Holographic diffuser for multichannel restricted displays

Size: px
Start display at page:

Download "Holographic diffuser for multichannel restricted displays"

Transcription

1 Indian Journal of Pure & Applied Physics Vol. 54, August 2016, pp Holographic diffuser for multichannel restricted displays Subhra S Sarma a, Sonia Verma b,c & Rajkumar c * a Department of Electronics & Communication Engineering, Assam Don Bosco University, Guwahati , India b Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar , India c CSIR- Central Scientific Instruments Organization, Chandigarh , India Received 9 September 2014; revised 13 June 2016; accepted 21 June 2016 Diffusers play an important role in modern days display technology. Holographic diffusers offer effective control on various parameters of the diffused light like diffusion angle, uniformity of light etc. Present work reports a procedure for realization of a holographic diffuser through which multichannel restricted view display is achieved such that information can be conveyed to and viewed from multiple selective viewpoints only. Such type of diffusers will be helpful in enhancing security feature of the displayed information by enabling only authenticated persons to have access to the information. Fabrication process of the holographic diffuser is described and experimental results are discussed. Keywords: Holography, Diffuser, Holographic optical element, Display systems 1 Introduction Diffusion is an effect of scattering from solid, liquid, or gaseous particles. Diffusers are objects, materials, or films that diffuse incident light. Conventional ground glass diffusers achieve diffusion of incident light by means of surface roughness. Scattered light from conventional diffusers spread out over wide range of angles which is almost hemispheric 1. On the contrary, holographic diffusers provide considerable control over various parameters of the diffused light like control over angular distribution and direction of the diffused light with minimal loss 2-5. Diffusion of light from holographic diffuser depends on many factors such as properties of the source diffuser, distance between source diffuser and holographic plate, recording geometry and selection of holographic recording medium 2-9. Good quality holographic diffusers have more efficiency as compared to conventional diffusers. Diffusers find extensive use in the field of display. Several types of diffusers have been made over the years for performing desired particular functions. Diffusers are now used in many devices such as mobile phones, laptop, desktop computers and ATM machines etc. for display application. So, it has become indispensable to fabricate such a diffuser which can scatter light into the desired direction with restricted field of view so that enabling only *Corresponding author ( raj_csio@yahoo.com) authenticated user to view the information. One of the security applications of holography is well known in the field of authentication of valuable products and important documents using security holograms 10,11. Fabrication and use of restricted displays using holographic diffusers will open new areas of holographic applications in information security. Caulfield has given important suggestions for recording highly efficient holographic diffusers 12. He concluded that designing a perfect diffuser screen system for all situations is impossible but a near perfect screen can be made for a given situation. Many researchers have worked on this technique to get a directional display and three dimensional displays that can be observed from any direction Multichannel systems based on different techniques have also been reported aiming to increase the display screen size or for security of data transmitted over long distances. The present work reports recording and reconstruction of a multichannel holographic diffuser. A procedure for achieving two channels is described but actual number of channels can be increased or decreased at the time of recording, depending on end use of the recorded diffuser. The procedure is an extension of recording directional holographic diffusers. Here collimating optics is used to shape the diffuse light in order to have a control over the field of view for a particular direction. Experimental results

