Image-based ICP Algorithm for Visual Odometry Using a RGB-D Sensor in a Dynamic Environment

Size: px
Start display at page:

Download "Image-based ICP Algorithm for Visual Odometry Using a RGB-D Sensor in a Dynamic Environment"

Transcription

1 Image-based ICP Algorithm for Visual Odometry Using a RGB-D Sensor in a Dynamic Environment Deok-Hwa Kim and Jong-Hwan Kim Department of Robotics Program, KAIST 335 Gwahangno, Yuseong-gu, Daejeon , Republic of Korea dhkim@rit.kaist.ac.kr, johkim@rit.kaist.ac.kr Abstract. This paper proposes a novel approach to calculate visual odometry using Microsoft Kinect incorporating depth information into RGB color information to generate 3D feature points based on speed up robust features (SURF) descriptor. In particular, the generated 3D feature points are used for calculating the iterative closest point (ICP) algorithm between successive images from the sensor. The ICP algorithm works based on image information of features differently from previous approaches. This paper suggests one of the modified versions for a state-of-the-art implementation of the ICP algorithm. Such an approach makes accurate calculation of the rigid body transformation matrix for visual odometry in a dynamic environment. From this calculation step, dynamically moving features can be separated into outliers. Then, the outliers are filtered with random sample consensus (RANSAC) algorithm for accurate calculation of the rigid body transformation matrix. The experiments demonstrate that visual odometry is successfully obtained using the proposed algorithm in a dynamic environment. Keywords: Visual Odometry, RGB-D Sensor, Iterative Closest Point Algorithm, Dynamic Environments, SLAM 1 Introduction Mobile robots containing wheels use their encoder values for odometry information. However, aerial vehicles or humanoid robots cannot directly use their encoder values for odometry information. Because of this constraint, visual odometry has become more important than another sensor values in their fields. Actually, the robotics and computer vision communities have developed many techniques and algorithm for 3D mapping and visual odometry using range scanner [5, 6], stereo cameras [3], monocular cameras [4, 7] and RGB-D sensors [1, 2, 10]. Most visual odometry systems require the spatial alignment of successive camera frames. To deal with the alignment problem, the ICP algorithm [11] has been used. This algorithm is to minimize the difference between the two sets of the points. It is often employed to reconstruct 2D or 3D surfaces from different scans. If there are some unreliable points in a set of features, the systems using those points will be unstable. To solve this problem, RANSAC algorithm, which is very

2 simple and useful algorithm, has been used widely [12]. There have been many researches on visual odometry using a RGB-D sensor based on the ICP and RANSAC algorithms. However, dynamic environments have not been considered in those researches. Considering dynamic environment applications, this paper proposes a novel approach to calculate visual odometry with the modified ICP algorithm based on image information. 2 Visual Odometry System Using a RGB-D Sensor Many researchers proposed visual odometry systems using a RGB-D sensor. Those visual odometry systems follow similar algorithm [1, 10]. This chapter introduces the algorithm for getting the visual odometry information. Visual odometry information can be obtained by five procedures. First of all, it needs to get feature points. Visual odometry system works based on rotation-invariant feature points. For the feature detection, SURF algorithm [8] is employed. SURF algorithm have many parallel processing computation, so it can be applied to graphic processing unit (GPU) processing for boosting speed. From the SURF algorithm, the feature information, which contains feature position, feature scale, etc, can be obtained. After getting features, feature matching algorithm is computed between prior frame and current frame. The next step to get odometry information is 3D reconstruction using the camera intrinsic parameters (focal lengths, principal points) and the depth information. It can be done from the proportional equation between the focal length and the depth information, easily. After the step, the inliers detection has to be computed by reprojection using the homography between the prior image plane and the current image plane. The homography is found by RANSAC algorithm. From this step, matched features can be refined. Fig 1. The Image matching result with SURF GPU algorithm.

3 Using the matched features, the rigid body transformation matrix [9] is calculated. It is computed by singular value decomposition (SVD) method for decomposing the cross-dispersion matrix [C]. The cross-dispersion matrix is computed from [ ], where is the position of the i-th point measured in the prior image; the position of the i-th point measured in the current image; the mean position of the prior image; the mean position of the current image. It can be decomposed to [U], [W], [V] by SVD where [U] and [V] are the orthogonal matrices, and [W] is the diagonal matrix which contains the singular values of matrix [C]. For calculating the rigid body transformation matrix, rotation matrix is computed from And translation vector is estimated by [ ] [ ][ ]. [ ]. Through the combination of [R] matrix and t vector, the rigid body transformation matrix can be computed. Based on this matrix, estimation for odometry information is conducted. For more accurate estimation of the transformation matrix, RANSAC algorithm is applied. The result from this procedure is used for initial rigid body transformation matrix. However, there still remain errors in this transformation matrix. More compensation algorithm is needed. Fig 2. The odometry information from up, forward, backward, down movements.

4 For more compensation of rigid body motion, this paper uses ICP algorithm. This algorithm has been used for 2D or 3D reconstruction in the vision field. It is consists of 3 procedures. Firstly, finding closest points from feature sets is required. KD-tree searching algorithm is used for searching closest points. In this paper, this procedure is modified to use the image information and it is discussed in detail in the next section. And next procedure is finding the rigid body transformation matrix from the closest point sets. To find the matrix, the SVD method is applied. After then, update procedure is computed. This update step can make new closest sets of feature. From the result of iterative searching for transformation matrix, odometry information gets more precise. Those overall procedures produce visual odometry information. Figure 2 shows the result from the continuous up, forward, backward and down movements for visual odometry. In the next section, accurate visual odometry algorithm in a dynamic environment (consisting of static and dynamic objects) is proposed. 3 The Image-based ICP algorithm in a Dynamic Environment In a dynamic environment, visual odometry cannot be correctly computed because dynamic movements affect unfit matching in a part of getting closest sets in the ICP algorithm. In this section, the ICP algorithm based on images is proposed for the dynamic environment applications. 3.1 The image-based ICP algorithm The ICP algorithm based on images is different from original one in detecting the closest sets of features. At a part of finding closest sets in ICP algorithm, an image information with the 3D position information of the feature is combined. This image information can contribute to the precise detection of matched features. Algorithm 1. The image based ICP for i=0 to max_iteration do ( ) If( ) break; end If the features are matched more precisly, they can be divided into inliers and outliers. Dynamic obstacle features are classified into the outliers because those features have different movements from the others.

