HW3 due today Feedback form online Midterms distributed HW4 available tomorrow No class Wednesday CEE 320

Size: px
Start display at page:

Download "HW3 due today Feedback form online Midterms distributed HW4 available tomorrow No class Wednesday CEE 320"

Transcription

1 Course Logistics HW3 due today Feedback form online Midterms distributed HW4 available tomorrow No class Wednesday Midterm, 11/5

2 Geometric Design Anne Goodchild

3 Introduction PhpKA

4 Outline 1. Concepts. Vertical Alignment a. Fundamentals b. Crest Vertical Curves c. Sag Vertical Curves d. Examples 3. Horizontal Alignment a. Fundamentals b. Superelevation 4. Other Stuff

5 Draw a roadway Street view Arial view Side view

6 Identify a point on that roadway Address (relative system) Milepost system Linear referencing system Grid system Longitude and latitude Altitude

7 Highway Alignment Simplify from x-y plane to a linear reference system (distance along that roadway) Assume travel is along some horizontal plane, not the surface of the earth Elevation from this horizontal plane

8 Concepts Alignment is a 3D problem broken down into two D problems Horizontal Alignment (arial or plan view) Vertical Alignment (side or profile view) Piilani Highway on Maui

9 Concepts Stationing is a measurement system for the design problem Along horizontal alignment One station is 100 feet along the horizontal plane 1+00 = 1,00 ft. The point of origin or reference is at station 0+00

10 Stationing Linear Reference System Horizontal Alignment Vertical Alignment

11 Stationing Linear Reference System Horizontal Alignment Vertical Alignment 100 feet >100 feet

12 Questions How are mileposts or mile markers different from stations? Could two distinct pieces of roadway have the same station? Why stationing?

13 Kawazu-Nanadaru Loop Bridge

14 Alignment Main concern is the transition between two constant slopes Vertical alignment this means transition between two grades Horizontal alignment this means transition between two directions

15 Existing tools Autodesk AutoCAD Civil 3D x?siteid=1311&id=

16 Vertical Alignment

17 Vertical Alignment Objective: Determine elevation to ensure Proper drainage Acceptable level of safety Can a driver see far enough ahead to stop? Do the driver s light illuminate the roadway far enough ahead to stop? Can the vehicle be controlled during the transition under typical conditions?

18 Vertical Alignment Sag Vertical Curve G 1 G G 1 G Crest Vertical Curve G is roadway grade in ft/ft. G=0.05 is a 5% grade.

19 Vertical Curve Fundamentals Assume parabolic function Constant rate of change of slope y = ax + bx + y is the roadway elevation x stations (or feet) from the beginning of the curve c

20 Vertical Curve Fundamentals PVC G PVI 1 δ G L/ PVT L=curve length on horizontal x y = ax + bx + c Choose Either: G 1, G in decimal form, L in feet G 1, G in percent, L in stations

21 Vertical Curve Fundamentals PVC G PVI 1 δ G L/ PVT L=curve length on horizontal x PVC and PVT may have some elevation difference Rate of change of grade is constant, not grade itself Maximum height of the curve is not necessarily at L/

22 y = ax + bx + c At the PVC : x = 0

23 y = ax + bx + c dy = dx At the PVC : x = 0

24 Choose Either: G 1, G in decimal form, L in feet G 1, G in percent, L in stations Relationships 1, p, d Y G G1 G G1 Anywhere: = a = a = dx L L PVC PVI G 1 δ G G PVT L/ x L

25 Example A 400 ft. equal tangent crest vertical curve has a PVC station of at 59 ft. elevation. The initial grade is.0 percent and the final grade is -4.5 percent. Determine the elevation and stationing of PVT, and the high point of the curve. PVI PVT PVC: STA EL 59 ft.

26 PVI PVT PVC: STA EL 59 ft. Determine the elevation and stationing of PVT, and the high point of the curve.

27 PVI PVT PVC: STA EL 59 ft.

28 PVI PVT PVC: STA EL 59 ft.

29 Other Properties G 1, G in percent L in feet G 1 PVC PVT G A = G 1 G PVI A is the absolute value in grade differences, if grades are -3% and +4%, value is 7

30 Rate of change of slope different from slope Slope of curve at highpoint is 0 Slope of curve changes, but at a constant rate

31 Other Properties G 1, G in percent Linfeet Y versus y G 1 x PVC PVT Y Y m G A = G 1 G PVI Y f Y = A 00L x AL AL Y m = Y f =

32 Go back to the parabola y = ax + bx + c

33 Other Properties K-Value (defines vertical curvature) The number of horizontal feet needed for a 1% change in slope K = L A high / low pt. x = K G 1 G is in percent, x is in feet G is in decimal, x is in stations

34

35 Vertical Curve Fundamentals Parabolic function Constant rate of change of slope Implies equal curve tangents y = ax + bx + c y is the roadway elevation x stations (or feet) from the beginning of the curve

36 Vertical Curve Fundamentals PVC G PVI 1 δ G L/ PVT L=curve length on horizontal x PVC and PVT may have some elevation difference Rate of change of grade is constant, not grade itself Maximum height of the curve is not necessarily at L/

37

38 PVC PVI PVT

39 Vertical Curve Fundamentals PVC G PVI 1 δ G L/ PVT L=curve length on horizontal x y = ax + bx + c Choose Either: G 1, G in decimal form, L in feet G 1, G in percent, L in stations

40 Other Properties G 1, G in percent L in feet G 1 x PVC PVT Y Y m G A = G 1 G PVI Y f Y = A 00L x AL AL Y m = Y f =

41 Other Properties K-Value (defines vertical curvature) The number of horizontal feet needed for a 1% change in slope K = L A high / low pt. x = K G Small K tighter curves, less L for same A, slower speeds Larger K gentler curves, more L for same A, higher speeds 1

42 Design Controls for Crest Vertical Curves from AASHTO s A Policy on Geometric Design of Highways and Streets 004

43 Stopping Sight Distance (SSD) Practical stopping distance plus distance travelled during driver perception/reaction time Distance travelled along the roadway Use this to determine necessary curve length V SSD = 1 + V a 1 g ± G g t r

44 Sight Distance (S) Horizontal distance between driver of height H 1 and a visible object of height H Want to design the roadway such that length of curve, L, allows a driver to observe an object with enough time to stop to avoid it (S=SSD).