2 496 INDIAN J PURE & APPL PHYS, VOL 54, AUGUST 2016 obtained using this setup demonstrates the feasibility of the system for its application in restricted view multichannel displays. 2 Theoretical Description Consider the complex amplitude distribution of a collimated reference beam and two object beams obtained by illuminating ground glass diffusers with laser beams and the transmitted diffuse light is collimated using collimating lenses, incident on the hologram recording plate are,,, and, given by:, = exp, = exp exp 2, = exp exp 2 (1) Here, α = θ is the spatial carrier frequency λ introduced by the off-axis angle of object beams. and contains random phase distributions, formed by ground glass diffusers and, of object beams incident at recording plate at angles and from the normal. is reference beam phase distribution. Two separate exposures are recorded on the same holographic recording plate. In the first exposure interference pattern of reference beam and object beam 1 (object beam 2 is blocked) is recorded, resulting in an intensity distribution:, =, +, = + + exp exp 2 + exp exp 2 (2) In the second exposure interference pattern of reference beam and object beam 2 (object beam 1 is blocked) is recorded with intensity distribution:, =, +, = + + exp exp 2 + exp exp 2 (3) Total intensity distribution recorded on the holographic plate becomes:, =, +, (4) After chemical processing of the recorded plate its amplitude transmittance, is given by:, = +βτ, (5) where t 0 and β are constant and τ is exposure time. Now illumination of this hologram with reconstruction beam, in present case reconstruction beam is modulated with the parameters of the display (say phase is introduced in reference beam), the transmitted field distribution can be described by:, = + {, +, }, = exp{ }exp 2 + exp { }exp 2 + exp{ + }exp 2 + exp { + }exp 2 (6) Equation (6) represents the reconstructed field from the recorded hologram when illuminated with a reference beam modulated with information. The last term consists of two virtual reconstructed object beams modulated with the projected information. Information travels at angles defined by their respective spatial frequencies. The second last item in the equation shows reconstruction of two real object beams which can be projected on the screen with the information to be displayed. 3 Experimental Procedure For recording a holographic diffuser one needs to have a suitable master or source diffuser. In our case, two ground glass diffusers are fabricated in CSIR- CSIO optical workshop by grinding optical glass plates of area 2 square inch and thickness 1 mm using emery 302 to serve as source diffusers for two channels of the holographic diffuser. Figure 1(a) shows a schematic diagram of the experimental set-up for recording the holographic diffuser with a He-Ne laser of wavelength 632 nm. Photograph of the experimental setup is shown in Fig. 1(b). Here the laser beam is split into two parts by a variable beam splitter VBS1. A variable beam splitter is required to adjust the intensity of transmitted and reflected beam according to setup requirements. The reflected beam from the beam splitter forms one of the object beams and the transmitted beam after second transmission from VBS2 and a subsequent reflection from M1 forms the reference beam. Thus, the transmitted beam coming out of VBS1 is again split into two beams by VBS2 where reflected beam is used for forming the other object beam. Two ground glass diffusers (D1 & D2) are placed in the paths of object beams. A beam

3 SARMA et al.: HOLOGRAPHIC DIFFUSER FOR MULTICHANNEL RESTRICTED DISPLAYS 497 Fig 1 (a) Schematic diagram of the experimental setup used in recording the multi-channel holographic diffuser: L is He-Ne laser, VBSs are variable beam splitters, M1-M4 are beam steering mirrors, L1 L3 are collimating lenses, D1 and D2 are ground glass diffusers, BE is beam expander and H is the hologram recording plate and (b) photograph of the experimental setup expander in conjunction with a beam collimating lens is used to generate an expanded and collimated reference beam striking normally on the hologram recording plate H. Collimating lenses are used to collimate the diffused light from the diffusers. During our experiments angle between diffused beam from D2 and reference beam is 23 degree and between beam from D1 and reference beam is 22 ; measured on the recording surface. Thus, two object beams and the collimated reference beam interfere to produce interference fringes which are recorded on the holographic plate in two separate exposures. Here multiplexing property of the hologram is used and Fig 2 Setup for diffuser characterization thus number of views and their angular separation can be optimized depending on the actual requirements of the system. A silver halide photographic plate Agfa-Gevaert 8E75HD has been used for recording the hologram experimentally in our laboratory due to its commercially availability and good storage time as well as stability. The recommended exposure for Agfa 8E75 at 633 nm wavelength of He-Ne laser is 150µJ/cm2. After exposure to light the hologram is chemically processed using standard Kodak D-19 developer and R-9 bleach bath solutions. Diffusion efficiency η of any optical diffuser is an important property and represents its ability to diffuse light as quantified by the zero-order beam ratio (ratio of power measured in transmitted light to the incident power on the diffuser, i.e., T = P 0out /P i ). Quantitatively diffusion efficiency of an optical diffuse is η = 1 T. The efficiency of our diffuser is 48%. This is not good enough for making the diffuser useful for actual display applications but the efficiency can further be improved using the other high efficiency holographic recording materials such as photopolymers or the dichromated gelatin (DCG), which can record holograms having efficiency more than 90% experimentally as reported in the literature 2. A schematic of the experimental setup used for measuring angular distribution of diffused light is shown in Fig. 2. In this set up the reference beam from the laser is allowed to illuminate the developed holographic diffuser. A plano-convex lens with a focal length of 25 mm is placed at a distance of 16 cm from the diffuser to collect the scattered signal (diffuse light). A detector and power meter is placed just off the focal plane of the lens. The power meter used in the set-up is of model 1825-C of Newport.

