation Guoying Zhao 1 / 66 Basic Elements of Computer Graphics Modeling construct the 3D model of the scene Rendering Render the 3D model, compute the color of each pixel. The color is related

More information

CGT 581 G Fluids. Overview. Some terms. Some terms

CGT 581 G Fluids. Overview. Some terms. Some terms CGT 581 G Fluids Bedřich Beneš, Ph.D. Purdue University Department of Computer Graphics Technology Overview Some terms Incompressible Navier-Stokes Boundary conditions Lagrange vs. Euler Eulerian approaches

More information

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research 1 Realtime Water Simulation on GPU Nuttapong Chentanez NVIDIA Research 2 3 Overview Approaches to realtime water simulation Hybrid shallow water solver + particles Hybrid 3D tall cell water solver + particles

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Optional Reading for Last Time: Spring-Mass Systems Numerical Integration (Euler, Midpoint, Runge-Kutta) Modeling string, hair, & cloth HW2: Cloth & Fluid Simulation

More information

Image-Based Deformation of Objects in Real Scenes

Image-Based Deformation of Objects in Real Scenes Image-Based Deformation of Objects in Real Scenes Han-Vit Chung and In-Kwon Lee Dept. of Computer Science, Yonsei University sharpguy@cs.yonsei.ac.kr, iklee@yonsei.ac.kr Abstract. We present a new method

More information

Interactive Fluid Simulation using Augmented Reality Interface

Interactive Fluid Simulation using Augmented Reality Interface Interactive Fluid Simulation using Augmented Reality Interface Makoto Fuisawa 1, Hirokazu Kato 1 1 Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma,

More information

Cloth The Animation of Natural Phenomena Adrien Treuille

Cloth The Animation of Natural Phenomena Adrien Treuille Cloth The Animation of Natural Phenomena Adrien Treuille Real Cloth Overview Properties of Real Cloth Cloth Simulation Properties of Cloth sheet of fabric (4) parameter for stretching (1) (4) parameter

More information

QP-Collide: A New Approach to Collision Treatment

QP-Collide: A New Approach to Collision Treatment QP-Collide: A New Approach to Collision Treatment Laks Raghupathi François Faure Co-encadre par Marie-Paule CANI EVASION/GRAVIR INRIA Rhône-Alpes, Grenoble Teaser Video Classical Physical Simulation Advance

More information

Shape of Things to Come: Next-Gen Physics Deep Dive

Shape of Things to Come: Next-Gen Physics Deep Dive Shape of Things to Come: Next-Gen Physics Deep Dive Jean Pierre Bordes NVIDIA Corporation Free PhysX on CUDA PhysX by NVIDIA since March 2008 PhysX on CUDA available: August 2008 GPU PhysX in Games Physical

More information

CHAPTER-10 DYNAMIC SIMULATION USING LS-DYNA

CHAPTER-10 DYNAMIC SIMULATION USING LS-DYNA DYNAMIC SIMULATION USING LS-DYNA CHAPTER-10 10.1 Introduction In the past few decades, the Finite Element Method (FEM) has been developed into a key indispensable technology in the modeling and simulation

More information

Index FEATURES LIST 2

Index FEATURES LIST 2 FULL FEATURES LIST Index RealFlow Features 4 Liquids 4 Elastics 4 Granulars 4 Rigids 5 Viscous Materials 5 Viscoelastic Materials 5 Fibres 5 Built-in Basic Primitives 6 Particle Emitters 6 Rigid Bodies

More information

Human Body Shape Deformation from. Front and Side Images

Human Body Shape Deformation from. Front and Side Images Human Body Shape Deformation from Front and Side Images Yueh-Ling Lin 1 and Mao-Jiun J. Wang 2 Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan

More information

Particle Systems. Lecture 8 Taku Komura

Particle Systems. Lecture 8 Taku Komura Particle Systems Computer Animation and Visualisation Lecture 8 Taku Komura Overview Particle System Modelling fuzzy objects (fire, smoke) Modelling liquid Modelling cloth Integration : implicit integration,

More information

Directional Constraint Enforcement for Fast Cloth Simulation

Directional Constraint Enforcement for Fast Cloth Simulation In Proceedings of The Fourth International Conference on Motion in Games (MIG), 2011 Directional Constraint Enforcement for Fast Cloth Simulation Oktar Ozgen and Marcelo Kallmann University of California,