45 Roadway Design Want to design the roadway such that length of curve, L, allows a driver to observe an object with enough time to stop to avoid it. Set SSD = S. Approximation works in our favor.

46 Crest Vertical Curves L For S < L For S > L A ( S ) = 00( H H ) ( ) 1 + ( H + ) 00 H 1 L = S A

47 Crest Vertical Curves Assumptions for design h 1 = driver s eye height = 3.5 ft. h = tail light height =.0 ft. Simplified Equations For S < L For S > L ( ) A S L = L ( S ) 158 = 158 A

48 Crest Vertical Curves Assume L > S and check Generally true Always safer K = S 158 If assumption does not hold K values cannot be used At low values of A it is possible to get a negative curve length

49 Sag Vertical Curves Light Beam Distance (S) G 1 headlight beam (diverging g from LOS by β degrees) G PVC PVT h 1 PVI h =0 Sight distance limited by headlights at night L

50 Sag Vertical Curves Light Beam Distance (S) G 1 headlight beam (diverging g from LOS by β degrees) G PVC PVT h 1 =H PVI h =0 For S < L L For S > L L A ( S ) ( H + ) = L = ( S ) 00 S tan β ( H + ( SSD ) tan β ) 00 + A

51 Sag Vertical Curves Assumptions for design H = headlight height =.0 ft. β = 1 degree Simplified Equations L For S < L For S > L ( ) A S = L = ( S ) ( S ) A ( S )

52 Sag Vertical Curves Assuming L > S K = S SS Again, set SSD=S

53 Design Controls for Sag Vertical Curves from AASHTO s A Policy on Geometric Design of Highways and Streets 004

54 Example 1 A car is traveling at 30 mph in the country at night on a wet road through a 150 ft. long sag vertical curve. The entering grade is -.4 percent and the exiting grade is 4.0 percent. A tree has fallen across the road at approximately the PVT. Assuming the driver cannot see the tree until it is lit by her headlights, ht is it reasonable to expect the driver to be able to stop before hitting the tree? 1 Assume S<L 1. Assume S<L A ( S ) L = ( S ). Solve for S. Roots ft and ft. Driver will see tree when it is 146 feet in front of her.

55 Sag Vertical Curve Required SSD V 1 SSD = + V1t r a g ± G g What do we use for grade? ft assumes 0 grade

56 Sag Vertical Curves Light Beam Distance (S) G 1 diverging from horizontal plane of vehicle by β degrees G PVC PVT h PVI 1 h =0 L Daytime sight distance unrestricted

57 Example A car is traveling at 30 mph in the country at night on a wet road through a 150 ft. long crest vertical curve. The entering grade is 3.0 percent and the exiting grade is -3.4 percent. A tree has fallen across the road at approximately the PVT. Is it reasonable to expect the driver to be able to stop before hitting the tree? 1. Assume S<L A ( S ). A=6.4 L = S=+/- 4.9 ft. But our curve only 150 ft. So assumption wrong.

58 Crest Vertical Curve L ( S ) = S = 43 ft SSD = ft 158 A V1 SSD = + V1t r a g ± G g Yes she will be able to stop in time.

59 Example 3 A roadway is being designed using a 45 mph design speed. One section of the roadway must go up and over a small hill with an entering grade of 3. percent and an exiting grade of -.0 percent. How long must the vertical curve be? Using Table 3., for 45 mph, K=61 L = KA = (61)(5.) = 317. ft.

60 Passing Sight Distance Only a concern on crest curves On sag curves Day: unobstructed view Night: headlights can be seen ( ) A S L = 00( H H ) ( ) 1 + ( H + ) 00 H 1 L H 1 =H =3.5 ft, let S=PSD = S A

61 Underpass Sight Distance

62 Underpass Sight Distance On sag curves: obstacle obstructs view Curve must be long enough to provide adequate sight distance (S=SSD) SSD) S<L S>L L m = ( S ) A H1 + H 800 H c L m = S H H c A H

Components of Alignment. Horizontal Alignment. Vertical Alignment. Highway Design Project. Vertical Alignment. Vertical Alignment.

Components of Alignment. Horizontal Alignment. Vertical Alignment. Highway Design Project. Vertical Alignment. Vertical Alignment. 1/35 Components of Alignment Highway Design Project Horizontal Alignment Vertical Alignment Vertical Alignment Amir Samimi Civil Engineering Department Sharif University of Technology Cross-section /35

More information

Horizontal and Vertical Curve Design

Horizontal and Vertical Curve Design Horizontal and Vertical Curve Design CE 576 Highway Design and Traffic Safety Dr. Ahmed Abdel-Rahim Horizontal Alignment Horizontal curve is critical. Vehicle cornering capability is thus a key concern

More information

JCE 4600 Fundamentals of Traffic Engineering. Horizontal and Vertical Curves

JCE 4600 Fundamentals of Traffic Engineering. Horizontal and Vertical Curves JCE 4600 Fundamentals of Traffic Engineering Horizontal and Vertical Curves Agenda Horizontal Curves Vertical Curves Passing Sight Distance 1 Roadway Design Motivations Vehicle performance Acceleration

More information

Design Elements Vertical Milos N. Mladenovic Assistant Professor Department of Built Environment

Design Elements Vertical Milos N. Mladenovic Assistant Professor Department of Built Environment Design Elements Vertical Milos N. Mladenovic Assistant Professor Department of Built Environment 02.03.2017 Outline Basic elements of roadway vertical profile design Basic parameters of a vertical curve

More information

A parabolic curve that is applied to make a smooth and safe transition between two grades on a roadway or a highway.

