Components of Alignment. Horizontal Alignment. Vertical Alignment. Highway Design Project. Vertical Alignment. Vertical Alignment.

Size: px
Start display at page:

Download "Components of Alignment. Horizontal Alignment. Vertical Alignment. Highway Design Project. Vertical Alignment. Vertical Alignment."

Transcription

1 1/35 Components of Alignment Highway Design Project Horizontal Alignment Vertical Alignment Vertical Alignment Amir Samimi Civil Engineering Department Sharif University of Technology Cross-section /35 3/35 Horizontal Alignment Vertical Alignment

2 4/35 5/35 Vertical Alignment & Topography Vertical Alignment Determinants Maximum/minimum grade Properties of vertical curves Technical design of vertical curves Compatibility with existing grade Design Speed Sight Distance Vertical Clearance ength of grade Drainage Consideration Cost 6/35 7/35 Vertical Alignment: Tangents and Curves Grade Vertical alignment is made up of tangent and curves: What is MAX and MIX grade that can be allowed on the tangent section? Crest Curve G 3 Sag Curve

3 8/35 9/35 Grade AASHTO Recommended MAX Grades MIN grade used is typically 0.5% MAX grade is generally a function of the Design Speed Terrain (evel, rolling, Mountainous) High speed facilities: MAX grade is generally kept to 5% where the terrain allows. 3% is desirable since anything larger starts to affect the operations of trucks. 30 mph design speed Acceptable MAX is in the range of 7 to 1%. 10/35 11/35 AASHTO Recommended MAX Grades Grade ength The gradient in combination o with its length will determine e the truck speed reduction on upgrades: For general design purposes, a 10 mph speed reduction should be used. Curves are for grades between 0 and 9%. Source: A Policy on Geometric Design of Highways and Streets, AASHTO, 004. Chapter 3 Elements of Design

4 1/35 13/35 Truck Climbing anes Curves Vertical curves are employed to: Effect gradual change between road grades, Vertical curves should be: Simple is application, Safe and comfortable in operation, Pleasing in appearance, Adequate for drainage. 14/35 15/35 General Considerations General Considerations Vertical curves are in the shape of a parabola. abo a. Vertical alignment should use a smooth grade line with gradual changes, consistent with the type of highway and character of terrain. Grades with break points and short tangent lengths should be avoided. On long ascending grades, it is preferable to place the steepest grade at the bottom and flatten the grade near the top. It is also preferable to break a sustained grade with short intervals of flatter grades. Maintain moderate grades through intersections s to facilitate starting and turning movements. Roller Coaster type profiles, where the roadway profile closely follows a rolling natural ground line along a relatively straight horizontal alignment, should be avoided. Broken back curvature (short tangent between two curves in same direction) should be avoided. Avoid using sag vertical curves in a cut section unless adequate drainage can be provided.

5 16/35 17/35 Elevation = y / Change in grade: A = G in % (positive /, negative \) For a crest curve, A is negative For a sag curve, A is positive / Rate of change of curvature: K = / A Which is a gentler curve - small K or large K? Rate of change of grade: r = (g g 1 ) / K and r are both measuring the same characteristic of the curve but in different ways Equation for determining the elevation at any point on the curve: y = y 0 + g 1 x + 1/ rx y 0 = elevation at the x = horizontal distance from g = grade expressed as a ratio r = rate of change of grade 18/35 19/35 Distance to the turning point: x t = -(g 1 /r) Distance to the turning point: This can be derived as follows: y = y 0 + g 1 x + 1/ rx dy/dx = g 1 + rx At the turning point, dy/dx = 0, Therefore x t = - (g 1 / r) = -1% = +% Elevation of = m Station of = 500 Station of = 400 ength of curve? / = Sta. Sta. / = 500 m m = 100 m = 00 m

6 0/35 1/35 = -1% = +% Elevation of = m Station of = 500 Station of = 400 r - value? r = (g - g 1 )/ r = (0.0 - [-0.01])/00 m r = / meter = -1% = +% Elevation of = m Station of = 500 Station of = 400 Station of low point? x = -(g 1 /r) x = -([-0.01] / [ /m]) x = m Station = [300] m Station 367 /35 3/35 = -1% = +% Elevation of = m Station of = 500 Station of = 400 Elevation at low point? y = y 0 + g 1 x + 1/ rx y 0 = Elev. Elev. = Elev. - g 1 / Elev. = 15 m - [-0.01][100 m] Elev. = 16 m = -1% = +% Elevation of = m Station of = 500 Station of = 400 Elevation at low point? y = y 0 + g 1 x + 1/ rx y = 16 m + [-0.01][66.67 m] + 1/ [ /m][66.67 m] y = m

7 4/35 5/35 Design of Vertical Curves = -1% = +% Elevation of = m Station of = 500 Station of = 400 Elevation at station 350? y = 16 m + [-0.01][50 m] + 1/ [ /m][50 m] y = m Elevation at station 450? y = 16 m + [-0.01][150 m] + 1/ [ /m][150 m] y = m 6/35 7/35 Design of Vertical Curves The first step in the design is to determine e the minimum length (or minimum K) for a given design speed. K: number of horizontal feet needed for a 1% change in slope. Factors affecting the minimum length include Sufficient sight distance V SSD 1.47Vt a t = brake reaction time,.5 sec. V = design speed, mph a = deceleration rate, ft/s ft/s Driver comfort Appearance Crest Vertical Curves SSD PVI ine of Sight PVC PVT h 1 h For SSD < ASSD 00 h1 h h 100 h 1 SSD For SSD > A