5 Fig 3. Diagram of finding closest set of feature using the proposed algorithm. Algorithm 1 shows the image-based ICP algorithm. FindClosestSetPoint function has two more parameters, where is a set of RGB for the prior image features; is a set of RGB for the current image features. This function uses KDtree searching algorithm which is faster than raw searching algorithm for getting the closest sets. After then, solving the rigid body transformation matrix using RANSAC algorithm follows. Figure 3 shows the diagram of finding closest set of feature using the image-based ICP algorithm. Each finding procedure considers euclidean distance but also normalized RGB distance. 3.2 Benefits of the image based ICP algorithm This paper proposes a novel visual odometry algorithm to be used in a dynamic environment. It is very robust to dynamic obstacles. Therefore, it can be applied to the real life for computing visual odometry. For example, aerial vehicles are very hard to get odometry information from their motors. In that field, this visual odometry algorithm using RGB-D sensor can be applied.

6 4 Experiments The proposed algorithm was tested with RGB-D sensor as known as the Kinect sensor. Experimental environments were Gentoo OS, Intel i5 3.3GHz Quad-core processor, NVIDIA GTX 560 GPU and 6GB RAM. Average computation time was ms per frame. The experiments were carried out in a static environment and in a dynamic environment. 4.1 The experiment result in a static environment Fig 4. The experiment result in a static environment for up, forward and return movements: (left) using the conventional ICP algorithm; (right) using the image-based ICP algorithm. Experiments in a static environment were conducted in a room where there were no movements excluding the Kinect sensor and experimenter. Experimenter grabbing the Kinect sensor moved it upward, forward, backward, and downward. Figure 4 is a result of experiment in a static environment. Left graph is a result of visual odometry using the conventional ICP algorithm. Right graph is a result of visual odometry using the image-based ICP algorithm. Both algorithms have showed similar results in a static environment. From this result, the image-based ICP algorithm also can be applied to calculate visual odometry in a static environment.

7 4.2 The experiment result in a dynamic environment For the realization of a dynamic environment, experimenter roamed around a room, as Fig. 5 shows. In this environment, calculating the visual odometry was performed using a fixed Kinect sensor. Figure 6 shows a result of the experiment with the proposed visual odometry algorithm compared with the conventional ICP. The left graph is a result of the conventional ICP Fig 5. A dynamic environment. algorithm. It shows a result of unstable computation for the visual odometry. This result came from no inliers detection in the ICP algorithm. The outliers which came from roaming people were not filtered to solve rigid body transformation matrix. However, the right graph shows a very stable computing result for the visual odometry in a dynamic environment with the fixed Kinect. The proposed algorithm has additional filtering steps, such as the closest set detection based on images and outlier suppression using the RANSAC algorithm, in the ICP algorithm. As a result, the visual odometry using the RGB-D sensor by the proposed algorithm can be more accurate than the conventional ICP algorithm in a dynamic environment. Fig 6. The experiment result in a dynamic environment with a fixed RGB-D camera: (left) using the conventional ICP algorithm; (right) using the image-based ICP algorithm.

8 5 Conclusion This paper proposed the image-based ICP algorithm for calculating visual odometry. It was demonstrated that the proposed algorithm was very robust to dynamic obstacles. In this algorithm, RGB information of feature point was used for finding the closest set points in the ICP algorithm. After finding the closest set points, RANSAC algorithm was computed for solving the rigid body transformation matrix with eliminating outlier effect of dynamic object features. Such overall procedures contributed to promote accurate calculation of odometry information in a dynamic environment. However, the proposed algorithm still has a problem in computation time caused by RANSAC algorithm. Therefore, we need to solve the real-time problem considering the case of fast movements of the RGB-D sensor. Furthermore, the SLAM system has to be considered for our further works using the proposed visual odometry algorithm. Acknowledgements This research was supported by the MKE (The Ministry of Knowledge Economy), Korea, under the Human Resources Development Program for Convergence Robot Specialists support program supervised by the NIPA (National IT Industry Promotion Agency) (NIPA-2012-H ) References 1. Albert S. Huang, Abraham Bachrach, Peter Henry, Michael Krainin, Daniel Maturana, Dieter Fox and Nicholas Roy (2011) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera. Paper presented at International Symposium on Robotics Research (ISRR), Flagstaff, AZ, USA, Aug Flank Steinbrucker, Jurgen Sturm and Daniel Cremers (2011) Real-Time Visual Odometry from Dense RGB-D Images. Paper presented at IEEE International Conference on Computer Vision Workshops, Barcelona, Spain, pp , Nov Navid Nourani-Vatani, Jonathan Roberts, and Mandyam V. Srinivasan (2008) IMU aided 3D visual odometry for car-like vehicles. Paper presented at 10 th Australasian Conference on Robotics & Automation, Canberra, ACT, Australia, pp 1-8, Dec Laurent Kneip, Margarita Chli, and Roland Siegwart (2011) Robust Real-Time Visual Odometry with a Single Camera and an IMU. Paper presented at The 22 nd British Machine Vision Conference, University of Dundee, pp , Sep Marco Baglietto, Antonio Sgorbissa, Damiano Verda and Renato Zaccaria (2011) Human navigation and mapping with a 6DOF IMU and a laser scanner. Paper presented at Robotics and Autonomous Systems 59: doi: /jrobot Armin Hornung, Kai M. Wurm, and Maren Bennewitz (2010) Humannoid Robot Localization in Complex Indoor Environments. Paper presented at IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, pp , Oct Andrew J. Davison, lan D. Reid, Nicholas D. Molton, and Olivier Stasse (2007)

9 MonoSLAM: Real-Time Single Camera SLAM. Paper presented at IEEE Transactions On Pattern Analysis And Machine Intelligence 29(6): doi: /TPAMI Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool (2008) Speeded-Up Robust Feautres (SURF). Paper presented at Computer Vision and Image Understanding 110(3): doi: /j.cviu John H. Challis (1994) A Procedure for determining rigid body transformation parameters. Paper presented at Journal of Biomechanics 28(6): doi: / (94)00116-L 10. Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter Fox (2010) RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments. Paper presented at International Symposium on Experimental Robotics, Delhi, India, Dec Aleksandr V. Segal, Dirk Haehnel, and Sebastian Thrun (2009) Generalized-ICP. Paper presented at Robotics: Science and Systems, Seattle, USA, June Martin A. Fischler, and Robert C. Bolles (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Paper presented at Communications of the ACM 24(6): doi: /