A parabolic curve that is applied to make a smooth and safe transition between two grades on a roadway or a highway. A parabolic curve that is applied to make a smooth and safe transition between two grades on a roadway or a highway. VPC: Vertical Point of Curvature VPI: Vertical Point of Intersection VPT: Vertical Point

More information

CEE 3604 Transportation Geometric Design. Highways. Transportation Engineering (A.A. Trani)

CEE 3604 Transportation Geometric Design. Highways. Transportation Engineering (A.A. Trani) CEE 3604 Transportation Geometric Design Highways 1 History Roads have been developed in ancient cultures for trade and military reasons Silk Road - 6000 km in length Appian Road - Rome to Brindisi (Italy)

More information

Sight Distance on Vertical Curves

Sight Distance on Vertical Curves Iowa Department of Transportation Office of Design Sight Distance on Vertical Curves 6D-5 Design Manual Chapter 6 Geometric Design Originally Issued: 01-04-0 Stopping sight distance is an important factor

More information

PE Exam Review - Surveying Demonstration Problem Solutions

PE Exam Review - Surveying Demonstration Problem Solutions PE Exam Review - Surveying Demonstration Problem Solutions I. Demonstration Problem Solutions... 1. Circular Curves Part A.... Circular Curves Part B... 9 3. Vertical Curves Part A... 18 4. Vertical Curves

More information

Estimation of Suitable Grade Value for Stopping Sight Distance Computation on Vertical Curves

Estimation of Suitable Grade Value for Stopping Sight Distance Computation on Vertical Curves Estimation of Suitable Grade Value for Stopping Sight Distance Computation on Vertical Curves Ahmed H. Farhan Assist. ecturer / Civil Eng. Dept. / Anbar University Abstract The purpose of highway geometric

More information

Horizontal Alignment

Horizontal Alignment AMRC 2012 MODULE 8 Horizontal Alignment CONTENTS Overview... 8-1 Objectives... 8-1 Procedures... 8-1 8.1 Design Considerations and Circular Curves... 8-3 8.2 Superelevation and Transitional Spiral... 8-5

More information

OPTIMIZING HIGHWAY PROFILES FOR INDIVIDUAL COST ITEMS

OPTIMIZING HIGHWAY PROFILES FOR INDIVIDUAL COST ITEMS Dabbour E. Optimizing Highway Profiles for Individual Cost Items UDC: 656.11.02 DOI: http://dx.doi.org/10.7708/ijtte.2013.3(4).07 OPTIMIZING HIGHWAY PROFILES FOR INDIVIDUAL COST ITEMS Essam Dabbour 1 1

More information

1.4.3 OPERATING SPEED CONSISTENCY

1.4.3 OPERATING SPEED CONSISTENCY Geometric Design Guide for Canadian oads 1.4.3 OPEATING SPEED CONSISTENCY The safety of a road is closely linked to variations in the speed of vehicles travelling on it. These variations are of two kinds:

More information

Design Elements Horizontal Milos N. Mladenovic Assistant Professor Department of Built Environment

Design Elements Horizontal Milos N. Mladenovic Assistant Professor Department of Built Environment Design Elements Horizontal Milos N. Mladenovic Assistant Professor Department of Built Environment 01.03.2017 Outline Highway alignment Vehicle cornering forces Minimum radius Circular curve elements Transition

More information

Three-Dimensional Analysis of Sight Distance on Interchange Connectors

Three-Dimensional Analysis of Sight Distance on Interchange Connectors TRANSPOR'IAT/ON RESEARCH RECORD 1445 101 Three-Dimensional Analysis of Sight Distance on Interchange Connectors EDDIE SANCHEZ The design of interchange ramps and connectors, especially in large freeway-to-freeway

More information

Highway Alignment. Three-Dimensional Problem and Three-Dimensional Solution YASSER HASSAN, SAID M. EASA, AND A. O. ABD EL HALIM

Highway Alignment. Three-Dimensional Problem and Three-Dimensional Solution YASSER HASSAN, SAID M. EASA, AND A. O. ABD EL HALIM TRANSPORTATION RESEARCH RECORD 1612 Paper No. 98-0257 17 Highway Alignment Three-Dimensional Problem and Three-Dimensional Solution YASSER HASSAN, SAID M. EASA, AND A. O. ABD EL HALIM Highway geometric

More information

Roadway Alignments and Profiles

Roadway Alignments and Profiles NOTES Module 15 Roadway Alignments and Profiles In this module, you learn how to create horizontal alignments, surface profiles, layout (design) profiles, and profile views in AutoCAD Civil 3D. This module

More information

AUTODESK AUTOCAD CIVIL 2009 AND AUTOCAD CIVIL 3D Rule-Based Road Design using AutoCAD Civil and AutoCAD Civil 3D

AUTODESK AUTOCAD CIVIL 2009 AND AUTOCAD CIVIL 3D Rule-Based Road Design using AutoCAD Civil and AutoCAD Civil 3D AUTODESK AUTOCAD CIVIL 2009 AND AUTOCAD CIVIL 3D 2009 Rule-Based Road Design using AutoCAD Civil and AutoCAD Civil 3D Contents Introduction... 3 Design Criteria Files... 3 Alignment Geometry... 4 Applying

More information

CASE 1 TWO LANE TO FOUR LANE DIVIDED TRANSITION GEO-610-C NOT TO SCALE GEOMETRIC DESIGN GUIDE FOR MATCH LINE LINE MATCH. 2 (0.6m) shoulder transition

CASE 1 TWO LANE TO FOUR LANE DIVIDED TRANSITION GEO-610-C NOT TO SCALE GEOMETRIC DESIGN GUIDE FOR MATCH LINE LINE MATCH. 2 (0.6m) shoulder transition CASE 1 2 (0.6m) Joint Line See sheet #5 for description of variables 4 (1.2m) Transition taper is tangent to Edge of Pavement curve at this point. 1:25 Paved shoulder transition 16 (4.m) Median width 16