4 498 INDIAN J PURE & APPL PHYS, VOL 54, AUGUST 2016 The lens and the detector are mounted on a single platform, which is placed on a rotary stage for angular measurements. One end of an aluminum bar is fixed to the center of the base of a protractor and the other end is used to mount the lens-detector assembly. The detector is aligned to get maximum signal in the power meter by giving necessary translation to it using a translation stage on which detector is mounted. The detection system is scanned in horizontal (Z-X) plane for obtaining power distributions at different angles. This gives a plot of distribution of light transmitted through the diffuser. 4 Results and Discussion After optical recording and chemical processing, the hologram is replaced back in its mount and illuminated with reconstruction beam. The reconstruction beam is modulated with information which is to be displayed. In our experiments the displayed information consists of alphabets ABC written on an optical glass plate. As is clear from Eq. (6) that the information used to modulate the reconstruction beam also modulates both of the reconstructed object beams. This effect of projected information on reconstructed object beams is seen in the experimental results shown in the Fig. 3. Here due to recording of two channels on the same recording plate, the reconstructed information travels along these two channels only as seen in Fig. 3 in the form of separation of reconstructed beams on either side of the DC light. Here, the central beam corresponds to directly transmitted (DC) reconstructing beam while information on either side of DC beam corresponds to two recorded channels of the diffuser. The DC beam is also modulated with the input information. This information can be viewed only from the angles of recording of the holographic diffuser. This confirms that when the desired information which is to be displayed (i.e., reconstruction wave is modulated with the desired information which is to be displayed) is projected on the holographic diffuser, the diffuser directs the incident beam into both the recorded channels. Thus, the incident object information is conveyed along the two directions at some pre-recorded angles only. The DC term may be filtered out enabling display of information in two pre-defined directions only. One of the filtered images is shown in the Fig. 4. The optical power distribution of reconstructed beams in two channels from the diffuser is also measured using the set up discussed above (Fig. 2). The angular distribution of power in transmitted beams for the incident reference beam is shown in Fig. 5. Here power distribution of DC term is filtered out. The power distribution in reconstructed wavefronts demonstrates a control over the direction of information to be displayed and over the field of view of displayed information. Thus this type of holographic diffusers may be useful for displaying desired information into targeted directions with a control over their field of view. Fig 4 Filtered displayed image with no DC beam Fig 3 Projected information through multichannel holographic diffuser Fig 5 Graph showing power distribution of diffused light versus angle of scattering

5 SARMA et al.: HOLOGRAPHIC DIFFUSER FOR MULTICHANNEL RESTRICTED DISPLAYS Conclusions Holographic diffusers are playing important role in display systems due to the ability of holographic process to provide good control over various parameters of the diffused light like directionality, uniformity and field of view. In the present work a technique is reported for recording multi-channel holographic diffusers. The hologram recording and reconstruction process is described and experimental results are discussed. Such type of diffusers will be helpful in enhancing security feature of the displayed information by enabling only authenticated persons to have access to the information. Multichannel diffusers may find applications in display systems where security and authenticity of displayed data is important. References 1 Savant G, Jannson T & Jannson J, Diffuser display screen in holography for the new millennium, edited by Ludman J, Caulfield H J & Riccobono J, (Springer, New York), Wadle S, Wuest D, Cantalupo J & Lakes R S, Opt Eng, 33 (1994) Wadle S & Lakes R S, J Mod Opt, 42(1995) Ling D, Naiguang L, Xiaoping L, Yongchao S & Yueqiang L, SPIE, 2866 (1996) Sarma S S, Chachchia D P & Kumar R, AJET, 1 (2014) Kim S, Choi Y S, Ham Y N, Park C Y & Kim J M, Appl Opt, 42 (2003) Ganzherli N M, Maurer I A, Chernykh D F & Gulyaev S N, J Opt Technol, 76 (2009) Lin H, Oliveira P W, Veith M, Gros M & Grobelsek I, Opt Lett, 34 (2009) Chen H C & Kang C C, 5th Pacific Rim conference on lasers and electro-optics, (2003) Aggarwal A K, Kaura S K, Sharma A K, Kumar R & Chhachhia D P, Indian J Pure Appl Phys, 42 (2004) Kumar R & Aggarwal A K, Opt Commun, 279 (2007) Caulfield H J, Opt Laser Technol, 37 (2005) Balogh T, Forgacs T, Agocs T, Balet O, Bouvier E, Bettio F, Gobbetti E & Zanetti G, Proc Eurographics, Yoshida S, Yano S & Ando H, SIGGRAPH, Osten W & Reingand N (ed), Optical imaging and metrology: Advanced technologies, (Wiley-VCH), Jones A, Mcdowall I, Yamada H, Bolas M & Debevec P, Proc ACM SIGGRAPH, 26 (2007). 17 Kitamura Y, Konishi T, Yamamoto S & Kishino F, ACM SIGGRAPH, 1 (2001) Rong X, Yu X & Guan C, Appl Opt, 50 (2011) Cossairt O S, Napoli J, Hill S L, Dorval R K & Favalora G E, Appl Opt, 46 (2007) Fattal D, Peng Z, Tran T, Vo S, Fiorentino M, Brug J & Beausoleil R G, Nature, 95 (2013) 348.