More information

Meshless Modeling, Animating, and Simulating Point-Based Geometry

Meshless Modeling, Animating, and Simulating Point-Based Geometry Meshless Modeling, Animating, and Simulating Point-Based Geometry Xiaohu Guo SUNY @ Stony Brook Email: xguo@cs.sunysb.edu http://www.cs.sunysb.edu/~xguo Graphics Primitives - Points The emergence of points

More information

Cloth Hair. and. soft bodies

Cloth Hair. and. soft bodies Cloth Hair Lesson 11 and soft bodies Lesson 08 Outline Problem definition and motivations Modeling deformable solids with mass-spring model Position based dynamics Modeling cloths with mass-spring model

More information

SIMULATION OF ELASTIC SOFT TISSUE DEFORMATION IN ORTHODONTICS BY MASS-SPRING SYSTEM

SIMULATION OF ELASTIC SOFT TISSUE DEFORMATION IN ORTHODONTICS BY MASS-SPRING SYSTEM SIMULATION OF ELASTIC SOFT TISSUE DEFORMATION IN ORTHODONTICS BY MASS-SPRING SYSTEM Pathomphong Phannurat 1, Wichit Tharanon 1, Chanjira Sinthanayothin 2 1 Advanced Dental Technology Center (ADTEC) 2 National

More information

SEOUL NATIONAL UNIVERSITY

SEOUL NATIONAL UNIVERSITY Fashion Technology 5. 3D Garment CAD-1 Sungmin Kim SEOUL NATIONAL UNIVERSITY Overview Design Process Concept Design Scalable vector graphics Feature-based design Pattern Design 2D Parametric design 3D

More information

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller T6: Position-Based Simulation Methods in Computer Graphics Jan Bender Miles Macklin Matthias Müller Jan Bender Organizer Professor at the Visual Computing Institute at Aachen University Research topics

More information

3D Reconstruction of Human Bodies with Clothes from Un-calibrated Monocular Video Images

3D Reconstruction of Human Bodies with Clothes from Un-calibrated Monocular Video Images 3D Reconstruction of Human Bodies with Clothes from Un-calibrated Monocular Video Images presented by Tran Cong Thien Qui PhD Candidate School of Computer Engineering & Institute for Media Innovation Supervisor:

More information

Motion Capture & Simulation

Motion Capture & Simulation Motion Capture & Simulation Motion Capture Character Reconstructions Joint Angles Need 3 points to compute a rigid body coordinate frame 1 st point gives 3D translation, 2 nd point gives 2 angles, 3 rd

More information

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics On Friday (3/1), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

Optimization to Reduce Automobile Cabin Noise

Optimization to Reduce Automobile Cabin Noise EngOpt 2008 - International Conference on Engineering Optimization Rio de Janeiro, Brazil, 01-05 June 2008. Optimization to Reduce Automobile Cabin Noise Harold Thomas, Dilip Mandal, and Narayanan Pagaldipti

More information

A Fast and Stable Approach for Restoration of Warped Document Images

A Fast and Stable Approach for Restoration of Warped Document Images A Fast and Stable Approach for Restoration of Warped Document Images Kok Beng Chua, Li Zhang, Yu Zhang and Chew Lim Tan School of Computing, National University of Singapore 3 Science Drive 2, Singapore

More information

Physical based Rigging

Physical based Rigging Physical based Rigging Dinghuang Ji Introduction Computer animation has been a popular research topic since 1970s, when the first parametric facial model is proposed[0]. In the recent few years, a lot

More information

Fracture & Tetrahedral Models

Fracture & Tetrahedral Models Pop Worksheet! Teams of 2. Hand in to Jeramey after we discuss. What are the horizontal and face velocities after 1, 2, and many iterations of divergence adjustment for an incompressible fluid? Fracture

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Implicit Surfaces Marching Cubes/Tetras Collision Detection & Response Conservative Bounding Regions backtracking fixing Today Flow Simulations in Graphics Flow

More information

Solid and shell elements

Solid and shell elements Solid and shell elements Theodore Sussman, Ph.D. ADINA R&D, Inc, 2016 1 Overview 2D and 3D solid elements Types of elements Effects of element distortions Incompatible modes elements u/p elements for incompressible

More information

Animation, Motion Capture, & Inverse Kinematics. Announcements: Quiz

Animation, Motion Capture, & Inverse Kinematics. Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics Announcements: Quiz On Tuesday (3/10), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

Interactive Fluid Simulation Using Augmented Reality Interface

Interactive Fluid Simulation Using Augmented Reality Interface Interactive Fluid Simulation Using Augmented Reality Interface Makoto Fuisawa and Hirokazu Kato Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma,