Visual Odometry Algorithm Using an RGB-D Sensor and IMU in a Highly Dynamic Environment

Visual Odometry Algorithm Using an RGB-D Sensor and IMU in a Highly Dynamic Environment Visual Odometry Algorithm Using an RGB-D Sensor and IMU in a Highly Dynamic Environment Deok-Hwa Kim, Seung-Beom Han, and Jong-Hwan Kim Department of Electrical Engineering, KAIST 29 Daehak-ro, Yuseong-gu,

More information

3D Environment Reconstruction

3D Environment Reconstruction 3D Environment Reconstruction Using Modified Color ICP Algorithm by Fusion of a Camera and a 3D Laser Range Finder The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems October 11-15,

More information

Visual Navigation for Micro Air Vehicles

Visual Navigation for Micro Air Vehicles Visual Navigation for Micro Air Vehicles Abraham Bachrach, Albert S. Huang, Daniel Maturana, Peter Henry, Michael Krainin, Dieter Fox, and Nicholas Roy Computer Science and Artificial Intelligence Laboratory,

More information

Removing Moving Objects from Point Cloud Scenes

Removing Moving Objects from Point Cloud Scenes Removing Moving Objects from Point Cloud Scenes Krystof Litomisky and Bir Bhanu University of California, Riverside krystof@litomisky.com, bhanu@ee.ucr.edu Abstract. Three-dimensional simultaneous localization

More information

Monocular SLAM for a Small-Size Humanoid Robot

Monocular SLAM for a Small-Size Humanoid Robot Tamkang Journal of Science and Engineering, Vol. 14, No. 2, pp. 123 129 (2011) 123 Monocular SLAM for a Small-Size Humanoid Robot Yin-Tien Wang*, Duen-Yan Hung and Sheng-Hsien Cheng Department of Mechanical

More information

A Real-Time RGB-D Registration and Mapping Approach by Heuristically Switching Between Photometric And Geometric Information

A Real-Time RGB-D Registration and Mapping Approach by Heuristically Switching Between Photometric And Geometric Information A Real-Time RGB-D Registration and Mapping Approach by Heuristically Switching Between Photometric And Geometric Information The 17th International Conference on Information Fusion (Fusion 2014) Khalid

More information

Accurate Motion Estimation and High-Precision 3D Reconstruction by Sensor Fusion

Accurate Motion Estimation and High-Precision 3D Reconstruction by Sensor Fusion 007 IEEE International Conference on Robotics and Automation Roma, Italy, 0-4 April 007 FrE5. Accurate Motion Estimation and High-Precision D Reconstruction by Sensor Fusion Yunsu Bok, Youngbae Hwang,

More information

Efficient SLAM Scheme Based ICP Matching Algorithm Using Image and Laser Scan Information

Efficient SLAM Scheme Based ICP Matching Algorithm Using Image and Laser Scan Information Proceedings of the World Congress on Electrical Engineering and Computer Systems and Science (EECSS 2015) Barcelona, Spain July 13-14, 2015 Paper No. 335 Efficient SLAM Scheme Based ICP Matching Algorithm

More information

Visual Bearing-Only Simultaneous Localization and Mapping with Improved Feature Matching

Visual Bearing-Only Simultaneous Localization and Mapping with Improved Feature Matching Visual Bearing-Only Simultaneous Localization and Mapping with Improved Feature Matching Hauke Strasdat, Cyrill Stachniss, Maren Bennewitz, and Wolfram Burgard Computer Science Institute, University of

More information

Robot localization method based on visual features and their geometric relationship

Robot localization method based on visual features and their geometric relationship , pp.46-50 http://dx.doi.org/10.14257/astl.2015.85.11 Robot localization method based on visual features and their geometric relationship Sangyun Lee 1, Changkyung Eem 2, and Hyunki Hong 3 1 Department

More information

Depth Propagation with Key-Frame Considering Movement on the Z-Axis

Depth Propagation with Key-Frame Considering Movement on the Z-Axis , pp.131-135 http://dx.doi.org/10.1457/astl.014.47.31 Depth Propagation with Key-Frame Considering Movement on the Z-Axis Jin Woo Choi 1, Taeg Keun Whangbo 1 Culture Technology Institute, Gachon University,

More information

Object Reconstruction

Object Reconstruction B. Scholz Object Reconstruction 1 / 39 MIN-Fakultät Fachbereich Informatik Object Reconstruction Benjamin Scholz Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich

More information

Team Description Paper Team AutonOHM

Team Description Paper Team AutonOHM Team Description Paper Team AutonOHM Jon Martin, Daniel Ammon, Helmut Engelhardt, Tobias Fink, Tobias Scholz, and Marco Masannek University of Applied Science Nueremberg Georg-Simon-Ohm, Kesslerplatz 12,

More information

LOCAL AND GLOBAL DESCRIPTORS FOR PLACE RECOGNITION IN ROBOTICS

LOCAL AND GLOBAL DESCRIPTORS FOR PLACE RECOGNITION IN ROBOTICS 8th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING - 19-21 April 2012, Tallinn, Estonia LOCAL AND GLOBAL DESCRIPTORS FOR PLACE RECOGNITION IN ROBOTICS Shvarts, D. & Tamre, M. Abstract: The

More information

3-Point RANSAC for Fast Vision based Rotation Estimation using GPU Technology

3-Point RANSAC for Fast Vision based Rotation Estimation using GPU Technology 3-Point RANSAC for Fast Vision based Rotation Estimation using GPU Technology Danial Kamran 1, Mohammad T. Manzuri 1, Ali Marjovi 2 and Mahdi Karimian 1 Abstract In many sensor fusion algorithms, the vision

More information

Using Augmented Measurements to Improve the Convergence of ICP. Jacopo Serafin and Giorgio Grisetti

Using Augmented Measurements to Improve the Convergence of ICP. Jacopo Serafin and Giorgio Grisetti Jacopo Serafin and Giorgio Grisetti Point Cloud Registration We want to find the rotation and the translation that maximize the overlap between two point clouds Page 2 Point Cloud Registration We want