8 8/35 9/35 Crest Vertical Curves Design Controls for Crest Vertical Curves Assumptions for design h 1 = driver s eye height = 3.5 ft. h = tail light height =.0 ft. Simplified Equations For SSD < ASSD SSD 158 For SSD > 158 A from AASHTO s A Policy on Geometric Design of Highways and Streets /35 31/35 Sag Vertical Curves Sag Vertical Curves ight Beam Distance (SSD) headlight beam (diverging from OS by β degrees) G Assumptions s for design h 1 = headlight height =.0 ft. β = 1 degree h 1 PVC PVI PVT h =0 Simplified Equations ASSD SSD h S tan 00 1 For SSD < For SSD > 00 h1 SSD A tan For SSD < For SSD > ASSD SSD SSD A SSD

9 3/35 33/35 Design Controls for Sag Vertical Curves Example 1 from AASHTO s A Policy on Geometric Design of Highways and Streets 001 A car is traveling at 30 mph in the country at night on a wet road through a 150 ft. long sag vertical curve. The entering grade is -.4 percent and the exiting grade is 4.0 percent. A tree has fallen across the road at approximately the PVT. Assuming the driver cannot see the tree until it is lit by her headlights, is it reasonable to expect the driver to be able to stop before hitting the tree? ANSWER: Assume S>,therefore S = ft. which is less than. Must use S< : S= feet Required SSD = ft. Therefore, she s not going to stop in time. 34/35 35/35 Example Example 3 A car is traveling at 30 mph in the ecountry yat night on awet road through a 150 ft. long crest vertical curve. The entering grade is 3.0 percent and the exiting grade is -3.4 percent. A tree has fallen across the road at approximately the PVT. Is it reasonable to expect the driver to be able to stop before hitting the tree? ANSWER: Assume S>, therefore S = ft. which is greater than. Required SSD = ft. Therefore, she will be able to stop in time. A roadway is being designed ed using a 45 mph design speed. One section of the roadway must go up and over a small hill with an entering grade of 3. percent and an exiting grade of -.0 percent. How long must the vertical curve be? ANSWER: For 45 mph we get K=61, = KA = (61)(5.) = 317. ft.

HW3 due today Feedback form online Midterms distributed HW4 available tomorrow No class Wednesday CEE 320

HW3 due today Feedback form online Midterms distributed HW4 available tomorrow No class Wednesday CEE 320 Course Logistics HW3 due today Feedback form online Midterms distributed HW4 available tomorrow No class Wednesday Midterm, 11/5 Geometric Design Anne Goodchild Introduction http://www.youtube.com/watch?v=u_jf_x

More information

A parabolic curve that is applied to make a smooth and safe transition between two grades on a roadway or a highway.

A parabolic curve that is applied to make a smooth and safe transition between two grades on a roadway or a highway. A parabolic curve that is applied to make a smooth and safe transition between two grades on a roadway or a highway. VPC: Vertical Point of Curvature VPI: Vertical Point of Intersection VPT: Vertical Point

More information

Horizontal and Vertical Curve Design

Horizontal and Vertical Curve Design Horizontal and Vertical Curve Design CE 576 Highway Design and Traffic Safety Dr. Ahmed Abdel-Rahim Horizontal Alignment Horizontal curve is critical. Vehicle cornering capability is thus a key concern

More information

JCE 4600 Fundamentals of Traffic Engineering. Horizontal and Vertical Curves

JCE 4600 Fundamentals of Traffic Engineering. Horizontal and Vertical Curves JCE 4600 Fundamentals of Traffic Engineering Horizontal and Vertical Curves Agenda Horizontal Curves Vertical Curves Passing Sight Distance 1 Roadway Design Motivations Vehicle performance Acceleration

More information

Estimation of Suitable Grade Value for Stopping Sight Distance Computation on Vertical Curves

Estimation of Suitable Grade Value for Stopping Sight Distance Computation on Vertical Curves Estimation of Suitable Grade Value for Stopping Sight Distance Computation on Vertical Curves Ahmed H. Farhan Assist. ecturer / Civil Eng. Dept. / Anbar University Abstract The purpose of highway geometric

More information

Design Elements Vertical Milos N. Mladenovic Assistant Professor Department of Built Environment

Design Elements Vertical Milos N. Mladenovic Assistant Professor Department of Built Environment Design Elements Vertical Milos N. Mladenovic Assistant Professor Department of Built Environment 02.03.2017 Outline Basic elements of roadway vertical profile design Basic parameters of a vertical curve

More information

Sight Distance on Vertical Curves

Sight Distance on Vertical Curves Iowa Department of Transportation Office of Design Sight Distance on Vertical Curves 6D-5 Design Manual Chapter 6 Geometric Design Originally Issued: 01-04-0 Stopping sight distance is an important factor

More information

CEE 3604 Transportation Geometric Design. Highways. Transportation Engineering (A.A. Trani)

CEE 3604 Transportation Geometric Design. Highways. Transportation Engineering (A.A. Trani) CEE 3604 Transportation Geometric Design Highways 1 History Roads have been developed in ancient cultures for trade and military reasons Silk Road - 6000 km in length Appian Road - Rome to Brindisi (Italy)

More information

PE Exam Review - Surveying Demonstration Problem Solutions

PE Exam Review - Surveying Demonstration Problem Solutions PE Exam Review - Surveying Demonstration Problem Solutions I. Demonstration Problem Solutions... 1. Circular Curves Part A.... Circular Curves Part B... 9 3. Vertical Curves Part A... 18 4. Vertical Curves