Tutorial Solutions. 10 Holographic Applications Holographic Zone-Plate

Tutorial Solutions. 10 Holographic Applications Holographic Zone-Plate 10 Holographic Applications 10.1 Holographic Zone-Plate Tutorial Solutions Show that if the intensity pattern for on on-axis holographic lens is recorded in lithographic film, then a one-plate results.

More information

Recording multiple holographic gratings in silver-doped photopolymer using peristrophic multiplexing

Recording multiple holographic gratings in silver-doped photopolymer using peristrophic multiplexing PRAMANA c Indian Academy of Sciences Vol. 75, No. 6 journal of December 2010 physics pp. 1241 1247 Recording multiple holographic gratings in silver-doped photopolymer using peristrophic multiplexing V

More information

Shading of a computer-generated hologram by zone plate modulation

Shading of a computer-generated hologram by zone plate modulation Shading of a computer-generated hologram by zone plate modulation Takayuki Kurihara * and Yasuhiro Takaki Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei,Tokyo

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1853 TITLE: Effect of Grating Detuning on Volume Holographic Memory Using Photopolymer Storage Media: Reflection Holograms

More information

Invited Paper. Nukui-Kitamachi, Koganei, Tokyo, , Japan ABSTRACT 1. INTRODUCTION

Invited Paper. Nukui-Kitamachi, Koganei, Tokyo, , Japan ABSTRACT 1. INTRODUCTION Invited Paper Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction K. Wakunami* a, R. Oi a, T. Senoh a, H. Sasaki a, Y. Ichihashi a, K. Yamamoto

More information

Supplementary Figure 1: Schematic of the nanorod-scattered wave along the +z. direction.

Supplementary Figure 1: Schematic of the nanorod-scattered wave along the +z. direction. Supplementary Figure 1: Schematic of the nanorod-scattered wave along the +z direction. Supplementary Figure 2: The nanorod functions as a half-wave plate. The fast axis of the waveplate is parallel to

More information

Distortion Correction for Conical Multiplex Holography Using Direct Object-Image Relationship

Distortion Correction for Conical Multiplex Holography Using Direct Object-Image Relationship Proc. Natl. Sci. Counc. ROC(A) Vol. 25, No. 5, 2001. pp. 300-308 Distortion Correction for Conical Multiplex Holography Using Direct Object-Image Relationship YIH-SHYANG CHENG, RAY-CHENG CHANG, AND SHIH-YU

More information

Coupling of surface roughness to the performance of computer-generated holograms

Coupling of surface roughness to the performance of computer-generated holograms Coupling of surface roughness to the performance of computer-generated holograms Ping Zhou* and Jim Burge College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA *Corresponding author:

More information

SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS

SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS J. KORNIS, P. PACHER Department of Physics Technical University of Budapest H-1111 Budafoki út 8., Hungary e-mail: kornis@phy.bme.hu, pacher@phy.bme.hu

More information

Digital holographic display with two-dimensional and threedimensional convertible feature by high speed switchable diffuser

Digital holographic display with two-dimensional and threedimensional convertible feature by high speed switchable diffuser https://doi.org/10.2352/issn.2470-1173.2017.5.sd&a-366 2017, Society for Imaging Science and Technology Digital holographic display with two-dimensional and threedimensional convertible feature by high

More information

Numerical investigation on the viewing angle of a lenticular three-dimensional display with a triplet lens array

Numerical investigation on the viewing angle of a lenticular three-dimensional display with a triplet lens array Numerical investigation on the viewing angle of a lenticular three-dimensional display with a triplet lens array Hwi Kim,, * Joonku Hahn, and Hee-Jin Choi 3 Department of Electronics and Information Engineering,

More information

Effect of Grating Detuning on Volume Holographic Memory using Photopolymer Storage Media : Reflection holograms

Effect of Grating Detuning on Volume Holographic Memory using Photopolymer Storage Media : Reflection holograms Effect of Grating Detuning on Volume Holographic Memory using Photopolymer Storage Media : Reflection holograms Mei-Li Hsieh, Ken Y. Hsu, and Pochi Yeh* Institute of Electro-Optical Engineering National

More information

Measurement of Highly Parabolic Mirror using Computer Generated Hologram

Measurement of Highly Parabolic Mirror using Computer Generated Hologram Measurement of Highly Parabolic Mirror using Computer Generated Hologram Taehee Kim a, James H. Burge b, Yunwoo Lee c a Digital Media R&D Center, SAMSUNG Electronics Co., Ltd., Suwon city, Kyungki-do,

More information

Fourier, Fresnel and Image CGHs of three-dimensional objects observed from many different projections