More information

Theodolite and Angles Measurement

Theodolite and Angles Measurement Building & Construction Technology Engineering Department Theodolite and Angles Measurement Lecture 1 Theodolite and Angles Measurement Lecture No. 1 Main Objectives Lecturer Date of Lecture General advices

More information

HP-35s Calculator Program Curves 2A

HP-35s Calculator Program Curves 2A Programmer: Dr. Bill Hazelton Date: March, 2008. Version: 1.0 Mnemonic: P for Parabolic Vertical Curve. Line Instruction Display User Instructions P001 LBL P LBL P P002 CLSTK CLEAR 5 P003 FS? 10 FLAGS

More information

Cables have been used in the design

Cables have been used in the design L A B 14 SUSPENSION BRIDGES Parabolas Cables have been used in the design of many different types of structures. They have been used in the design of suspension bridges such as New York s Verrazano Narrows

More information

Math For Surveyors. James A. Coan Sr. PLS

Math For Surveyors. James A. Coan Sr. PLS Math For Surveyors James A. Coan Sr. PLS Topics Covered 1) The Right Triangle 2) Oblique Triangles 3) Azimuths, Angles, & Bearings 4) Coordinate geometry (COGO) 5) Law of Sines 6) Bearing, Bearing Intersections

More information

ENGINEERING SURVEYING (221 BE)

ENGINEERING SURVEYING (221 BE) ENGINEERING SURVEYING (221 BE) Horizontal Circular Curves Sr Tan Liat Choon Email: tanliatchoon@gmail.com Mobile: 016-4975551 INTRODUCTION The centre line of road consists of series of straight lines interconnected

More information

AED Design Requirements: Superelevation Road Design

AED Design Requirements: Superelevation Road Design US Army Corps of Engineers Afghanistan Engineer District AED Design Requirements: Various Locations, Afghanistan MARCH 2009 TABLE OF CONTENTS AED DESIGN REQUIREMENTS FOR SUPERELEVATION ROAD DESIGN VARIOUS

More information

The Mathematics of Highway Design

The Mathematics of Highway Design The Mathematics of Highway Design Scenario As a new graduate you have gained employment as a graduate engineer working for a major contractor that employs 000 staff and has an annual turnover of 600m.

More information

Civil 3D Introduction

Civil 3D Introduction Civil 3D Introduction Points Overview Points are data collected by surveyors which represent existing site conditions (elevations, boundaries, utilities, etc.). Each point is numbered (or named) and has

More information

Sight Distance on Horizontal Alignments with Continuous Lateral Obstructions

Sight Distance on Horizontal Alignments with Continuous Lateral Obstructions TRANSPORTATION RESEARCH RECORD 1500 31 Sight Distance on Horizontal Alignments with Continuous Lateral Obstructions YASSER HASSAN, SAID M. EASA, AND A. 0. ABD EL HALIM For safe and efficient highway operation,

More information

New and Improved Unsymmetrical Vertical Curve for Highways

New and Improved Unsymmetrical Vertical Curve for Highways 94 TRANSPORJATION RESEARCH RECORD 1445 Ne and Improved Unsymmetrical Vertical Curve for Highays SAID M. EASA A ne unsymmetrical vertical curve for highays that provides important desirable features is

More information

Route Surveying. Topic Outline

Route Surveying. Topic Outline Route Surveying CE 305 Intro To Geomatics By Darrell R. Dean, Jr., P.S., Ph.D. Topic Outline Horizontal alignment Types of Horizontal Curves Degree of Curve Geometric elements of curve Station ti number

More information

Week 8 Problems. #2 Points possible: 1. Total attempts: 2 Enter your answer rounded to two decimal places.

Week 8 Problems. #2 Points possible: 1. Total attempts: 2 Enter your answer rounded to two decimal places. Week 8 Problems Name: Neal Nelson Show Scored View # Points possible:. Total attempts: A pilot is flying over a straight highway. He determines the angles of depression to two mileposts,.6 mi apart, to

More information

ENGI 3703 Surveying and Geomatics

ENGI 3703 Surveying and Geomatics Horizontal Curves (Chapter 24) We ll jump ahead a little today to support the last field school activity, Lab 6 - Horizontal Curve Layout. Today we ll define i) the properties of a horizontal curve and

More information

CONTRIBUTION TO THE INVESTIGATION OF STOPPING SIGHT DISTANCE IN THREE-DIMENSIONAL SPACE

CONTRIBUTION TO THE INVESTIGATION OF STOPPING SIGHT DISTANCE IN THREE-DIMENSIONAL SPACE National Technical University of Athens School of Civil Engineering Department of Transportation Planning and Engineering Doctoral Dissertation CONTRIBUTION TO THE INVESTIGATION OF STOPPING SIGHT DISTANCE

More information

Conic Sections and Analytic Geometry

Conic Sections and Analytic Geometry Chapter 9 Conic Sections and Analytic Geometry Chapter 9 Conic Sections and Analytic Geometry 9.1 The Ellipse 9.2 The Hyperbola 9.3 The Parabola 9.4 Rotation of Axes 9.5 Parametric Equations 9.6 Conic

More information

Final Exam Review Algebra Semester 1

Final Exam Review Algebra Semester 1 Final Exam Review Algebra 015-016 Semester 1 Name: Module 1 Find the inverse of each function. 1. f x 10 4x. g x 15x 10 Use compositions to check if the two functions are inverses. 3. s x 7 x and t(x)

More information

Transition Curves for Roads Designers Manual

Transition Curves for Roads Designers Manual Transition Curves for Roads Designers Manual Muthanna Husham Alfityan 1 and Adnan Bin Zulkiple 2 1 PhD Student, Universiti Malaysia Pahang muthanaalfit@hotmail.com 2 Faculty of Civil Engineering & Earth