More information

OPTIMIZING HIGHWAY PROFILES FOR INDIVIDUAL COST ITEMS

OPTIMIZING HIGHWAY PROFILES FOR INDIVIDUAL COST ITEMS Dabbour E. Optimizing Highway Profiles for Individual Cost Items UDC: 656.11.02 DOI: http://dx.doi.org/10.7708/ijtte.2013.3(4).07 OPTIMIZING HIGHWAY PROFILES FOR INDIVIDUAL COST ITEMS Essam Dabbour 1 1

More information

1.4.3 OPERATING SPEED CONSISTENCY

1.4.3 OPERATING SPEED CONSISTENCY Geometric Design Guide for Canadian oads 1.4.3 OPEATING SPEED CONSISTENCY The safety of a road is closely linked to variations in the speed of vehicles travelling on it. These variations are of two kinds:

More information

Horizontal Alignment

Horizontal Alignment AMRC 2012 MODULE 8 Horizontal Alignment CONTENTS Overview... 8-1 Objectives... 8-1 Procedures... 8-1 8.1 Design Considerations and Circular Curves... 8-3 8.2 Superelevation and Transitional Spiral... 8-5

More information

Design Elements Horizontal Milos N. Mladenovic Assistant Professor Department of Built Environment

Design Elements Horizontal Milos N. Mladenovic Assistant Professor Department of Built Environment Design Elements Horizontal Milos N. Mladenovic Assistant Professor Department of Built Environment 01.03.2017 Outline Highway alignment Vehicle cornering forces Minimum radius Circular curve elements Transition

More information

New and Improved Unsymmetrical Vertical Curve for Highways

New and Improved Unsymmetrical Vertical Curve for Highways 94 TRANSPORJATION RESEARCH RECORD 1445 Ne and Improved Unsymmetrical Vertical Curve for Highays SAID M. EASA A ne unsymmetrical vertical curve for highays that provides important desirable features is

More information

Transition Curves for Roads Designers Manual

Transition Curves for Roads Designers Manual Transition Curves for Roads Designers Manual Muthanna Husham Alfityan 1 and Adnan Bin Zulkiple 2 1 PhD Student, Universiti Malaysia Pahang muthanaalfit@hotmail.com 2 Faculty of Civil Engineering & Earth

More information

Transportation Engineering - II Dr.Rajat Rastogi Department of Civil Engineering Indian Institute of Technology - Roorkee

Transportation Engineering - II Dr.Rajat Rastogi Department of Civil Engineering Indian Institute of Technology - Roorkee Transportation Engineering - II Dr.Rajat Rastogi Department of Civil Engineering Indian Institute of Technology - Roorkee Lecture 18 Vertical Curves and Gradients Dear students, I welcome you back to the

More information

Theodolite and Angles Measurement

Theodolite and Angles Measurement Building & Construction Technology Engineering Department Theodolite and Angles Measurement Lecture 1 Theodolite and Angles Measurement Lecture No. 1 Main Objectives Lecturer Date of Lecture General advices

More information

Review Sheet for Second Midterm Mathematics 1300, Calculus 1

Review Sheet for Second Midterm Mathematics 1300, Calculus 1 Review Sheet for Second Midterm Mathematics 300, Calculus. For what values of is the graph of y = 5 5 both increasing and concave up? 2. Where does the tangent line to y = 2 through (0, ) intersect the

More information

CASE 1 TWO LANE TO FOUR LANE DIVIDED TRANSITION GEO-610-C NOT TO SCALE GEOMETRIC DESIGN GUIDE FOR MATCH LINE LINE MATCH. 2 (0.6m) shoulder transition

CASE 1 TWO LANE TO FOUR LANE DIVIDED TRANSITION GEO-610-C NOT TO SCALE GEOMETRIC DESIGN GUIDE FOR MATCH LINE LINE MATCH. 2 (0.6m) shoulder transition CASE 1 2 (0.6m) Joint Line See sheet #5 for description of variables 4 (1.2m) Transition taper is tangent to Edge of Pavement curve at this point. 1:25 Paved shoulder transition 16 (4.m) Median width 16

More information

Civil 3D Introduction

Civil 3D Introduction Civil 3D Introduction Points Overview Points are data collected by surveyors which represent existing site conditions (elevations, boundaries, utilities, etc.). Each point is numbered (or named) and has

More information

CONTRIBUTION TO THE INVESTIGATION OF STOPPING SIGHT DISTANCE IN THREE-DIMENSIONAL SPACE

CONTRIBUTION TO THE INVESTIGATION OF STOPPING SIGHT DISTANCE IN THREE-DIMENSIONAL SPACE National Technical University of Athens School of Civil Engineering Department of Transportation Planning and Engineering Doctoral Dissertation CONTRIBUTION TO THE INVESTIGATION OF STOPPING SIGHT DISTANCE

More information

Highway Alignment. Three-Dimensional Problem and Three-Dimensional Solution YASSER HASSAN, SAID M. EASA, AND A. O. ABD EL HALIM

Highway Alignment. Three-Dimensional Problem and Three-Dimensional Solution YASSER HASSAN, SAID M. EASA, AND A. O. ABD EL HALIM TRANSPORTATION RESEARCH RECORD 1612 Paper No. 98-0257 17 Highway Alignment Three-Dimensional Problem and Three-Dimensional Solution YASSER HASSAN, SAID M. EASA, AND A. O. ABD EL HALIM Highway geometric