More information

Stereo and Epipolar geometry

Stereo and Epipolar geometry Previously Image Primitives (feature points, lines, contours) Today: Stereo and Epipolar geometry How to match primitives between two (multiple) views) Goals: 3D reconstruction, recognition Jana Kosecka

More information

arxiv: v1 [cs.cv] 28 Sep 2018

arxiv: v1 [cs.cv] 28 Sep 2018 Camera Pose Estimation from Sequence of Calibrated Images arxiv:1809.11066v1 [cs.cv] 28 Sep 2018 Jacek Komorowski 1 and Przemyslaw Rokita 2 1 Maria Curie-Sklodowska University, Institute of Computer Science,

More information

High-speed Three-dimensional Mapping by Direct Estimation of a Small Motion Using Range Images

High-speed Three-dimensional Mapping by Direct Estimation of a Small Motion Using Range Images MECATRONICS - REM 2016 June 15-17, 2016 High-speed Three-dimensional Mapping by Direct Estimation of a Small Motion Using Range Images Shinta Nozaki and Masashi Kimura School of Science and Engineering

More information

A SURVEY ON SENSING METHODS AND FEATURE EXTRACTION ALGORITHMS FOR SLAM PROBLEM

A SURVEY ON SENSING METHODS AND FEATURE EXTRACTION ALGORITHMS FOR SLAM PROBLEM A SURVEY ON SENSING METHODS AND FEATURE EXTRACTION ALGORITHMS FOR SLAM PROBLEM Adheen Ajay and D. Venkataraman Department of Computer Science and Engineering, Amrita VishwaVidyapeetham, Coimbatore, India

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 7.2: Visual Odometry Jürgen Sturm Technische Universität München Cascaded Control Robot Trajectory 0.1 Hz Visual

More information

Homographies and RANSAC

Homographies and RANSAC Homographies and RANSAC Computer vision 6.869 Bill Freeman and Antonio Torralba March 30, 2011 Homographies and RANSAC Homographies RANSAC Building panoramas Phototourism 2 Depth-based ambiguity of position

More information

A distributed framework for monocular visual SLAM

A distributed framework for monocular visual SLAM A distributed framework for monocular visual SLAM Ruwan godagamage, Mihran Tuceryan Department of Computer and Information Science Indiana University Purdue University Indianapolis Indianapolis, Indiana

More information

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm Computer Vision Group Prof. Daniel Cremers Dense Tracking and Mapping for Autonomous Quadrocopters Jürgen Sturm Joint work with Frank Steinbrücker, Jakob Engel, Christian Kerl, Erik Bylow, and Daniel Cremers

More information

Homography based visual odometry with known vertical direction and weak Manhattan world assumption

Homography based visual odometry with known vertical direction and weak Manhattan world assumption Homography based visual odometry with known vertical direction and weak Manhattan world assumption Olivier Saurer, Friedrich Fraundorfer, Marc Pollefeys Computer Vision and Geometry Lab, ETH Zürich, Switzerland

More information

Determinant of homography-matrix-based multiple-object recognition

Determinant of homography-matrix-based multiple-object recognition Determinant of homography-matrix-based multiple-object recognition 1 Nagachetan Bangalore, Madhu Kiran, Anil Suryaprakash Visio Ingenii Limited F2-F3 Maxet House Liverpool Road Luton, LU1 1RS United Kingdom

More information

An Evaluation of the RGB-D SLAM System

An Evaluation of the RGB-D SLAM System An Evaluation of the RGB-D SLAM System Felix Endres 1 Jürgen Hess 1 Nikolas Engelhard 1 Jürgen Sturm 2 Daniel Cremers 2 Wolfram Burgard 1 Abstract We present an approach to simultaneous localization and

More information

CSE 527: Introduction to Computer Vision

CSE 527: Introduction to Computer Vision CSE 527: Introduction to Computer Vision Week 10 Class 2: Visual Odometry November 2nd, 2017 Today Visual Odometry Intro Algorithm SLAM Visual Odometry Input Output Images, Video Camera trajectory, motion

More information

3D PLANE-BASED MAPS SIMPLIFICATION FOR RGB-D SLAM SYSTEMS

3D PLANE-BASED MAPS SIMPLIFICATION FOR RGB-D SLAM SYSTEMS 3D PLANE-BASED MAPS SIMPLIFICATION FOR RGB-D SLAM SYSTEMS 1,2 Hakim ELCHAOUI ELGHOR, 1 David ROUSSEL, 1 Fakhreddine ABABSA and 2 El-Houssine BOUYAKHF 1 IBISC Lab, Evry Val d'essonne University, Evry, France

More information

Graph-based SLAM (Simultaneous Localization And Mapping) for Bridge Inspection Using UAV (Unmanned Aerial Vehicle)

Graph-based SLAM (Simultaneous Localization And Mapping) for Bridge Inspection Using UAV (Unmanned Aerial Vehicle) Graph-based SLAM (Simultaneous Localization And Mapping) for Bridge Inspection Using UAV (Unmanned Aerial Vehicle) Taekjun Oh 1), Sungwook Jung 2), Seungwon Song 3), and Hyun Myung 4) 1), 2), 3), 4) Urban

More information

Robotic Grasping Based on Efficient Tracking and Visual Servoing using Local Feature Descriptors

Robotic Grasping Based on Efficient Tracking and Visual Servoing using Local Feature Descriptors INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING Vol. 13, No. 3, pp. 387-393 MARCH 2012 / 387 DOI: 10.1007/s12541-012-0049-8 Robotic Grasping Based on Efficient Tracking and Visual Servoing

More information

K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors

K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors Shao-Tzu Huang, Chen-Chien Hsu, Wei-Yen Wang International Science Index, Electrical and Computer Engineering waset.org/publication/0007607

More information

Semantic Mapping and Reasoning Approach for Mobile Robotics

Semantic Mapping and Reasoning Approach for Mobile Robotics Semantic Mapping and Reasoning Approach for Mobile Robotics Caner GUNEY, Serdar Bora SAYIN, Murat KENDİR, Turkey Key words: Semantic mapping, 3D mapping, probabilistic, robotic surveying, mine surveying

More information

Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles

Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles Shaojie Shen Dept. of Electrical and Systems Engineering & GRASP Lab, University of Pennsylvania Committee: Daniel