Fourier, Fresnel and Image CGHs of three-dimensional objects observed from many different projections Fourier, Fresnel and Image CGHs of three-dimensional objects observed from many different projections David Abookasis and Joseph Rosen Ben-Gurion University of the Negev Department of Electrical and Computer

More information

Holography 24th October 2005

Holography 24th October 2005 24th October 2005 Contents 1 Introduction 4 2 Wavefront Reconstruction 4 2.1 Recording Amplitude and Phase................. 4 2.2 The Recording Medium...................... 6 2.2.1 Amplitude Transmittance

More information

MICHELSON S INTERFEROMETER

MICHELSON S INTERFEROMETER MICHELSON S INTERFEROMETER Objectives: 1. Alignment of Michelson s Interferometer using He-Ne laser to observe concentric circular fringes 2. Measurement of the wavelength of He-Ne Laser and Na lamp using

More information

Part 7 Holography. Basic Hologram Setup

Part 7 Holography. Basic Hologram Setup Part 7 Holography Basic Holographic Technique Light Sources Recording Materials Holographic Non-Destructive Testing Real-Time Double-Exposure Time-Average 2000 - James C. Wyant Part 7 Page 1 of 28 Basic

More information

Null test for a highly paraboloidal mirror

Null test for a highly paraboloidal mirror Null test for a highly paraboloidal mirror Taehee Kim, James H. Burge, Yunwoo Lee, and Sungsik Kim A circular null computer-generated hologram CGH was used to test a highly paraboloidal mirror diameter,

More information

High spatial resolution measurement of volume holographic gratings

High spatial resolution measurement of volume holographic gratings High spatial resolution measurement of volume holographic gratings Gregory J. Steckman, Frank Havermeyer Ondax, Inc., 8 E. Duarte Rd., Monrovia, CA, USA 9116 ABSTRACT The conventional approach for measuring

More information

Uniform angular resolution integral imaging display with boundary folding mirrors

Uniform angular resolution integral imaging display with boundary folding mirrors Uniform angular resolution integral imaging display with boundary folding mirrors Joonku Hahn, Youngmin Kim, and Byoungho Lee* School of Electrical Engineering, Seoul National University, Gwanak-Gu Sillim-Dong,

More information

Single Photon Interference

Single Photon Interference December 19, 2006 D. Lancia P. McCarthy Classical Interference Intensity Distribution Overview Quantum Mechanical Interference Probability Distribution Which Path? The Effects of Making a Measurement Wave-Particle

More information

Reprint. from the Journal. of the SID

Reprint. from the Journal. of the SID A 23-in. full-panel-resolution autostereoscopic LCD with a novel directional backlight system Akinori Hayashi (SID Member) Tomohiro Kometani Akira Sakai (SID Member) Hiroshi Ito Abstract An autostereoscopic

More information

Chapter 2: Wave Optics

Chapter 2: Wave Optics Chapter : Wave Optics P-1. We can write a plane wave with the z axis taken in the direction of the wave vector k as u(,) r t Acos tkzarg( A) As c /, T 1/ and k / we can rewrite the plane wave as t z u(,)

More information

Digital correlation hologram implemented on optical correlator

Digital correlation hologram implemented on optical correlator Digital correlation hologram implemented on optical correlator David Abookasis and Joseph Rosen Ben-Gurion University of the Negev Department of Electrical and Computer Engineering P. O. Box 653, Beer-Sheva

More information

To determine the wavelength of laser light using single slit diffraction

To determine the wavelength of laser light using single slit diffraction 9 To determine the wavelength of laser light using single slit diffraction pattern 91 Apparatus: Helium-Neon laser or diode laser, a single slit with adjustable aperture width, optical detector and power

More information

Innovations in beam shaping & illumination applications

Innovations in beam shaping & illumination applications Innovations in beam shaping & illumination applications David L. Shealy Department of Physics University of Alabama at Birmingham E-mail: dls@uab.edu Innovation Novelty The introduction of something new

More information

s70 Prototype of a Handheld Displacement Measurement System Using Multiple Imaging Sensors

s70 Prototype of a Handheld Displacement Measurement System Using Multiple Imaging Sensors Journal of JSEM, Vol.15, Special Issue (2015) s70-s74 Copyright C 2015 JSEM Prototype of a Handheld Displacement Measurement System Using Multiple Imaging Sensors Motoharu FUJIGAKI 1, Hiroki MIAMIO 2,

More information

Light and the Properties of Reflection & Refraction

Light and the Properties of Reflection & Refraction Light and the Properties of Reflection & Refraction OBJECTIVE To study the imaging properties of a plane mirror. To prove the law of reflection from the previous imaging study. To study the refraction