More information

Three-Dimensional Analysis of Sight Distance on Interchange Connectors

Three-Dimensional Analysis of Sight Distance on Interchange Connectors TRANSPOR'IAT/ON RESEARCH RECORD 1445 101 Three-Dimensional Analysis of Sight Distance on Interchange Connectors EDDIE SANCHEZ The design of interchange ramps and connectors, especially in large freeway-to-freeway

More information

AED Design Requirements: Superelevation Road Design

AED Design Requirements: Superelevation Road Design US Army Corps of Engineers Afghanistan Engineer District AED Design Requirements: Various Locations, Afghanistan MARCH 2009 TABLE OF CONTENTS AED DESIGN REQUIREMENTS FOR SUPERELEVATION ROAD DESIGN VARIOUS

More information

DESIGN CRITERIA MEMORANDUM

DESIGN CRITERIA MEMORANDUM State Route 49 Realignment Study DESIGN CRITERIA MEMORANDUM ATTACHMENT G SR 49 Realignment Study STATE ROUTE 49 El Dorado to Coloma El Dorado County, CA DESIGN CRITERIA MEMORANDUM Introduction The El

More information

ENGINEERING SURVEYING (221 BE)

ENGINEERING SURVEYING (221 BE) ENGINEERING SURVEYING (221 BE) Horizontal Circular Curves Sr Tan Liat Choon Email: tanliatchoon@gmail.com Mobile: 016-4975551 INTRODUCTION The centre line of road consists of series of straight lines interconnected

More information

Math Exam 2a. 1) Take the derivatives of the following. DO NOT SIMPLIFY! 2 c) y = tan(sec2 x) ) b) y= , for x 2.

Math Exam 2a. 1) Take the derivatives of the following. DO NOT SIMPLIFY! 2 c) y = tan(sec2 x) ) b) y= , for x 2. Math 111 - Exam 2a 1) Take the derivatives of the following. DO NOT SIMPLIFY! a) y = ( + 1 2 x ) (sin(2x) - x- x 1 ) b) y= 2 x + 1 c) y = tan(sec2 x) 2) Find the following derivatives a) Find dy given

More information

Roadway Alignments and Profiles

Roadway Alignments and Profiles NOTES Module 15 Roadway Alignments and Profiles In this module, you learn how to create horizontal alignments, surface profiles, layout (design) profiles, and profile views in AutoCAD Civil 3D. This module

More information

CHAPTER 11. Learn to use GEOPAK Automated Superelevation dialog box and Autoshape Builder to apply superelevation to a roadway.

CHAPTER 11. Learn to use GEOPAK Automated Superelevation dialog box and Autoshape Builder to apply superelevation to a roadway. CHAPTER 11 Superelevation 11.1 Introduction Objectives Project Manager Learn to use GEOPAK Automated Superelevation dialog box and Autoshape Builder to apply superelevation to a roadway. Calculate Superelevation

More information

The Mathematics of Highway Design

The Mathematics of Highway Design The Mathematics of Highway Design Scenario As a new graduate you have gained employment as a graduate engineer working for a major contractor that employs 000 staff and has an annual turnover of 600m.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Convert the angle to decimal degrees and round to the nearest hundredth of a degree. 1)

More information

Slope of a Line. Find the slope of each line

Slope of a Line. Find the slope of each line Practice A Slope of a Line Find the slope of each line. 1. 2. _ Find the slope of the line that passes through each pair of points. 3. (1, 0), (2, 4) 4. (6, 2), (2, 2) 5. ( 1, 1), (4, 4) 6. ( 7, 4), (2,

More information

HP-35s Calculator Program Curves 2A

HP-35s Calculator Program Curves 2A Programmer: Dr. Bill Hazelton Date: March, 2008. Version: 1.0 Mnemonic: P for Parabolic Vertical Curve. Line Instruction Display User Instructions P001 LBL P LBL P P002 CLSTK CLEAR 5 P003 FS? 10 FLAGS

More information

Lesson 6: Traffic Analysis Module (TAM)

Lesson 6: Traffic Analysis Module (TAM) Go back to: Table of Contents Go to the next lesson Overview : Traffic Analysis Module (TAM) The Traffic Analysis Module (TAM) may be used to evaluate the operational effects of existing and projected

More information

AUTODESK AUTOCAD CIVIL 2009 AND AUTOCAD CIVIL 3D Rule-Based Road Design using AutoCAD Civil and AutoCAD Civil 3D

AUTODESK AUTOCAD CIVIL 2009 AND AUTOCAD CIVIL 3D Rule-Based Road Design using AutoCAD Civil and AutoCAD Civil 3D AUTODESK AUTOCAD CIVIL 2009 AND AUTOCAD CIVIL 3D 2009 Rule-Based Road Design using AutoCAD Civil and AutoCAD Civil 3D Contents Introduction... 3 Design Criteria Files... 3 Alignment Geometry... 4 Applying

More information

Precalculus 2 Section 10.6 Parametric Equations

Precalculus 2 Section 10.6 Parametric Equations Precalculus 2 Section 10.6 Parametric Equations Parametric Equations Write parametric equations. Graph parametric equations. Determine an equivalent rectangular equation for parametric equations. Determine

More information

SURVEYING AND ROAD DESIGN FUNDAMENTALS

SURVEYING AND ROAD DESIGN FUNDAMENTALS AREA MANAGER ROADS CERTIFICATION PROGRAM AMRC 2012 SURVEYING AND ROAD DESIGN FUNDAMENTALS STUDENT GUIDE FOR EDUCATIONAL PURPOSES ONLY April, 2006 WPC #27810 07/09 2009 by British Columbia Institute of