More information

Visually Bootstrapped Generalized ICP

Visually Bootstrapped Generalized ICP Visually Bootstrapped Generalized ICP Gaurav Pandey Department of Electrical Engineering & Computer Science University of Michigan, Ann Arbor, MI 809 Email: pgaurav@umich.edu Silvio Savarese Department

More information

Scene Reconstruction from Uncontrolled Motion using a Low Cost 3D Sensor

Scene Reconstruction from Uncontrolled Motion using a Low Cost 3D Sensor Scene Reconstruction from Uncontrolled Motion using a Low Cost 3D Sensor Pierre Joubert and Willie Brink Applied Mathematics Department of Mathematical Sciences University of Stellenbosch, South Africa

More information

Tutorial on 3D Surface Reconstruction in Laparoscopic Surgery. Simultaneous Localization and Mapping for Minimally Invasive Surgery

Tutorial on 3D Surface Reconstruction in Laparoscopic Surgery. Simultaneous Localization and Mapping for Minimally Invasive Surgery Tutorial on 3D Surface Reconstruction in Laparoscopic Surgery Simultaneous Localization and Mapping for Minimally Invasive Surgery Introduction University of Bristol using particle filters to track football

More information

Localization algorithm using a virtual label for a mobile robot in indoor and outdoor environments

Localization algorithm using a virtual label for a mobile robot in indoor and outdoor environments Artif Life Robotics (2011) 16:361 365 ISAROB 2011 DOI 10.1007/s10015-011-0951-7 ORIGINAL ARTICLE Ki Ho Yu Min Cheol Lee Jung Hun Heo Youn Geun Moon Localization algorithm using a virtual label for a mobile

More information

Jakob Engel, Thomas Schöps, Daniel Cremers Technical University Munich. LSD-SLAM: Large-Scale Direct Monocular SLAM

Jakob Engel, Thomas Schöps, Daniel Cremers Technical University Munich. LSD-SLAM: Large-Scale Direct Monocular SLAM Computer Vision Group Technical University of Munich Jakob Engel LSD-SLAM: Large-Scale Direct Monocular SLAM Jakob Engel, Thomas Schöps, Daniel Cremers Technical University Munich Monocular Video Engel,

More information

3D Line Segment Based Model Generation by RGB-D Camera for Camera Pose Estimation

3D Line Segment Based Model Generation by RGB-D Camera for Camera Pose Estimation 3D Line Segment Based Model Generation by RGB-D Camera for Camera Pose Estimation Yusuke Nakayama, Hideo Saito, Masayoshi Shimizu, and Nobuyasu Yamaguchi Graduate School of Science and Technology, Keio

More information

arxiv: v1 [cs.cv] 18 Sep 2017

arxiv: v1 [cs.cv] 18 Sep 2017 Direct Pose Estimation with a Monocular Camera Darius Burschka and Elmar Mair arxiv:1709.05815v1 [cs.cv] 18 Sep 2017 Department of Informatics Technische Universität München, Germany {burschka elmar.mair}@mytum.de

More information

Tracking an RGB-D Camera Using Points and Planes

Tracking an RGB-D Camera Using Points and Planes MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Tracking an RGB-D Camera Using Points and Planes Ataer-Cansizoglu, E.; Taguchi, Y.; Ramalingam, S.; Garaas, T. TR2013-106 December 2013 Abstract

More information

Visual-Inertial RGB-D SLAM for Mobile Augmented Reality

Visual-Inertial RGB-D SLAM for Mobile Augmented Reality Visual-Inertial RGB-D SLAM for Mobile Augmented Reality Williem 1, Andre Ivan 1, Hochang Seok 2, Jongwoo Lim 2, Kuk-Jin Yoon 3, Ikhwan Cho 4, and In Kyu Park 1 1 Department of Information and Communication

More information

MonoRGBD-SLAM: Simultaneous Localization and Mapping Using Both Monocular and RGBD Cameras

MonoRGBD-SLAM: Simultaneous Localization and Mapping Using Both Monocular and RGBD Cameras MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com MonoRGBD-SLAM: Simultaneous Localization and Mapping Using Both Monocular and RGBD Cameras Yousif, K.; Taguchi, Y.; Ramalingam, S. TR2017-068

More information

Robust Real-Time Visual Odometry with a Single Camera and an IMU

Robust Real-Time Visual Odometry with a Single Camera and an IMU KNEIP, CHLI, SIEGWART: ROBUST REAL-TIME VISUAL ODOMETRY 1 Robust Real-Time Visual Odometry with a Single Camera and an IMU Laurent Kneip laurent.kneip@mavt.ethz.ch Margarita Chli margarita.chli@mavt.ethz.ch

More information

Mobile Point Fusion. Real-time 3d surface reconstruction out of depth images on a mobile platform

Mobile Point Fusion. Real-time 3d surface reconstruction out of depth images on a mobile platform Mobile Point Fusion Real-time 3d surface reconstruction out of depth images on a mobile platform Aaron Wetzler Presenting: Daniel Ben-Hoda Supervisors: Prof. Ron Kimmel Gal Kamar Yaron Honen Supported

More information

Personal Navigation and Indoor Mapping: Performance Characterization of Kinect Sensor-based Trajectory Recovery

Personal Navigation and Indoor Mapping: Performance Characterization of Kinect Sensor-based Trajectory Recovery Personal Navigation and Indoor Mapping: Performance Characterization of Kinect Sensor-based Trajectory Recovery 1 Charles TOTH, 1 Dorota BRZEZINSKA, USA 2 Allison KEALY, Australia, 3 Guenther RETSCHER,

More information

Step-by-Step Model Buidling

Step-by-Step Model Buidling Step-by-Step Model Buidling Review Feature selection Feature selection Feature correspondence Camera Calibration Euclidean Reconstruction Landing Augmented Reality Vision Based Control Sparse Structure

More information

Robot Mapping. SLAM Front-Ends. Cyrill Stachniss. Partial image courtesy: Edwin Olson 1

Robot Mapping. SLAM Front-Ends. Cyrill Stachniss. Partial image courtesy: Edwin Olson 1 Robot Mapping SLAM Front-Ends Cyrill Stachniss Partial image courtesy: Edwin Olson 1 Graph-Based SLAM Constraints connect the nodes through odometry and observations Robot pose Constraint 2 Graph-Based

More information

Citation for the original published paper (version of record):