More information

A Virtual Garment Design and Simulation System

A Virtual Garment Design and Simulation System A Virtual Garment Design and Simulation System Funda Durupınar, Uǧur Güdükbay Department of Computer Engineering, Bilkent University, Ankara, Turkey fundad@cs.bilkent.edu.tr, gudukbay@cs.bilkent.edu.tr

More information

Development of the Compliant Mooring Line Model for FLOW-3D

Development of the Compliant Mooring Line Model for FLOW-3D Flow Science Report 08-15 Development of the Compliant Mooring Line Model for FLOW-3D Gengsheng Wei Flow Science, Inc. October 2015 1. Introduction Mooring systems are common in offshore structures, ship

More information

Modeling the Virtual World

Modeling the Virtual World Modeling the Virtual World Joaquim Madeira November, 2013 RVA - 2013/2014 1 A VR system architecture Modeling the Virtual World Geometry Physics Haptics VR Toolkits RVA - 2013/2014 2 VR object modeling

More information

Modeling Hair and Fur with NURBS

Modeling Hair and Fur with NURBS Modeling Hair and Fur with URBS Anna Sokol ansokol@cs.sunysb.edu Computer Science Department SUY Stony Brook Abstract: This paper is presenting a framework for modeling hair and fur using URBS surfaces.

More information

The jello cube. Undeformed cube. Deformed cube

The jello cube. Undeformed cube. Deformed cube The Jello Cube Assignment 1, CSCI 520 Jernej Barbic, USC Undeformed cube The jello cube Deformed cube The jello cube is elastic, Can be bent, stretched, squeezed,, Without external forces, it eventually

More information

Coustyx Tutorial Indirect Model

Coustyx Tutorial Indirect Model Coustyx Tutorial Indirect Model 1 Introduction This tutorial is created to outline the steps required to compute radiated noise from a gearbox housing using Coustyx software. Detailed steps are given on

More information

2.11 Particle Systems

2.11 Particle Systems 2.11 Particle Systems 320491: Advanced Graphics - Chapter 2 152 Particle Systems Lagrangian method not mesh-based set of particles to model time-dependent phenomena such as snow fire smoke 320491: Advanced

More information

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics I. Pantle Fachgebiet Strömungsmaschinen Karlsruher Institut für Technologie KIT Motivation

More information

Modeling Global Deformation using Circular Beams for Haptic Interaction

Modeling Global Deformation using Circular Beams for Haptic Interaction The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems October 11-15, 2009 St. Louis, USA Modeling Global Deformation using Circular Beams for Haptic Interaction Tong Cui, Member,

More information

Cloth Animation with Collision Detection

Cloth Animation with Collision Detection Cloth Animation with Collision Detection Mara Guimarães da Silva Figure 1: Cloth blowing in the wind. Abstract This document reports the techniques and steps used to implemented a physically based animation

More information

PHYSICALLY BASED ANIMATION

PHYSICALLY BASED ANIMATION PHYSICALLY BASED ANIMATION CS148 Introduction to Computer Graphics and Imaging David Hyde August 2 nd, 2016 WHAT IS PHYSICS? the study of everything? WHAT IS COMPUTATION? the study of everything? OUTLINE

More information

A Mobile Agents approach for 3D elastic medium modeling and visualization

A Mobile Agents approach for 3D elastic medium modeling and visualization Annals of University of Craiova, Math. Comp. Sci. Ser. Volume 34, 2007, Pages 115 123 ISSN: 1223-6934 A Mobile Agents approach for 3D elastic medium modeling and visualization Claudiu Popirlan and Mihai

More information

Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs)

Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs) OBJECTIVE FLUID SIMULATIONS Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs) The basic objective of the project is the implementation of the paper Stable Fluids (Jos Stam, SIGGRAPH 99). The final

More information

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS March 18-20, 2013 THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS Authors: M.R. Chiarelli, M. Ciabattari, M. Cagnoni, G. Lombardi Speaker:

More information

Human body animation. Computer Animation. Human Body Animation. Skeletal Animation

Human body animation. Computer Animation. Human Body Animation. Skeletal Animation Computer Animation Aitor Rovira March 2010 Human body animation Based on slides by Marco Gillies Human Body Animation Skeletal Animation Skeletal Animation (FK, IK) Motion Capture Motion Editing (retargeting,

More information

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics Velocity Interpolation Original image from Foster & Metaxas, 1996 In 2D: For each axis, find the 4 closest face velocity samples: Self-intersecting