More information

FRST 557. Lecture 9c. Switchbacks Vertical and Horizontal Design. Lesson Background and Overview:

FRST 557. Lecture 9c. Switchbacks Vertical and Horizontal Design. Lesson Background and Overview: FST 557 Lecture 9c Switchbacks Vertical and Horizontal Design J u s t g iv e it o n e try, a n d if it don t w o rk w e ll c a ll in th e road crew to fix er up Lesson Background and Overview: Switchbacks

More information

ANGLES 4/18/2017. Surveying Knowledge FE REVIEW COURSE SPRING /19/2017

ANGLES 4/18/2017. Surveying Knowledge FE REVIEW COURSE SPRING /19/2017 FE REVIEW COURSE SPRING 2017 Surveying 4/19/2017 Surveying Knowledge 4 6 problems Angles, distances, & trigonometry Area computations Earthwork & volume computations Closure Coordinate systems State plane,

More information

Sight Distance on Horizontal Alignments with Continuous Lateral Obstructions

Sight Distance on Horizontal Alignments with Continuous Lateral Obstructions TRANSPORTATION RESEARCH RECORD 1500 31 Sight Distance on Horizontal Alignments with Continuous Lateral Obstructions YASSER HASSAN, SAID M. EASA, AND A. 0. ABD EL HALIM For safe and efficient highway operation,

More information

Checkpoint 1 Define Trig Functions Solve each right triangle by finding all missing sides and angles, round to four decimal places

Checkpoint 1 Define Trig Functions Solve each right triangle by finding all missing sides and angles, round to four decimal places Checkpoint 1 Define Trig Functions Solve each right triangle by finding all missing sides and angles, round to four decimal places. 1.. B P 10 8 Q R A C. Find the measure of A and the length of side a..

More information

Algebra I Notes Slope Unit 04a

Algebra I Notes Slope Unit 04a OBJECTIVE: F.IF.B.6 Interpret functions that arise in applications in terms of the context. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over

More information

. The differential of y f (x)

. The differential of y f (x) Calculus I - Prof D Yuen Exam Review version 11/14/01 Please report any typos Derivative Rules Of course you have to remember all your derivative rules Implicit Differentiation Differentiate both sides

More information

Route Surveying. Topic Outline

Route Surveying. Topic Outline Route Surveying CE 305 Intro To Geomatics By Darrell R. Dean, Jr., P.S., Ph.D. Topic Outline Horizontal alignment Types of Horizontal Curves Degree of Curve Geometric elements of curve Station ti number

More information

ENGI 3703 Surveying and Geomatics

ENGI 3703 Surveying and Geomatics Horizontal Curves (Chapter 24) We ll jump ahead a little today to support the last field school activity, Lab 6 - Horizontal Curve Layout. Today we ll define i) the properties of a horizontal curve and

More information

Clearance in Order to Provide Stopping Sight Distances

Clearance in Order to Provide Stopping Sight Distances Journal of Transportation Technologies, 2017, 7, 221-239 http://www.scirp.org/journal/jtts ISSN Online: 2160-0481 ISSN Print: 2160-0473 Suitability of the Euler s Spiral for Roadside Clearance in Order

More information

Week 8 Problems. #2 Points possible: 1. Total attempts: 2 Enter your answer rounded to two decimal places.

Week 8 Problems. #2 Points possible: 1. Total attempts: 2 Enter your answer rounded to two decimal places. Week 8 Problems Name: Neal Nelson Show Scored View # Points possible:. Total attempts: A pilot is flying over a straight highway. He determines the angles of depression to two mileposts,.6 mi apart, to

More information

The Transition Curves (Spiral Curves)

The Transition Curves (Spiral Curves) The Transition Curves (Spiral Curves) The transition curve (spiral) is a curve that has a varying radius. It is used on railroads and most modem highways. It has the following purposes: 1- Provide a gradual

More information

RECTILINEAR MOVEMENT

RECTILINEAR MOVEMENT RECTILINEAR MOVEMENT This teaching unit continues the study of movement which we began in these two previous units: Moving bodies and Trajectory and Displacement In this one we look separately at Uniform

More information

6.6 Cables: Uniform Loads

6.6 Cables: Uniform Loads 6.6 Cables: Uniform Loads 6.6 Cables: Uniform Loads Procedures and Strategies, page 1 of 3 Procedures and Strategies for Solving Problems Involving Cables With Uniform Loads 1. Draw a free-body diagram

More information

OPTIMAL 3D COORDINATION TO MAXIMIZE THE AVAILABLE STOPPING SIGHT DISTANCE IN TWO-LANE ROADS

OPTIMAL 3D COORDINATION TO MAXIMIZE THE AVAILABLE STOPPING SIGHT DISTANCE IN TWO-LANE ROADS 0 0 0 Moreno, Ana Tsui; Ferrer-Pérez, Vicente; Garcia, Alfredo; Romero, Mario Alfonso. (00). Optimal D Coordination to Mazimize the Available Stopping Sight Distance in Two-Lane Roads In: Proceedings of

More information

Reflection & Mirrors

Reflection & Mirrors Reflection & Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media A ray of light is

More information

Inverses of Trigonometric. Who uses this? Hikers can use inverse trigonometric functions to navigate in the wilderness. (See Example 3.

Inverses of Trigonometric. Who uses this? Hikers can use inverse trigonometric functions to navigate in the wilderness. (See Example 3. 1-4 Inverses of Trigonometric Functions Objectives Evaluate inverse trigonometric functions. Use trigonometric equations and inverse trigonometric functions to solve problems. Vocabulary inverse sine function

More information

Solving Right Triangles. SECURITY A security light is being

Solving Right Triangles. SECURITY A security light is being 5-5 OJECTIVES Evaluate inverse trigonometric functions. Find missing angle measurements. Solve right triangles. Solving Right Triangles SECURITY A security light is being installed outside a loading dock.