Citation for the original published paper (version of record): http://www.diva-portal.org Preprint This is the submitted version of a paper published in Lecture Notes in Computer Science. Citation for the original published paper (version of record): Fan, Y., Aramrattana,

More information

A Method of Annotation Extraction from Paper Documents Using Alignment Based on Local Arrangements of Feature Points

A Method of Annotation Extraction from Paper Documents Using Alignment Based on Local Arrangements of Feature Points A Method of Annotation Extraction from Paper Documents Using Alignment Based on Local Arrangements of Feature Points Tomohiro Nakai, Koichi Kise, Masakazu Iwamura Graduate School of Engineering, Osaka

More information

SURF applied in Panorama Image Stitching

SURF applied in Panorama Image Stitching Image Processing Theory, Tools and Applications SURF applied in Panorama Image Stitching Luo Juan 1, Oubong Gwun 2 Computer Graphics Lab, Computer Science & Computer Engineering, Chonbuk National University,

More information

Basics of Localization, Mapping and SLAM. Jari Saarinen Aalto University Department of Automation and systems Technology

Basics of Localization, Mapping and SLAM. Jari Saarinen Aalto University Department of Automation and systems Technology Basics of Localization, Mapping and SLAM Jari Saarinen Aalto University Department of Automation and systems Technology Content Introduction to Problem (s) Localization A few basic equations Dead Reckoning

More information

Robot Localization based on Geo-referenced Images and G raphic Methods

Robot Localization based on Geo-referenced Images and G raphic Methods Robot Localization based on Geo-referenced Images and G raphic Methods Sid Ahmed Berrabah Mechanical Department, Royal Military School, Belgium, sidahmed.berrabah@rma.ac.be Janusz Bedkowski, Łukasz Lubasiński,

More information

Octree-Based Obstacle Representation and Registration for Real-Time

Octree-Based Obstacle Representation and Registration for Real-Time Octree-Based Obstacle Representation and Registration for Real-Time Jaewoong Kim, Daesik Kim, Junghyun Seo, Sukhan Lee and Yeonchool Park* Intelligent System Research Center (ISRC) & Nano and Intelligent

More information

Mobile Robots Summery. Autonomous Mobile Robots

Mobile Robots Summery. Autonomous Mobile Robots Mobile Robots Summery Roland Siegwart Mike Bosse, Marco Hutter, Martin Rufli, Davide Scaramuzza, (Margarita Chli, Paul Furgale) Mobile Robots Summery 1 Introduction probabilistic map-based localization

More information

Master Automática y Robótica. Técnicas Avanzadas de Vision: Visual Odometry. by Pascual Campoy Computer Vision Group

Master Automática y Robótica. Técnicas Avanzadas de Vision: Visual Odometry. by Pascual Campoy Computer Vision Group Master Automática y Robótica Técnicas Avanzadas de Vision: by Pascual Campoy Computer Vision Group www.vision4uav.eu Centro de Automá

More information

INTERACTIVE 3D ANIMATION SYSTEM BASED ON TOUCH INTERFACE AND EFFICIENT CREATION TOOLS. Anonymous ICME submission

INTERACTIVE 3D ANIMATION SYSTEM BASED ON TOUCH INTERFACE AND EFFICIENT CREATION TOOLS. Anonymous ICME submission INTERACTIVE 3D ANIMATION SYSTEM BASED ON TOUCH INTERFACE AND EFFICIENT CREATION TOOLS Anonymous ICME submission ABSTRACT Recently importance of tablet devices with touch interface increases significantly,

More information

A NEW AUTOMATIC SYSTEM CALIBRATION OF MULTI-CAMERAS AND LIDAR SENSORS

A NEW AUTOMATIC SYSTEM CALIBRATION OF MULTI-CAMERAS AND LIDAR SENSORS A NEW AUTOMATIC SYSTEM CALIBRATION OF MULTI-CAMERAS AND LIDAR SENSORS M. Hassanein a, *, A. Moussa a,b, N. El-Sheimy a a Department of Geomatics Engineering, University of Calgary, Calgary, Alberta, Canada

More information

Interactive Collision Detection for Engineering Plants based on Large-Scale Point-Clouds

Interactive Collision Detection for Engineering Plants based on Large-Scale Point-Clouds 1 Interactive Collision Detection for Engineering Plants based on Large-Scale Point-Clouds Takeru Niwa 1 and Hiroshi Masuda 2 1 The University of Electro-Communications, takeru.niwa@uec.ac.jp 2 The University

More information

Manhattan-World Assumption for As-built Modeling Industrial Plant

Manhattan-World Assumption for As-built Modeling Industrial Plant Manhattan-World Assumption for As-built Modeling Industrial Plant Tomohiro Mizoguchi 1, Tomokazu Kuma 2, Yoshikazu Kobayashi 3 and Kenji Shirai 4 Department of Computer Science, College of Engineering,

More information

DeReEs: Real-Time Registration of RGBD Images Using Image-Based Feature Detection And Robust 3D Correspondence Estimation and Refinement

DeReEs: Real-Time Registration of RGBD Images Using Image-Based Feature Detection And Robust 3D Correspondence Estimation and Refinement DeReEs: Real-Time Registration of RGBD Images Using Image-Based Feature Detection And Robust 3D Correspondence Estimation and Refinement Sahand Seifi Memorial University of Newfoundland sahands[at]mun.ca

More information

arxiv: v1 [cs.cv] 28 Sep 2018

arxiv: v1 [cs.cv] 28 Sep 2018 Extrinsic camera calibration method and its performance evaluation Jacek Komorowski 1 and Przemyslaw Rokita 2 arxiv:1809.11073v1 [cs.cv] 28 Sep 2018 1 Maria Curie Sklodowska University Lublin, Poland jacek.komorowski@gmail.com

More information

LOW POWER DEPTH ESTIMATION FOR TIME-OF-FLIGHT IMAGING. James Noraky, Vivienne Sze

LOW POWER DEPTH ESTIMATION FOR TIME-OF-FLIGHT IMAGING. James Noraky, Vivienne Sze LOW POWER DEPTH ESTIMATION FOR TIME-OF-FLIGHT IMAGING James Noraky, Vivienne Sze Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science {jnoraky, sze}@mit.edu ABSTRACT