More information

AP* Optics Free Response Questions

AP* Optics Free Response Questions AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

Lab2: Single Photon Interference

Lab2: Single Photon Interference Lab2: Single Photon Interference Xiaoshu Chen* Department of Mechanical Engineering, University of Rochester, NY, 14623 ABSTRACT The wave-particle duality of light was verified by multi and single photon

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

13. Brewster angle measurement

13. Brewster angle measurement 13. Brewster angle measurement Brewster angle measurement Objective: 1. Verification of Malus law 2. Measurement of reflection coefficient of a glass plate for p- and s- polarizations 3. Determination

More information

Holographic Elements in Solar Concentrator and Collection Systems

Holographic Elements in Solar Concentrator and Collection Systems Holographic Elements in Solar Concentrator and Collection Systems Raymond K. Kostuk,2, Jose Castro, Brian Myer 2, Deming Zhang and Glenn Rosenberg 3 Electrical and Computer Engineering, Department University

More information

DAMAGE INSPECTION AND EVALUATION IN THE WHOLE VIEW FIELD USING LASER

DAMAGE INSPECTION AND EVALUATION IN THE WHOLE VIEW FIELD USING LASER DAMAGE INSPECTION AND EVALUATION IN THE WHOLE VIEW FIELD USING LASER A. Kato and T. A. Moe Department of Mechanical Engineering Chubu University Kasugai, Aichi 487-8501, Japan ABSTRACT In this study, we

More information

Application of Photopolymer Holographic Gratings

Application of Photopolymer Holographic Gratings Dublin Institute of Technology ARROW@DIT Conference Papers Centre for Industrial and Engineering Optics 2004-2 Application of Photopolymer Holographic Gratings Emilia Mihaylova Dublin Institute of Technology,

More information

HOLOGRAPHIC FEMTOSECOND LASER PROCESSING AND THREE-DIMENSIONAL RECORDING IN BIOLOGICAL TISSUES

HOLOGRAPHIC FEMTOSECOND LASER PROCESSING AND THREE-DIMENSIONAL RECORDING IN BIOLOGICAL TISSUES Progress In Electromagnetics Research Letters, Vol. 2, 115 123, 2008 HOLOGRAPHIC FEMTOSECOND LASER PROCESSING AND THREE-DIMENSIONAL RECORDING IN BIOLOGICAL TISSUES Y. Hayasaki Department of Optical Science

More information

Single Polarizer Liquid Crystal Display Mode with Fast Response

Single Polarizer Liquid Crystal Display Mode with Fast Response Mol. Cryst. Liq. Cryst., Vol. 543: pp. 101=[867] 106=[872], 2011 Copyright # Taylor & Francis Group, LLC ISSN: 1542-1406 print=1563-5287 online DOI: 10.1080/15421406.2011.568342 Single Polarizer Liquid

More information

Holography & Coherence For Holography need coherent beams Two waves coherent if fixed phase relationship between them for some period of time

Holography & Coherence For Holography need coherent beams Two waves coherent if fixed phase relationship between them for some period of time Holography & Coherence For Holography need coherent beams Two waves coherent if fixed phase relationship between them for some period of time Coherence Coherence appear in two ways Spatial Coherence Waves

More information

QUANTITATIVE PHASE IMAGING OF BIOLOGICAL CELLS USING OFF-AXIS METHOD OF WIDE FIELD DIGITAL INTERFERENCE MICROSCOPY (WFDIM)

QUANTITATIVE PHASE IMAGING OF BIOLOGICAL CELLS USING OFF-AXIS METHOD OF WIDE FIELD DIGITAL INTERFERENCE MICROSCOPY (WFDIM) http:// QUANTITATIVE PHASE IMAGING OF BIOLOGICAL CELLS USING OFF-AXIS METHOD OF WIDE FIELD DIGITAL INTERFERENCE MICROSCOPY (WFDIM) Pradeep Kumar Behera 1, Dalip Singh Mehta 2 1,2 Physics,Indian Institute

More information

Secondary grating formation by readout at Bragg-null incidence

Secondary grating formation by readout at Bragg-null incidence Secondary grating formation by readout at Bragg-null incidence Ali Adibi, Jose Mumbru, Kelvin Wagner, and Demetri Psaltis We show that when a dynamic hologram is read out by illumination at the Bragg nulls

More information

Head Mounted Display for Mixed Reality using Holographic Optical Elements

Head Mounted Display for Mixed Reality using Holographic Optical Elements Mem. Fac. Eng., Osaka City Univ., Vol. 40, pp. 1-6 (1999) Head Mounted Display for Mixed Reality using Holographic Optical Elements Takahisa ANDO*, Toshiaki MATSUMOTO**, Hideya Takahashi*** and Eiji SHIMIZU****