More information

SURVEYING AND ROAD DESIGN FUNDAMENTALS

SURVEYING AND ROAD DESIGN FUNDAMENTALS AREA MANAGER ROADS CERTIFICATION PROGRAM AMRC 2012 SURVEYING AND ROAD DESIGN FUNDAMENTALS STUDENT GUIDE FOR EDUCATIONAL PURPOSES ONLY April, 2006 WPC #27810 07/09 2009 by British Columbia Institute of

More information

6.6 Cables: Uniform Loads

6.6 Cables: Uniform Loads 6.6 Cables: Uniform Loads 6.6 Cables: Uniform Loads Procedures and Strategies, page 1 of 3 Procedures and Strategies for Solving Problems Involving Cables With Uniform Loads 1. Draw a free-body diagram

More information

Geometric Layout for Roadway Design with CAiCE Visual Roads

Geometric Layout for Roadway Design with CAiCE Visual Roads December 2-5, 2003 MGM Grand Hotel Las Vegas Geometric Layout for Roadway Design with CAiCE Visual Roads Mathews Mathai CV32-3 This course describes and demonstrates various tools for defining horizontal

More information

ANGLES 4/18/2017. Surveying Knowledge FE REVIEW COURSE SPRING /19/2017

ANGLES 4/18/2017. Surveying Knowledge FE REVIEW COURSE SPRING /19/2017 FE REVIEW COURSE SPRING 2017 Surveying 4/19/2017 Surveying Knowledge 4 6 problems Angles, distances, & trigonometry Area computations Earthwork & volume computations Closure Coordinate systems State plane,

More information

Sight Distance Relationships Involving Horizontal Curves

Sight Distance Relationships Involving Horizontal Curves 96 TRANSPORTATON RESEARCH RECORD 1122 Sight Distance Relationships nvolving Horizontal Curves GARY R. WASS! AND DONALD E. CLEVELAND Recent AASHTO design policy developments and research have ncreased needed

More information

OPTIMAL 3D COORDINATION TO MAXIMIZE THE AVAILABLE STOPPING SIGHT DISTANCE IN TWO-LANE ROADS

OPTIMAL 3D COORDINATION TO MAXIMIZE THE AVAILABLE STOPPING SIGHT DISTANCE IN TWO-LANE ROADS 0 0 0 Moreno, Ana Tsui; Ferrer-Pérez, Vicente; Garcia, Alfredo; Romero, Mario Alfonso. (00). Optimal D Coordination to Mazimize the Available Stopping Sight Distance in Two-Lane Roads In: Proceedings of

More information

CHAPTER 11. Learn to use GEOPAK Automated Superelevation dialog box and Autoshape Builder to apply superelevation to a roadway.

CHAPTER 11. Learn to use GEOPAK Automated Superelevation dialog box and Autoshape Builder to apply superelevation to a roadway. CHAPTER 11 Superelevation 11.1 Introduction Objectives Project Manager Learn to use GEOPAK Automated Superelevation dialog box and Autoshape Builder to apply superelevation to a roadway. Calculate Superelevation

More information

Inclination of a Line

Inclination of a Line 0_00.qd 78 /8/05 Chapter 0 8:5 AM Page 78 Topics in Analtic Geometr 0. Lines What ou should learn Find the inclination of a line. Find the angle between two lines. Find the distance between a point and

More information

QUADRATICS Graphing Quadratic Functions Common Core Standard

QUADRATICS Graphing Quadratic Functions Common Core Standard H Quadratics, Lesson 6, Graphing Quadratic Functions (r. 2018) QUADRATICS Graphing Quadratic Functions Common Core Standard Next Generation Standard F-IF.B.4 For a function that models a relationship between

More information

Transportation Engineering - II Dr.Rajat Rastogi Department of Civil Engineering Indian Institute of Technology - Roorkee

Transportation Engineering - II Dr.Rajat Rastogi Department of Civil Engineering Indian Institute of Technology - Roorkee Transportation Engineering - II Dr.Rajat Rastogi Department of Civil Engineering Indian Institute of Technology - Roorkee Lecture 18 Vertical Curves and Gradients Dear students, I welcome you back to the

More information

Math Exam 2a. 1) Take the derivatives of the following. DO NOT SIMPLIFY! 2 c) y = tan(sec2 x) ) b) y= , for x 2.

Math Exam 2a. 1) Take the derivatives of the following. DO NOT SIMPLIFY! 2 c) y = tan(sec2 x) ) b) y= , for x 2. Math 111 - Exam 2a 1) Take the derivatives of the following. DO NOT SIMPLIFY! a) y = ( + 1 2 x ) (sin(2x) - x- x 1 ) b) y= 2 x + 1 c) y = tan(sec2 x) 2) Find the following derivatives a) Find dy given

More information

Slope of a Line. Find the slope of each line

Slope of a Line. Find the slope of each line Practice A Slope of a Line Find the slope of each line. 1. 2. _ Find the slope of the line that passes through each pair of points. 3. (1, 0), (2, 4) 4. (6, 2), (2, 2) 5. ( 1, 1), (4, 4) 6. ( 7, 4), (2,

More information

10600 sq. feet. Left 33.8 left of CL at elev Right 33.4 right of CL at elev 871.1

10600 sq. feet. Left 33.8 left of CL at elev Right 33.4 right of CL at elev 871.1 NAME Score CEEN 113-1 Engineering Measurements Final Exam Fall 1999 Open Book, Closed Note, Calculator Required 3 Hour Time Limit 1 point deduction for every two minutes over 1. (5 pts) Your boss has asked

More information

CHAPTER 01 Basics of Surveying

CHAPTER 01 Basics of Surveying CHAPTER 01 Basics of Surveying 1.1 How do plane surveys and geodetic surveys differ? Plane surveying assumes all horizontal measurements are taken on a single plane and all vertical measurements are relative

More information

Lecture Outlines Chapter 26

Lecture Outlines Chapter 26 Lecture Outlines Chapter 26 11/18/2013 2 Chapter 26 Geometrical Optics Objectives: After completing this module, you should be able to: Explain and discuss with diagrams, reflection and refraction of light

More information

During the timed portion for Part A, you may work only on the problems in Part A.