More information

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Per-Olof Persson (persson@mit.edu) Department of Mathematics Massachusetts Institute of Technology http://www.mit.edu/

More information

The Jello Cube Assignment 1, CSCI 520. Jernej Barbic, USC

The Jello Cube Assignment 1, CSCI 520. Jernej Barbic, USC The Jello Cube Assignment 1, CSCI 520 Jernej Barbic, USC 1 The jello cube Undeformed cube Deformed cube The jello cube is elastic, Can be bent, stretched, squeezed,, Without external forces, it eventually

More information

Polar Express 1) 3DCG 1.1. L. Kovar 4) 2005 SIGGRAPH

Polar Express 1) 3DCG 1.1. L. Kovar 4) 2005 SIGGRAPH 10 Summary Motion capturing approach has researched topics of Human Motion Expressions and Facial Expressions, and has been used in the entertainment industries such as movies. Motion capturing using Motion

More information

Modeling Cloth Using Mass Spring Systems

Modeling Cloth Using Mass Spring Systems Modeling Cloth Using Mass Spring Systems Corey O Connor Keith Stevens May 2, 2003 Abstract We set out to model cloth using a connected mesh of springs and point masses. After successfully implementing

More information

Modelling Flat Spring Performance Using FEA

Modelling Flat Spring Performance Using FEA Modelling Flat Spring Performance Using FEA Blessing O Fatola, Patrick Keogh and Ben Hicks Department of Mechanical Engineering, University of Corresponding author bf223@bath.ac.uk Abstract. This paper

More information

Dynamics in Maya. Gary Monheit Alias Wavefront PHYSICALLY BASED MODELING SH1 SIGGRAPH 97 COURSE NOTES

Dynamics in Maya. Gary Monheit Alias Wavefront PHYSICALLY BASED MODELING SH1 SIGGRAPH 97 COURSE NOTES Dynamics in Maya Gary Monheit Alias Wavefront SH1 Dynamics in Maya Overall Requirements Architecture and Features Animations SH2 Overall Requirements Why Dynamics? Problems with traditional animation techniques

More information

Topics in Computer Animation

Topics in Computer Animation Topics in Computer Animation Animation Techniques Artist Driven animation The artist draws some frames (keyframing) Usually in 2D The computer generates intermediate frames using interpolation The old

More information

COMP 175 COMPUTER GRAPHICS. Lecture 10: Animation. COMP 175: Computer Graphics March 12, Erik Anderson 08 Animation

COMP 175 COMPUTER GRAPHICS. Lecture 10: Animation. COMP 175: Computer Graphics March 12, Erik Anderson 08 Animation Lecture 10: Animation COMP 175: Computer Graphics March 12, 2018 1/37 Recap on Camera and the GL Matrix Stack } Go over the GL Matrix Stack 2/37 Topics in Animation } Physics (dynamics, simulation, mechanics)

More information

Cloth Simulations. 9.2 Physics - Cloth Simulations

Cloth Simulations. 9.2 Physics - Cloth Simulations 9.2 Physics - Cloth Simulations Cloth Simulations...1 Description...2 Workflow...2 Cloth Panel...3 Material...3 Damping...3 Pinning...4 Pinning Clothing To An Armature...4 Cloth Sewing Springs...5 Collisions...5

More information

Analysis of Fluid-Structure Interaction Effects of Liquid-Filled Container under Drop Testing

Analysis of Fluid-Structure Interaction Effects of Liquid-Filled Container under Drop Testing Kasetsart J. (Nat. Sci.) 42 : 165-176 (2008) Analysis of Fluid-Structure Interaction Effects of Liquid-Filled Container under Drop Testing Chakrit Suvanjumrat*, Tumrong Puttapitukporn and Satjarthip Thusneyapan

More information

The Simulation of a Virtual TV Presentor

The Simulation of a Virtual TV Presentor MIRALab Copyright Information 1998 The Simulation of a Virtual TV Presentor Abstract Nadia Magnenat Thalmann, Prem Kalra MIRALab, University of Geneva This paper presents the making of six short sequences

More information

Simulation of curly hair

Simulation of curly hair Computer Generated Imagery Techniques Assignment Report May 2013 Simulation of curly hair student ID : i7266699 student name : Fabio student surname : Turchet 1. Introduction For my assignment I implemented