More information

Digitalna Holografija i Primjene

Digitalna Holografija i Primjene Digitalna Holografija i Primjene Hrvoje Skenderović Institut za fiziku 5. PIF Radionica, IRB, 16.12.2014. Holography Dennis Gabor invented holography in 1948 as a method for recording and reconstructing

More information

Development of shape measuring system using a line sensor in a lateral shearing interferometer

Development of shape measuring system using a line sensor in a lateral shearing interferometer Development of shape measuring system using a line sensor in a lateral shearing interferometer Takashi NOMURA*a, Kazuhide KAMIYA*a, Akiko NAGATA*a, Hatsuzo TASHIRO **b, Seiichi OKUDA ***c a Toyama Prefectural

More information

Physical Optics. You can observe a lot just by watching. Yogi Berra ( )

Physical Optics. You can observe a lot just by watching. Yogi Berra ( ) Physical Optics You can observe a lot just by watching. Yogi Berra (1925-2015) OBJECTIVES To observe some interference and diffraction phenomena with visible light. THEORY In a previous experiment you

More information

Design and visualization of synthetic holograms for security applications

Design and visualization of synthetic holograms for security applications Journal of Physics: Conference Series Design and visualization of synthetic holograms for security applications To cite this article: M Škere et al 2013 J. Phys.: Conf. Ser. 415 012060 Related content

More information

Chapter 37. Wave Optics

Chapter 37. Wave Optics Chapter 37 Wave Optics Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics. Sometimes called physical optics These phenomena include:

More information

Measurement of period difference in grating pair based on analysis of grating phase shift

Measurement of period difference in grating pair based on analysis of grating phase shift Measurement of period difference in grating pair based on analysis of grating phase shift Chao Guo, Lijiang Zeng State Key Laboratory of Precision Measurement Technology and Instruments Department of Precision

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Effect of Grating Detuning on Holographic Data Storage

Effect of Grating Detuning on Holographic Data Storage Effect of Grating Detuning on Holographic Data Storage Shiuan Huei Lin and Ken Y. Hsua Department of Electro-Physics, ainstjte of Electro-Optical Engineering, National Chiao Tung University, Hsin-Chu,

More information

Simple, complete, and novel quantitative model of holography for students of science and science education

Simple, complete, and novel quantitative model of holography for students of science and science education Journal of Physics: Conference Series Simple, complete, and novel quantitative model of holography for students of science and science education To cite this article: Dale W Olson 2013 J. Phys.: Conf.

More information

A Single Grating-lens Focusing Two Orthogonally Polarized Beams in Opposite Direction

A Single Grating-lens Focusing Two Orthogonally Polarized Beams in Opposite Direction , pp.41-45 http://dx.doi.org/10.14257/astl.2016.140.08 A Single Grating-lens Focusing Two Orthogonally Polarized Beams in Opposite Direction Seung Dae Lee 1 1* Dept. of Electronic Engineering, Namseoul

More information

Chapter 8: Physical Optics

Chapter 8: Physical Optics Chapter 8: Physical Optics Whether light is a particle or a wave had puzzled physicists for centuries. In this chapter, we only analyze light as a wave using basic optical concepts such as interference

More information

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Phys 531 Lecture 8 20 September 2005 Ray Optics I Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Today shift gears, start applying

More information

Vibration parameter measurement using the temporal digital hologram sequence and windowed Fourier transform

Vibration parameter measurement using the temporal digital hologram sequence and windowed Fourier transform THEORETICAL & APPLIED MECHANICS LETTERS 1, 051008 (2011) Vibration parameter measurement using the temporal digital hologram sequence and windowed Fourier transform Chong Yang, 1, 2 1, a) and Hong Miao

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Chapter 82 Example and Supplementary Problems

Chapter 82 Example and Supplementary Problems Chapter 82 Example and Supplementary Problems Nature of Polarized Light: 1) A partially polarized beam is composed of 2.5W/m 2 of polarized and 4.0W/m 2 of unpolarized light. Determine the degree of polarization

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1975-4 (Physical Optics) a. Light of a single wavelength is incident on a single slit of width w. (w is a few wavelengths.) Sketch a graph of the intensity as

More information

Holographic Method for Extracting Three-Dimensional Information with a CCD Camera. Synopsis

Holographic Method for Extracting Three-Dimensional Information with a CCD Camera. Synopsis Mem. Fac. Eng., Osaka City Univ., Vol. 36,pp. 1-11.(1995) Holographic Method for Extracting Three-Dimensional Information with a CCD Camera by Hideki OKAMOTO*, Hiroaki DEDA*, Hideya TAKAHASHI**, and Eiji