During the timed portion for Part A, you may work only on the problems in Part A. SECTION II Time: hour and 30 minutes Percent of total grade: 50 Part A: 45 minutes, 3 problems (A graphing calculator is required for some problems or parts of problems.) During the timed portion for Part

More information

Plateia. BIM-Ready Roadway Design Solution. by CGS Labs. Professional software solutions for Civil Engineering. (C) 2017 by CGS Labs

Plateia. BIM-Ready Roadway Design Solution. by CGS Labs. Professional software solutions for Civil Engineering. (C) 2017 by CGS Labs Plateia by CGS Labs BIM-Ready Roadway Design Solution Professional software solutions for Civil Engineering (C) 2017 by CGS Labs BIM Solution for Roadway Design & Reconstruction Plateia is a professional,

More information

UNL Professional Math and Science Institute Lesson Plan Using Logger Pro to Analyze Crash Test Video

UNL Professional Math and Science Institute Lesson Plan Using Logger Pro to Analyze Crash Test Video UNL Professional Math and Science Institute Lesson Plan Using Logger Pro to Analyze Crash Test Video The lesson plan is designed to allow students to learn to use Logger Pro to analyze video with the end

More information

Review Sheet for Second Midterm Mathematics 1300, Calculus 1

Review Sheet for Second Midterm Mathematics 1300, Calculus 1 Review Sheet for Second Midterm Mathematics 300, Calculus. For what values of is the graph of y = 5 5 both increasing and concave up? 2. Where does the tangent line to y = 2 through (0, ) intersect the

More information

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Chapter 23 Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Reflection and Refraction at a Plane Surface The light radiate from a point object in all directions The light reflected from a plane

More information

Students interpret the meaning of the point of intersection of two graphs and use analytic tools to find its coordinates.

Students interpret the meaning of the point of intersection of two graphs and use analytic tools to find its coordinates. Student Outcomes Students interpret the meaning of the point of intersection of two graphs and use analytic tools to find its coordinates. Classwork Example 1 (7 minutes) Have students read the situation

More information

Assignment Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Assignment Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Assignment.1-.3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) The arch beneath a bridge is semi-elliptical, a one-way

More information

Calculators ARE NOT Permitted On This Portion Of The Exam 28 Questions - 55 Minutes

Calculators ARE NOT Permitted On This Portion Of The Exam 28 Questions - 55 Minutes 1 of 11 1) Give f(g(1)), given that Calculators ARE NOT Permitted On This Portion Of The Exam 28 Questions - 55 Minutes 2) Find the slope of the tangent line to the graph of f at x = 4, given that 3) Determine

More information

CEEN Engineering Measurements Final Exam Fall 2001 Closed Book, Calculator Required 3 Hour Time Limit

CEEN Engineering Measurements Final Exam Fall 2001 Closed Book, Calculator Required 3 Hour Time Limit NAME Score CEEN 113-1 Engineering Measurements Final Exam Fall 001 Closed Book, Calculator Required 3 Hour Time Limit 1. (10 pts) You are interested in determining the height of a building. You are unable

More information

A Streamlined and Automated Procedure for Identifying No-Passing Zones Using Existing Resources Available to the Nevada Department of Transportation

A Streamlined and Automated Procedure for Identifying No-Passing Zones Using Existing Resources Available to the Nevada Department of Transportation NDOT Research Report Report No. 638-16-803 A Streamlined and Automated Procedure for Identifying No-Passing Zones Using Existing Resources Available to the Nevada Department of Transportation June 2018

More information

Geometry: Conic Sections

Geometry: Conic Sections Conic Sections Introduction When a right circular cone is intersected by a plane, as in figure 1 below, a family of four types of curves results. Because of their relationship to the cone, they are called

More information

The Transition Curves (Spiral Curves)

The Transition Curves (Spiral Curves) The Transition Curves (Spiral Curves) The transition curve (spiral) is a curve that has a varying radius. It is used on railroads and most modem highways. It has the following purposes: 1- Provide a gradual

More information

Civil 3-D PROFILE CREATION

Civil 3-D PROFILE CREATION Civil 3-D PROFILE CREATION 1 Alignment Overview: As in previous CAD versions, an alignment is a line that describes where you intend the centerline of your planned work to be. That s all. But, in Civil

More information

NATIONAL RADIO ASTRONOMY OBSERVATORY VLA ANTENNA MEMORANDUM NO. 1. April 3, 1968 THE RELATIONSHIP BETWEEN ANTENNA SITES ON THE ARMS OF THE WYE

NATIONAL RADIO ASTRONOMY OBSERVATORY VLA ANTENNA MEMORANDUM NO. 1. April 3, 1968 THE RELATIONSHIP BETWEEN ANTENNA SITES ON THE ARMS OF THE WYE NATIONAL RADIO ASTRONOMY OBSERVATORY VLA ANTENNA MEMORANDUM NO. 1 April 3, 1968 THE RELATIONSHIP BETWEEN ANTENNA SITES ON THE ARMS OF THE WYE A. J. Burford INTRODUCTION This memorandum discusses two methods

More information

INTRODUCTION TO VOLUME MEASUREMENTS Volume measurements are needed for three different categories of pay items:

INTRODUCTION TO VOLUME MEASUREMENTS Volume measurements are needed for three different categories of pay items: INTRODUCTION TO VOLUME MEASUREMENTS Volume measurements are needed for three different categories of pay items: Earthwork --items such as borrow excavation, and subsoil excavation Concrete -- the various

More information

More Functions, More Features ALGEBRA I. A Learning Cycle Approach MODULE 8

More Functions, More Features ALGEBRA I. A Learning Cycle Approach MODULE 8 ALGEBRA I A Learning Cycle Approach MODULE 8 More Functions, More Features The Scott Hendrickson, Joleigh Honey, Barbara Kuehl, Travis Lemon, Janet Sutorius 2016 All rights reserved. MORE FUNCTIONS, MORE

More information

Honors Algebra 2 Unit 4 Notes

Honors Algebra 2 Unit 4 Notes Honors Algebra Unit 4 Notes Day 1 Graph Quadratic Functions in Standard Form GOAL: Graph parabolas in standard form y = ax + bx + c Quadratic Function - Parabola - Vertex - Axis of symmetry - Minimum and

More information

Terramodel Training Guide. Designing a Roadway

Terramodel Training Guide. Designing a Roadway Terramodel Training Guide Version 8 Revision A March 2002 Corporate Office Trimble Navigation Limited Engineering and Construction Division 5475 Kellenburger Road Dayton, Ohio 45424-1099 U.S.A. Copyright

More information

Inverses of Trigonometric. Who uses this? Hikers can use inverse trigonometric functions to navigate in the wilderness. (See Example 3.