More information

Multi Channel Generalized-ICP

Multi Channel Generalized-ICP Multi Channel Generalized-ICP James Servos and Steven L. Waslander University of Waterloo, Waterloo, ON, Canada, N2L 3G1 Abstract Current state of the art scan registration algorithms which use only positional

More information

Fast Sampling Plane Filtering, Polygon Construction and Merging from Depth Images

Fast Sampling Plane Filtering, Polygon Construction and Merging from Depth Images Fast Sampling Plane Filtering, Polygon Construction and Merging from Depth Images Joydeep Biswas Robotics Institute Carnegie Mellon University Pittsburgh, PA 523, USA joydeepb@ri.cmu.edu Manuela Veloso

More information

A Simple 3D Scanning System of the Human Foot Using a Smartphone with Depth Camera

A Simple 3D Scanning System of the Human Foot Using a Smartphone with Depth Camera Abstract A Simple 3D Scanning System of the Human Foot Using a Smartphone with Depth Camera Takumi KOBAYASHI* 1, Naoto IENAGA 1, Yuta SUGIURA 1, Hideo SAITO 1, Natsuki MIYATA 2, Mitsumori TADA 2 1 Keio

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.1: 3D Geometry Jürgen Sturm Technische Universität München Points in 3D 3D point Augmented vector Homogeneous

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 263

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 263 Index 3D reconstruction, 125 5+1-point algorithm, 284 5-point algorithm, 270 7-point algorithm, 265 8-point algorithm, 263 affine point, 45 affine transformation, 57 affine transformation group, 57 affine

More information

Visual Odometry for Non-Overlapping Views Using Second-Order Cone Programming

Visual Odometry for Non-Overlapping Views Using Second-Order Cone Programming Visual Odometry for Non-Overlapping Views Using Second-Order Cone Programming Jae-Hak Kim 1, Richard Hartley 1, Jan-Michael Frahm 2 and Marc Pollefeys 2 1 Research School of Information Sciences and Engineering

More information

Fitting (LMedS, RANSAC)

Fitting (LMedS, RANSAC) Fitting (LMedS, RANSAC) Thursday, 23/03/2017 Antonis Argyros e-mail: argyros@csd.uoc.gr LMedS and RANSAC What if we have very many outliers? 2 1 Least Median of Squares ri : Residuals Least Squares n 2

More information

XIII Simpósio Brasileiro de Automação Inteligente Porto Alegre RS, 1 o 4 de Outubro de 2017

XIII Simpósio Brasileiro de Automação Inteligente Porto Alegre RS, 1 o 4 de Outubro de 2017 VISUAL ODOMETRY WITH AN OMNIDIRECTIONAL MULTI-CAMERA SYSTEM Ana Rita Pereira, Valdir Grassi Junior, Helder Araújo São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil Institute

More information

Building World Representations using Color-Depth Cameras

Building World Representations using Color-Depth Cameras Building World Representations using Color-Depth Cameras Ricardo Mileu Cavalheiro Lucas Instituto Superior Técnico, Lisbon, Portugal ricardolucas@ist.utl.pt Abstract Clouds of points acquired by color-depth

More information

Epipolar geometry-based ego-localization using an in-vehicle monocular camera

Epipolar geometry-based ego-localization using an in-vehicle monocular camera Epipolar geometry-based ego-localization using an in-vehicle monocular camera Haruya Kyutoku 1, Yasutomo Kawanishi 1, Daisuke Deguchi 1, Ichiro Ide 1, Hiroshi Murase 1 1 : Nagoya University, Japan E-mail:

More information

ACEEE Int. J. on Information Technology, Vol. 02, No. 01, March 2012

ACEEE Int. J. on Information Technology, Vol. 02, No. 01, March 2012 Feature Tracking of Objects in Underwater Video Sequences Prabhakar C J & Praveen Kumar P U Department of P.G. Studies and Research in Computer Science Kuvempu University, Shankaraghatta - 577451 Karnataka,

More information

Active 3D Shape Acquisition Using Smartphones

Active 3D Shape Acquisition Using Smartphones Active 3D Shape Acquisition Using Smartphones Jae Hyun Won won1425@gmail.com Man Hee Lee maninara@gmail.com In Kyu Park pik@inha.ac.kr School of Information and Communication Engineering, Inha University,

More information

StereoScan: Dense 3D Reconstruction in Real-time

StereoScan: Dense 3D Reconstruction in Real-time STANFORD UNIVERSITY, COMPUTER SCIENCE, STANFORD CS231A SPRING 2016 StereoScan: Dense 3D Reconstruction in Real-time Peirong Ji, pji@stanford.edu June 7, 2016 1 INTRODUCTION In this project, I am trying

More information

Robust Geometry Estimation from two Images

Robust Geometry Estimation from two Images Robust Geometry Estimation from two Images Carsten Rother 09/12/2016 Computer Vision I: Image Formation Process Roadmap for next four lectures Computer Vision I: Image Formation Process 09/12/2016 2 Appearance-based

More information

Visual SLAM for small Unmanned Aerial Vehicles

Visual SLAM for small Unmanned Aerial Vehicles Visual SLAM for small Unmanned Aerial Vehicles Margarita Chli Autonomous Systems Lab, ETH Zurich Simultaneous Localization And Mapping How can a body navigate in a previously unknown environment while

More information

Calibration of a rotating multi-beam Lidar

Calibration of a rotating multi-beam Lidar The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-22, 2010, Taipei, Taiwan Calibration of a rotating multi-beam Lidar Naveed Muhammad 1,2 and Simon Lacroix 1,2 Abstract

More information

Advances in 3D data processing and 3D cameras

Advances in 3D data processing and 3D cameras Advances in 3D data processing and 3D cameras Miguel Cazorla Grupo de Robótica y Visión Tridimensional Universidad de Alicante Contents Cameras and 3D images 3D data compression 3D registration 3D feature

More information

Incremental Structured ICP Algorithm

Incremental Structured ICP Algorithm Incremental Structured ICP Algorithm Haokun Geng, Johnny Chien, Radu Nicolescu, and Reinhard Klette The.enpeda.. Project, Tamaki Campus The University of Auckland, New Zealand Abstract. Variants of the

More information

Inertial-Kinect Fusion for Outdoor 3D Navigation

Inertial-Kinect Fusion for Outdoor 3D Navigation Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 213, University of New South Wales, Sydney Australia Inertial-Kinect Fusion for Outdoor 3D Navigation Usman Qayyum and Jonghyuk