More information

ASSIGNMENT BETA COVER SHEET

ASSIGNMENT BETA COVER SHEET Question Done Backpack Ready for test ASSIGNMENT BETA COVER SHEET Name Teacher Topic Teacher/student comment Drill A indices Drill B tangents Drill C differentiation Drill D normals Drill E gradient Section

More information

10600 sq. feet. Left 33.8 left of CL at elev Right 33.4 right of CL at elev 871.1

10600 sq. feet. Left 33.8 left of CL at elev Right 33.4 right of CL at elev 871.1 NAME Score CEEN 113-1 Engineering Measurements Final Exam Fall 1999 Open Book, Closed Note, Calculator Required 3 Hour Time Limit 1 point deduction for every two minutes over 1. (5 pts) Your boss has asked

More information

UNL Professional Math and Science Institute Lesson Plan Using Logger Pro to Analyze Crash Test Video

UNL Professional Math and Science Institute Lesson Plan Using Logger Pro to Analyze Crash Test Video UNL Professional Math and Science Institute Lesson Plan Using Logger Pro to Analyze Crash Test Video The lesson plan is designed to allow students to learn to use Logger Pro to analyze video with the end

More information

Displacement-time and Velocity-time Graphs

Displacement-time and Velocity-time Graphs PhysicsFactsheet April Number Displacement- and Velocity- Graphs This Factsheet explains how motion can be described using graphs, in particular how - graphs and - graphs can be used. Displacement- graphs

More information

Precalculus. Cumulative Review Conics, Polar, Parametric, Sequences & Series, Rational Functions. Conics

Precalculus. Cumulative Review Conics, Polar, Parametric, Sequences & Series, Rational Functions. Conics Name Precalculus Date Block Cumulative Review Conics, Polar, Parametric, Sequences & Series, Rational Functions Please do all work on a separate sheet of paper Conics Identify each equation If it is a

More information

Assignment Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Assignment Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Assignment.1-.3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) The arch beneath a bridge is semi-elliptical, a one-way

More information

Practice Workbook. Subsurface Utility Engineering Fundamentals

Practice Workbook. Subsurface Utility Engineering Fundamentals Practice Workbook This workbook is designed for use in Live instructor-led training and for OnDemand selfstudy. The explanations and demonstrations are provided by the instructor in the classroom, or in

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 11. Show all your work on the standard

More information

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

Conic Sections and Analytic Geometry

Conic Sections and Analytic Geometry Chapter 9 Conic Sections and Analytic Geometry Chapter 9 Conic Sections and Analytic Geometry 9.1 The Ellipse 9.2 The Hyperbola 9.3 The Parabola 9.4 Rotation of Axes 9.5 Parametric Equations 9.6 Conic

More information

Geo, Chap 8 Practice Test, EV Ver 1

Geo, Chap 8 Practice Test, EV Ver 1 Name: Class: Date: ID: A Geo, Chap 8 Practice Test, EV Ver 1 Short Answer Find the length of the missing side. Leave your answer in simplest radical form. 1. (8-1) 2. (8-1) A grid shows the positions of

More information

You ll use the six trigonometric functions of an angle to do this. In some cases, you will be able to use properties of the = 46

You ll use the six trigonometric functions of an angle to do this. In some cases, you will be able to use properties of the = 46 Math 1330 Section 6.2 Section 7.1: Right-Triangle Applications In this section, we ll solve right triangles. In some problems you will be asked to find one or two specific pieces of information, but often

More information

Another Look at the Safety Effects of Horizontal Curvature on Rural Two-Lane Highways

Another Look at the Safety Effects of Horizontal Curvature on Rural Two-Lane Highways 1 2 Another Look at the Safety Effects of Horizontal Curvature on Rural Two-Lane Highways 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

More information

Practice For use with pages

Practice For use with pages 9.1 For use with pages 453 457 Find the square roots of the number. 1. 36. 361 3. 79 4. 1089 5. 4900 6. 10,000 Approimate the square root to the nearest integer. 7. 39 8. 85 9. 105 10. 136 11. 17.4 1.

More information

[B] hours b, P.I. A2.N.9 When simplified,

[B] hours b, P.I. A2.N.9 When simplified, Math B Regents Exam 0804 Page 1 1. 080401b, P.I. G.G.8 Which condition does not prove that two triangles are congruent? [A] SAS SAS [B] SSA SSA [C] ASA ASA [D] SSS SSS. 08040b, P.I. A.A.5 The speed of

More information

Geometric Layout for Roadway Design with CAiCE Visual Roads

Geometric Layout for Roadway Design with CAiCE Visual Roads December 2-5, 2003 MGM Grand Hotel Las Vegas Geometric Layout for Roadway Design with CAiCE Visual Roads Mathews Mathai CV32-3 This course describes and demonstrates various tools for defining horizontal

More information

Solv S ing olv ing ight ight riang les iangles 8-3 Solving Right Triangles Warm Up Use ABC for Exercises If a = 8 and b = 5, find c

Solv S ing olv ing ight ight riang les iangles 8-3 Solving Right Triangles Warm Up Use ABC for Exercises If a = 8 and b = 5, find c Warm Up Lesson Presentation Lesson Quiz Warm Up Use ABC for Exercises 1 3. 1. If a = 8 and b = 5, find c. 2. If a = 60 and c = 61, find b. 11 3. If b = 6 and c = 10, find sin B. 0.6 Find AB. 4. A(8, 10),