Inverses of Trigonometric. Who uses this? Hikers can use inverse trigonometric functions to navigate in the wilderness. (See Example 3. 1-4 Inverses of Trigonometric Functions Objectives Evaluate inverse trigonometric functions. Use trigonometric equations and inverse trigonometric functions to solve problems. Vocabulary inverse sine function

More information

NO CALCULATOR ON ANYTHING EXCEPT WHERE NOTED

NO CALCULATOR ON ANYTHING EXCEPT WHERE NOTED Algebra II (Wilsen) Midterm Review NO CALCULATOR ON ANYTHING EXCEPT WHERE NOTED Remember: Though the problems in this packet are a good representation of many of the topics that will be on the exam, this

More information

MATH 1113 Exam 1 Review. Fall 2017

MATH 1113 Exam 1 Review. Fall 2017 MATH 1113 Exam 1 Review Fall 2017 Topics Covered Section 1.1: Rectangular Coordinate System Section 1.2: Circles Section 1.3: Functions and Relations Section 1.4: Linear Equations in Two Variables and

More information

Ferrovia. BIM-Ready Railway Design Solution. by CGS Labs. Professional software solutions for Civil Engineering. (C) 2017 by CGS Labs

Ferrovia. BIM-Ready Railway Design Solution. by CGS Labs. Professional software solutions for Civil Engineering. (C) 2017 by CGS Labs Ferrovia by CGS Labs BIM-Ready Railway Design Solution Professional software solutions for Civil Engineering (C) 2017 by CGS Labs Solution for Railway Design & Rail track Analysis Ferrovia is a professional,

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

Request for FTE Design Exceptions & Variations Checklist

Request for FTE Design Exceptions & Variations Checklist District: Project Name: Project Section BMP: EMP: Exemption BMP: EMP: Request for FTE Design Exceptions & Variations Checklist FPID: New Construction RRR Requested Control Element(s): Design Speed* Horizontal

More information

Precalculus 2 Section 10.6 Parametric Equations

Precalculus 2 Section 10.6 Parametric Equations Precalculus 2 Section 10.6 Parametric Equations Parametric Equations Write parametric equations. Graph parametric equations. Determine an equivalent rectangular equation for parametric equations. Determine

More information

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31 CHAPTER Quadratic Functions Arches are used to support the weight of walls and ceilings in buildings. Arches were first used in architecture by the Mesopotamians over 4000 years ago. Later, the Romans

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Convert the angle to decimal degrees and round to the nearest hundredth of a degree. 1)

More information

Alignments CHAPTER INTRODUCTION OBJECTIVES

Alignments CHAPTER INTRODUCTION OBJECTIVES CHAPTER 5 Alignments INTRODUCTION This and the next four chapters focus on roadway design and its documentation. This chapter concentrates on roadway plan design. The next three chapters focus on the roadway

More information

MATH 122 Final Exam Review Precalculus Mathematics for Calculus, 7 th ed., Stewart, et al

MATH 122 Final Exam Review Precalculus Mathematics for Calculus, 7 th ed., Stewart, et al MATH Final Eam Review Precalculus Mathematics for Calculus, 7 th ed., Stewart, et al.. Mark the point determined by on the unit circle... Sketch a graph of y = sin( ) by hand... Find the amplitude, period,

More information

LandXML Drawing Support

LandXML Drawing Support AutoCAD Civil 3D 2008 LandXML Drawing Support Contents Introduction... 1 LandXML Schema Versions Supported... 1 General Data Handling... 2 Import Functionality... 2 Export Functionality... 3 Import Details...

More information

NCDOT Civil Geometry for GEOPAK Users

NCDOT Civil Geometry for GEOPAK Users 2018 NCDOT Civil Geometry for GEOPAK Users Oak Thammavong NCDOT Roadway Design Unit 7/31/2018 This page left intentionally blank Copyright 2018 NCDOT DO NOT DISTRIBUTE Printing for student use is permitted

More information

Practice For use with pages

Practice For use with pages 9.1 For use with pages 453 457 Find the square roots of the number. 1. 36. 361 3. 79 4. 1089 5. 4900 6. 10,000 Approimate the square root to the nearest integer. 7. 39 8. 85 9. 105 10. 136 11. 17.4 1.

More information

8.3 & 8.4 Study Guide: Solving Right triangles & Angles of Elevation/Depression

8.3 & 8.4 Study Guide: Solving Right triangles & Angles of Elevation/Depression I can use the relationship between the sine and cosine of complementary angles. I can solve problems involving angles of elevation and angles of depression. Attendance questions. Use the triangle at the

More information

Factor Quadratic Expressions

Factor Quadratic Expressions Factor Quadratic Expressions BLM 6... BLM 6 Factor Quadratic Expressions Get Ready BLM 6... Graph Quadratic Relations of the Form y = a(x h) + k. Sketch each parabola. Label the vertex, the axis of symmetry,

More information

MATH 122 Final Exam Review Precalculus Mathematics for Calculus, 7 th ed., Stewart, et al. by hand.