More information

Simulation of Connector Assembly C

Simulation of Connector Assembly C Simulation of Connector Assembly C Date: Sunday, March 6, 2016 Designer: Solidworks Study name: Horizontal Stress Test on C inner bend Analysis type: Static Table of Contents Model Information... 2 Study

More information

Shaping Imaginary Content

Shaping Imaginary Content Shaping Imaginary Content from 3D Digital Design to Animated Virtual Worlds Marie-Paule Cani Univ. Grenoble-Alpes, CNRS & Inria 3D Graphical Creation See and touch imaginary worlds? @Grenoble-INP avec

More information

CHAPTER 6 EXPERIMENTAL AND FINITE ELEMENT SIMULATION STUDIES OF SUPERPLASTIC BOX FORMING

CHAPTER 6 EXPERIMENTAL AND FINITE ELEMENT SIMULATION STUDIES OF SUPERPLASTIC BOX FORMING 113 CHAPTER 6 EXPERIMENTAL AND FINITE ELEMENT SIMULATION STUDIES OF SUPERPLASTIC BOX FORMING 6.1 INTRODUCTION Superplastic properties are exhibited only under a narrow range of strain rates. Hence, it

More information

Computational Design. Stelian Coros

Computational Design. Stelian Coros Computational Design Stelian Coros Schedule for presentations February 3 5 10 12 17 19 24 26 March 3 5 10 12 17 19 24 26 30 April 2 7 9 14 16 21 23 28 30 Send me: ASAP: 3 choices for dates + approximate

More information

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s CENG 732 Computer Animation This week Inverse Kinematics (continued) Rigid Body Simulation Bodies in free fall Bodies in contact Spring 2006-2007 Week 5 Inverse Kinematics Physically Based Rigid Body Simulation

More information

APPLICATIONS OF NUMERICAL ANALYSIS IN SIMULATION ENGINEERING AND MANUFACTURING TECHNOLOGIES

APPLICATIONS OF NUMERICAL ANALYSIS IN SIMULATION ENGINEERING AND MANUFACTURING TECHNOLOGIES APPLICATIONS OF NUMERICAL ANALYSIS IN SIMULATION ENGINEERING AND MANUFACTURING TECHNOLOGIES Haidar Amer 1 1 Stefan Cel Mare University of Suceava, amerhaidar85@gmail.com Abstract: This article summarizes

More information

Realistic Animation of Fluids

Realistic Animation of Fluids 1 Realistic Animation of Fluids Nick Foster and Dimitris Metaxas Presented by Alex Liberman April 19, 2005 2 Previous Work Used non physics-based methods (mostly in 2D) Hard to simulate effects that rely

More information

Modeling of Bodies and Clothes for Virtual Environments

Modeling of Bodies and Clothes for Virtual Environments Modeling of Bodies and Clothes for Virtual Environments Nadia Magnenat-Thalmann, Frederic Cordier, Hyewon Seo, George Papagianakis MIRALab, University of Geneva Centre Universitaire d Informatique 24 rue

More information

Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching

Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching Paul Groenenboom ESI Group Delft, Netherlands Martin Siemann German Aerospace Center (DLR) Stuttgart, Germany

More information

Automatic Modeling of Virtual Humans and Body Clothing

Automatic Modeling of Virtual Humans and Body Clothing Automatic Modeling of Virtual Humans and Body Clothing Nadia Magnenat-Thalmann, Hyewon Seo, Frederic Cordier MIRALab - University of Geneva 24 rue du General Dufour, CH-1211 Geneva, Switzerland E-mail:

More information

Black Desert Online. Taking MMO Development to the Next Level. Dongwook Ha Gwanghyeon Go

Black Desert Online. Taking MMO Development to the Next Level. Dongwook Ha Gwanghyeon Go Black Desert Online Taking MMO Development to the Next Level Dongwook Ha (dongwook@pearlabyss.com) Gwanghyeon Go (xdotdt@pearlabyss.com) 2018-03-23 Black Desert Online Challenges Massive data and contents

More information

SEOUL NATIONAL UNIVERSITY

SEOUL NATIONAL UNIVERSITY Fashion Technology 6. 3D Garment CAD-2 Sungmin Kim SEOUL NATIONAL UNIVERSITY Design Process Overview Concept Design Fabric Design Scalable vector graphics Feature-based design Weave CAD 2.5D Mapping Design

More information

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis 25 Module 1: Introduction to Finite Element Analysis Lecture 4: Steps in Finite Element Analysis 1.4.1 Loading Conditions There are multiple loading conditions which may be applied to a system. The load

More information