More information

CEEN Engineering Measurements Final Exam Fall 2001 Closed Book, Calculator Required 3 Hour Time Limit

CEEN Engineering Measurements Final Exam Fall 2001 Closed Book, Calculator Required 3 Hour Time Limit NAME Score CEEN 113-1 Engineering Measurements Final Exam Fall 001 Closed Book, Calculator Required 3 Hour Time Limit 1. (10 pts) You are interested in determining the height of a building. You are unable

More information

TerraScan Tool Guide

TerraScan Tool Guide TerraScan Main Toolbox General Toolbar Draw Toolbar Groups Toolbar Vectorize Towers Toolbar Road Toolbar Buildings Toolbar Building Edges Toolbar View Laser Toolbar Model Toolbar Vectorize Wires Toolbar

More information

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments Chapter 23 Geometrical Optics: Mirrors and Lenses and other Instruments HITT1 A small underwater pool light is 1 m below the surface of a swimming pool. What is the radius of the circle of light on the

More information

Sight Distance Relationships Involving Horizontal Curves

Sight Distance Relationships Involving Horizontal Curves 96 TRANSPORTATON RESEARCH RECORD 1122 Sight Distance Relationships nvolving Horizontal Curves GARY R. WASS! AND DONALD E. CLEVELAND Recent AASHTO design policy developments and research have ncreased needed

More information

Bentley ConceptStation Workshop 2017 FLUG Spring Training Event

Bentley ConceptStation Workshop 2017 FLUG Spring Training Event Bentley ConceptStation Workshop 2017 FLUG Spring Training Event 430 - QuickStart using OpenRoads ConceptStation Bentley Systems, Incorporated 685 Stockton Drive Exton, PA 19341 www.bentley.com Practice

More information

Name: Unit 8 Right Triangles and Trigonometry Unit 8 Similarity and Trigonometry. Date Target Assignment Done!

Name: Unit 8 Right Triangles and Trigonometry Unit 8 Similarity and Trigonometry. Date Target Assignment Done! Unit 8 Similarity and Trigonometry Date Target Assignment Done! M 1-22 8.1a 8.1a Worksheet T 1-23 8.1b 8.1b Worksheet W 1-24 8.2a 8.2a Worksheet R 1-25 8.2b 8.2b Worksheet F 1-26 Quiz Quiz 8.1-8.2 M 1-29

More information

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured =

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured = Lesson 5: Vectors and Projectile Motion Name Period 5.1 Introduction: Vectors vs. Scalars (a) Read page 69 of the supplemental Conceptual Physics text. Name at least 3 vector quantities and at least 3

More information

Overview. Profile 2/27/2018. CE 371 Surveying PROFILE LEVELING & Trigonometric LEVELING

Overview. Profile 2/27/2018. CE 371 Surveying PROFILE LEVELING & Trigonometric LEVELING Lec 10 + Lec 11 CE 371 Surveying PROFILE LEVELING & Trigonometric LEVELING Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room LIE15 Overview

More information

AP Calculus. Extreme Values: Graphically. Slide 1 / 163 Slide 2 / 163. Slide 4 / 163. Slide 3 / 163. Slide 5 / 163. Slide 6 / 163

AP Calculus. Extreme Values: Graphically. Slide 1 / 163 Slide 2 / 163. Slide 4 / 163. Slide 3 / 163. Slide 5 / 163. Slide 6 / 163 Slide 1 / 163 Slide 2 / 163 AP Calculus Analyzing Functions Using Derivatives 2015-11-04 www.njctl.org Slide 3 / 163 Table of Contents click on the topic to go to that section Slide 4 / 163 Extreme Values

More information

Name: Date: 1. Match the equation with its graph. Page 1

Name: Date: 1. Match the equation with its graph. Page 1 Name: Date: 1. Match the equation with its graph. y 6x A) C) Page 1 D) E) Page . Match the equation with its graph. ( x3) ( y3) A) C) Page 3 D) E) Page 4 3. Match the equation with its graph. ( x ) y 1

More information

Grading and Volumes CHAPTER INTRODUCTION OBJECTIVES

Grading and Volumes CHAPTER INTRODUCTION OBJECTIVES CHAPTER 10 Grading and Volumes INTRODUCTION AutoCAD Civil 3D uses surface breaklines, cogo points, contours, feature lines, and grading objects to create a surface design. There are numerous ways to grade

More information

A function: A mathematical relationship between two variables (x and y), where every input value (usually x) has one output value (usually y)

A function: A mathematical relationship between two variables (x and y), where every input value (usually x) has one output value (usually y) SESSION 9: FUNCTIONS KEY CONCEPTS: Definitions & Terminology Graphs of Functions - Straight line - Parabola - Hyperbola - Exponential Sketching graphs Finding Equations Combinations of graphs TERMINOLOGY

More information

Section 4.3: How Derivatives Affect the Shape of the Graph

Section 4.3: How Derivatives Affect the Shape of the Graph Section 4.3: How Derivatives Affect the Shape of the Graph What does the first derivative of a function tell you about the function? Where on the graph below is f x > 0? Where on the graph below is f x

More information

5B.4 ~ Calculating Sine, Cosine, Tangent, Cosecant, Secant and Cotangent WB: Pgs :1-10 Pgs : 1-7