MATH 122 Final Exam Review Precalculus Mathematics for Calculus, 7 th ed., Stewart, et al. by hand. MATH 1 Final Exam Review Precalculus Mathematics for Calculus, 7 th ed., Stewart, et al 5.1 1. Mark the point determined by 6 on the unit circle. 5.3. Sketch a graph of y sin( x) by hand. 5.3 3. Find the

More information

Algebra 2 Chapter 2 Practice Test

Algebra 2 Chapter 2 Practice Test Algebra 2 Chapter 2 Practice Test 1. Compare the graph of with the graph of. a. The graph of g(x) is a translation 6 units left and 10 units up from the graph of f(x). b. The graph of g(x) is a translation

More information

Chapter 8.1 Conic Sections/Parabolas. Honors Pre-Calculus Rogers High School

Chapter 8.1 Conic Sections/Parabolas. Honors Pre-Calculus Rogers High School Chapter 8.1 Conic Sections/Parabolas Honors Pre-Calculus Rogers High School Introduction to Conic Sections Conic sections are defined geometrically as the result of the intersection of a plane with a right

More information

Practice Test - Chapter 7

Practice Test - Chapter 7 Write an equation for an ellipse with each set of characteristics. 1. vertices (7, 4), ( 3, 4); foci (6, 4), ( 2, 4) The distance between the vertices is 2a. 2a = 7 ( 3) a = 5; a 2 = 25 The distance between

More information

The cosine ratio is a ratio involving the hypotenuse and one leg (adjacent to angle) of the right triangle Find the cosine ratio for. below.

The cosine ratio is a ratio involving the hypotenuse and one leg (adjacent to angle) of the right triangle Find the cosine ratio for. below. The Cosine Ratio The cosine ratio is a ratio involving the hypotenuse and one leg (adjacent to angle) of the right triangle. From the diagram to the right we see that cos C = This means the ratio of the

More information

Math Analysis Final Exam Review. Chapter 1 Standards

Math Analysis Final Exam Review. Chapter 1 Standards Math Analysis Final Exam Review Chapter 1 Standards 1a 1b 1c 1d 1e 1f 1g Use the Pythagorean Theorem to find missing sides in a right triangle Use the sine, cosine, and tangent functions to find missing

More information

Tangent Lines and Linear Approximations Solutions

Tangent Lines and Linear Approximations Solutions Solutions We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions at a faster rate. Use your own judgment,

More information

Bentley Civil Guide. SELECT series 3. Setting Up Superelevation SEP Files. Written By: Lou Barrett, BSW-Development, Civil Design

Bentley Civil Guide. SELECT series 3. Setting Up Superelevation SEP Files. Written By: Lou Barrett, BSW-Development, Civil Design Bentley Civil Guide SELECT series 3 Setting Up Superelevation SEP Files Written By: Lou Barrett, BSW-Development, Civil Design Bentley Systems, Incorporated 685 Stockton Drive Exton, PA 19341 www.bentley.com

More information

. The differential of y f (x)

. The differential of y f (x) Calculus I - Prof D Yuen Exam Review version 11/14/01 Please report any typos Derivative Rules Of course you have to remember all your derivative rules Implicit Differentiation Differentiate both sides

More information

8/6/2010 Assignment Previewer

8/6/2010 Assignment Previewer 8//2010 Assignment Previewer Week 8 Friday Homework (1324223) Question 12345789101112131415117181920 1. Question Detailsscalcet 3.9.ae.05.nva [129124] EXAMPLE 5 A man walks along a straight path at a speed

More information

SECTION 7.4 THE LAW OF SINES 483. Triangles AjfijC, and A2B2C2 are shown in Figure 9. b = a = EXAMPLE 5 SSA, the No-Solution Case

SECTION 7.4 THE LAW OF SINES 483. Triangles AjfijC, and A2B2C2 are shown in Figure 9. b = a = EXAMPLE 5 SSA, the No-Solution Case SECTION 7.4 THE LAW OF SINES 483 the foothills of the Himalayas. A later expedition, using triangulation, calculated the height of the highest peak of the Himalayas to be 29,002 ft. The peak was named

More information

Name: Date: 1. Match the equation with its graph. Page 1

Name: Date: 1. Match the equation with its graph. Page 1 Name: Date: 1. Match the equation with its graph. y 6x A) C) Page 1 D) E) Page . Match the equation with its graph. ( x3) ( y3) A) C) Page 3 D) E) Page 4 3. Match the equation with its graph. ( x ) y 1

More information

AP Calculus. Extreme Values: Graphically. Slide 1 / 163 Slide 2 / 163. Slide 4 / 163. Slide 3 / 163. Slide 5 / 163. Slide 6 / 163

AP Calculus. Extreme Values: Graphically. Slide 1 / 163 Slide 2 / 163. Slide 4 / 163. Slide 3 / 163. Slide 5 / 163. Slide 6 / 163 Slide 1 / 163 Slide 2 / 163 AP Calculus Analyzing Functions Using Derivatives 2015-11-04 www.njctl.org Slide 3 / 163 Table of Contents click on the topic to go to that section Slide 4 / 163 Extreme Values

More information

Working with Profiles

Working with Profiles Tennessee Association of Professional Land Surveyors 2016 Annual Conference Murfreesboro Working with Profiles In Carlson Software Presented by Who Is That CAD Girl? Jennifer DiBona is a long time CAD

More information

about touching on a topic and then veering off to talk about something completely unrelated.

about touching on a topic and then veering off to talk about something completely unrelated. The Tangent Ratio Tangent Ratio, Cotangent Ratio, and Inverse Tangent 8.2 Learning Goals In this lesson, you will: Use the tangent ratio in a right triangle to solve for unknown side lengths. Use the cotangent

More information

Chapter 6: Quadratic Functions

Chapter 6: Quadratic Functions Chapter 6: Quadratic Functions Section 6.1 Chapter 6: Quadratic Functions Section 6.1 Exploring Quadratic Relations Terminology: Quadratic Relations: A relation that can be written in the standard form

More information