More information

3D Terrain Sensing System using Laser Range Finder with Arm-Type Movable Unit

3D Terrain Sensing System using Laser Range Finder with Arm-Type Movable Unit 3D Terrain Sensing System using Laser Range Finder with Arm-Type Movable Unit 9 Toyomi Fujita and Yuya Kondo Tohoku Institute of Technology Japan 1. Introduction A 3D configuration and terrain sensing

More information

Indoor Positioning System Based on Distributed Camera Sensor Networks for Mobile Robot

Indoor Positioning System Based on Distributed Camera Sensor Networks for Mobile Robot Indoor Positioning System Based on Distributed Camera Sensor Networks for Mobile Robot Yonghoon Ji 1, Atsushi Yamashita 1, and Hajime Asama 1 School of Engineering, The University of Tokyo, Japan, t{ji,

More information

Efficient Stereo Image Rectification Method Using Horizontal Baseline

Efficient Stereo Image Rectification Method Using Horizontal Baseline Efficient Stereo Image Rectification Method Using Horizontal Baseline Yun-Suk Kang and Yo-Sung Ho School of Information and Communicatitions Gwangju Institute of Science and Technology (GIST) 261 Cheomdan-gwagiro,

More information

Available online at ScienceDirect. Procedia Computer Science 22 (2013 )

Available online at   ScienceDirect. Procedia Computer Science 22 (2013 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 22 (2013 ) 945 953 17 th International Conference in Knowledge Based and Intelligent Information and Engineering Systems

More information

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 Forward Projection (Reminder) u v 1 KR ( I t ) X m Y m Z m 1 Backward Projection (Reminder) Q K 1 q Presentation Outline 1 2 3 Sample Problem

More information

Algorithm research of 3D point cloud registration based on iterative closest point 1

Algorithm research of 3D point cloud registration based on iterative closest point 1 Acta Technica 62, No. 3B/2017, 189 196 c 2017 Institute of Thermomechanics CAS, v.v.i. Algorithm research of 3D point cloud registration based on iterative closest point 1 Qian Gao 2, Yujian Wang 2,3,

More information

DEVELOPMENT OF A ROBUST IMAGE MOSAICKING METHOD FOR SMALL UNMANNED AERIAL VEHICLE

DEVELOPMENT OF A ROBUST IMAGE MOSAICKING METHOD FOR SMALL UNMANNED AERIAL VEHICLE DEVELOPMENT OF A ROBUST IMAGE MOSAICKING METHOD FOR SMALL UNMANNED AERIAL VEHICLE J. Kim and T. Kim* Dept. of Geoinformatic Engineering, Inha University, Incheon, Korea- jikim3124@inha.edu, tezid@inha.ac.kr

More information

DCTAM: Drift-Corrected Tracking and Mapping for Autonomous Micro Aerial Vehicles

DCTAM: Drift-Corrected Tracking and Mapping for Autonomous Micro Aerial Vehicles DCTAM: Drift-Corrected Tracking and Mapping for Autonomous Micro Aerial Vehicles Sebastian A. Scherer 1, Shaowu Yang 2 and Andreas Zell 1 Abstract Visual odometry, especially using a forwardlooking camera

More information

Improvement of SURF Feature Image Registration Algorithm Based on Cluster Analysis

Improvement of SURF Feature Image Registration Algorithm Based on Cluster Analysis Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com Improvement of SURF Feature Image Registration Algorithm Based on Cluster Analysis 1 Xulin LONG, 1,* Qiang CHEN, 2 Xiaoya

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253 Index 3D reconstruction, 123 5+1-point algorithm, 274 5-point algorithm, 260 7-point algorithm, 255 8-point algorithm, 253 affine point, 43 affine transformation, 55 affine transformation group, 55 affine

More information

Autonomous navigation in industrial cluttered environments using embedded stereo-vision

Autonomous navigation in industrial cluttered environments using embedded stereo-vision Autonomous navigation in industrial cluttered environments using embedded stereo-vision Julien Marzat ONERA Palaiseau Aerial Robotics workshop, Paris, 8-9 March 2017 1 Copernic Lab (ONERA Palaiseau) Research

More information

Flexible Calibration of a Portable Structured Light System through Surface Plane

Flexible Calibration of a Portable Structured Light System through Surface Plane Vol. 34, No. 11 ACTA AUTOMATICA SINICA November, 2008 Flexible Calibration of a Portable Structured Light System through Surface Plane GAO Wei 1 WANG Liang 1 HU Zhan-Yi 1 Abstract For a portable structured

More information

Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features

Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features Stephen Se, David Lowe, Jim Little Department of Computer Science University of British Columbia Presented by Adam Bickett

More information

SURF: Speeded Up Robust Features. CRV Tutorial Day 2010 David Chi Chung Tam Ryerson University

SURF: Speeded Up Robust Features. CRV Tutorial Day 2010 David Chi Chung Tam Ryerson University SURF: Speeded Up Robust Features CRV Tutorial Day 2010 David Chi Chung Tam Ryerson University Goals of SURF A fast interest point detector and descriptor Maintaining comparable performance with other detectors

More information

Visual Navigation for Flying Robots Exploration, Multi-Robot Coordination and Coverage

Visual Navigation for Flying Robots Exploration, Multi-Robot Coordination and Coverage Computer Vision Group Prof. Daniel Cremers Visual Navigation for Flying Robots Exploration, Multi-Robot Coordination and Coverage Dr. Jürgen Sturm Agenda for Today Exploration with a single robot Coordinated

More information

Camera Registration in a 3D City Model. Min Ding CS294-6 Final Presentation Dec 13, 2006

Camera Registration in a 3D City Model. Min Ding CS294-6 Final Presentation Dec 13, 2006 Camera Registration in a 3D City Model Min Ding CS294-6 Final Presentation Dec 13, 2006 Goal: Reconstruct 3D city model usable for virtual walk- and fly-throughs Virtual reality Urban planning Simulation

More information

Real-Time Vision-Based State Estimation and (Dense) Mapping

Real-Time Vision-Based State Estimation and (Dense) Mapping Real-Time Vision-Based State Estimation and (Dense) Mapping Stefan Leutenegger IROS 2016 Workshop on State Estimation and Terrain Perception for All Terrain Mobile Robots The Perception-Action Cycle in

More information