5B.4 ~ Calculating Sine, Cosine, Tangent, Cosecant, Secant and Cotangent WB: Pgs :1-10 Pgs : 1-7 SECONDARY 2 HONORS ~ UNIT 5B (Similarity, Right Triangle Trigonometry, and Proof) Assignments from your Student Workbook are labeled WB Those from your hardbound Student Resource Book are labeled RB. Do

More information

about touching on a topic and then veering off to talk about something completely unrelated.

about touching on a topic and then veering off to talk about something completely unrelated. The Tangent Ratio Tangent Ratio, Cotangent Ratio, and Inverse Tangent 8.2 Learning Goals In this lesson, you will: Use the tangent ratio in a right triangle to solve for unknown side lengths. Use the cotangent

More information

MATH 1113 Exam 1 Review. Fall 2017

MATH 1113 Exam 1 Review. Fall 2017 MATH 1113 Exam 1 Review Fall 2017 Topics Covered Section 1.1: Rectangular Coordinate System Section 1.2: Circles Section 1.3: Functions and Relations Section 1.4: Linear Equations in Two Variables and

More information

DLA Review Printable Version

DLA Review Printable Version 1. In the equation y = 7x + 3, as the value of x decreases by 1, what happens to the value of y?. A cell phone company charges $.00 a month plus an additional $0.10 per call. A competitor charges $10.00

More information

NCDOT Civil Geometry for GEOPAK Users

NCDOT Civil Geometry for GEOPAK Users 2018 NCDOT Civil Geometry for GEOPAK Users Oak Thammavong NCDOT Roadway Design Unit 7/31/2018 This page left intentionally blank Copyright 2018 NCDOT DO NOT DISTRIBUTE Printing for student use is permitted

More information

Review for Spring Final Exam Geometry 1. Classify the figure. Name the vertices, edges, and base.

Review for Spring Final Exam Geometry 1. Classify the figure. Name the vertices, edges, and base. Name lass ue date Review for Spring Final Exam Geometry 1. lassify the figure. Name the vertices, edges, and base. 4. raw all 6 orthographic views from the given object. ssume there are no hidden cubes.

More information

Roadway Design using GeoTools

Roadway Design using GeoTools Roadway Design using GeoTools Introduction GeoTools is a general-purpose productivity tool for users of all types of geographic data. In the Civil Tools section, there are many tools for Civil engineering

More information

SECTION 7.4 THE LAW OF SINES 483. Triangles AjfijC, and A2B2C2 are shown in Figure 9. b = a = EXAMPLE 5 SSA, the No-Solution Case

SECTION 7.4 THE LAW OF SINES 483. Triangles AjfijC, and A2B2C2 are shown in Figure 9. b = a = EXAMPLE 5 SSA, the No-Solution Case SECTION 7.4 THE LAW OF SINES 483 the foothills of the Himalayas. A later expedition, using triangulation, calculated the height of the highest peak of the Himalayas to be 29,002 ft. The peak was named

More information

AP Calculus AB Unit 2 Assessment

AP Calculus AB Unit 2 Assessment Class: Date: 203-204 AP Calculus AB Unit 2 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. A calculator may NOT be used on this part of the exam.

More information

Terramodel Training Guide. Designing a Roadway

Terramodel Training Guide. Designing a Roadway Terramodel Training Guide Version 8 Revision A March 2002 Corporate Office Trimble Navigation Limited Engineering and Construction Division 5475 Kellenburger Road Dayton, Ohio 45424-1099 U.S.A. Copyright

More information

5.5 Right Triangles. 1. For an acute angle A in right triangle ABC, the trigonometric functions are as follow:

5.5 Right Triangles. 1. For an acute angle A in right triangle ABC, the trigonometric functions are as follow: 5.5 Right Triangles 1. For an acute angle A in right triangle ABC, the trigonometric functions are as follow: sin A = side opposite hypotenuse cos A = side adjacent hypotenuse B tan A = side opposite side

More information

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10 Quadratic Modeling STEM 10 Today we are going to put together an understanding of the two physics equations we have been using. Distance: Height : Recall the variables: o acceleration o gravitation force

More information

ENHANCED PARKWAY STUDY: PHASE 3 REFINED MLT INTERSECTION ANALYSIS

ENHANCED PARKWAY STUDY: PHASE 3 REFINED MLT INTERSECTION ANALYSIS ENHANCED PARKWAY STUDY: PHASE 3 REFINED MLT INTERSECTION ANALYSIS Final Report Prepared for Maricopa County Department of Transportation Prepared by TABLE OF CONTENTS Page EXECUTIVE SUMMARY ES-1 STUDY

More information

Students interpret the meaning of the point of intersection of two graphs and use analytic tools to find its coordinates.

Students interpret the meaning of the point of intersection of two graphs and use analytic tools to find its coordinates. Student Outcomes Students interpret the meaning of the point of intersection of two graphs and use analytic tools to find its coordinates. Classwork Example 1 (7 minutes) Have students read the situation

More information

Lesson Title 2: Problem TK Solving with Trigonometric Ratios

Lesson Title 2: Problem TK Solving with Trigonometric Ratios Part UNIT RIGHT solving TRIANGLE equations TRIGONOMETRY and inequalities Lesson Title : Problem TK Solving with Trigonometric Ratios Georgia Performance Standards MMG: Students will define and apply sine,

More information

Unit 8 Similarity and Trigonometry

Unit 8 Similarity and Trigonometry Unit 8 Similarity and Trigonometry Target 8.1: Prove and apply properties of similarity in triangles using AA~, SSS~, SAS~ 8.1a Prove Triangles Similar by AA ~, SSS~, SAS~ 8.1b Use Proportionality Theorems

More information