More information

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 33 Lecture RANDALL D. KNIGHT Chapter 33 Wave Optics IN THIS CHAPTER, you will learn about and apply the wave model of light. Slide

More information

LED holographic imaging by spatial-domain diffraction computation of. textured models

LED holographic imaging by spatial-domain diffraction computation of. textured models LED holographic imaging by spatial-domain diffraction computation of textured models Ding-Chen Chen, Xiao-Ning Pang, Yi-Cong Ding, Yi-Gui Chen, and Jian-Wen Dong* School of Physics and Engineering, and

More information

NEW OPTICAL MEASUREMENT TECHNIQUE FOR SI WAFER SURFACE DEFECTS USING ANNULAR ILLUMINATION WITH CROSSED NICOLS

NEW OPTICAL MEASUREMENT TECHNIQUE FOR SI WAFER SURFACE DEFECTS USING ANNULAR ILLUMINATION WITH CROSSED NICOLS NEW OPTICAL MEASUREMENT TECHNIQUE FOR SI WAFER SURFACE DEFECTS USING ANNULAR ILLUMINATION WITH CROSSED NICOLS Satoru Takahashi 1, Takashi Miyoshi 1, Yasuhiro Takaya 1, and Takahiro Abe 2 1 Department of

More information

An optical multiplier setup with dual digital micromirror

An optical multiplier setup with dual digital micromirror Journal of Physics: Conference Series PAPER OPEN ACCESS An optical multiplier setup with dual digital micromirror array devices To cite this article: Liu Hui-feng et al 2016 J. Phys.: Conf. Ser. 679 012044

More information

A. K. Srivastava, K.C. Sati, Satyander Kumar alaser Science and Technology Center, Metcalfe House, Civil Lines, Delhi , INDIA

A. K. Srivastava, K.C. Sati, Satyander Kumar alaser Science and Technology Center, Metcalfe House, Civil Lines, Delhi , INDIA International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 1752 Optical method for measurement of radius of curvature of large diameter mirrors A. K. Srivastava, K.C. Sati,

More information

Physical & Electromagnetic Optics: Diffraction Gratings

Physical & Electromagnetic Optics: Diffraction Gratings 31/05/2018 Physical & Electromagnetic Optics: Diffraction Gratings Optical Engineering Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Multiple

More information

Angular multiplexed holographic memory system based on moving window on liquid crystal display and its crosstalk analysis

Angular multiplexed holographic memory system based on moving window on liquid crystal display and its crosstalk analysis Optical and Quantum Electronics 32: 419±430, 2000. Ó 2000 Kluwer Academic Publishers. Printed in the Netherlands. 419 Angular multiplexed holographic memory system based on moving window on liquid crystal

More information

Synthesis of a multiple-peak spatial degree of coherence for imaging through absorbing media

Synthesis of a multiple-peak spatial degree of coherence for imaging through absorbing media Synthesis of a multiple-peak spatial degree of coherence for imaging through absorbing media Mark Gokhler and Joseph Rosen The synthesis of a multiple-peak spatial degree of coherence is demonstrated.

More information

Technologies of Digital Holographic Display

Technologies of Digital Holographic Display Technologies of Digital Holographic Display Joonku Hahn Kyungpook National University Outline: 1. Classification of digital holographic display 2. Data capacity, View volume and Resolution 3. Holographic

More information

Exploiting scattering media for exploring 3D objects

Exploiting scattering media for exploring 3D objects Exploiting scattering media for exploring 3D objects Alok Kumar Singh 1, Dinesh N Naik 1,, Giancarlo Pedrini 1, Mitsuo Takeda 1, 3 and Wolfgang Osten 1 1 Institut für Technische Optik and Stuttgart Research

More information

Techniques of Noninvasive Optical Tomographic Imaging

Techniques of Noninvasive Optical Tomographic Imaging Techniques of Noninvasive Optical Tomographic Imaging Joseph Rosen*, David Abookasis and Mark Gokhler Ben-Gurion University of the Negev Department of Electrical and Computer Engineering P. O. Box 653,

More information

1 Laboratory #4: Division-of-Wavefront Interference

1 Laboratory #4: Division-of-Wavefront Interference 1051-455-0073, Physical Optics 1 Laboratory #4: Division-of-Wavefront Interference 1.1 Theory Recent labs on optical imaging systems have used the concept of light as a ray in goemetrical optics to model

More information

Diffraction and Interference of Plane Light Waves

Diffraction and Interference of Plane Light Waves PHY 92 Diffraction and Interference of Plane Light Waves Diffraction and Interference of Plane Light Waves Introduction In this experiment you will become familiar with diffraction patterns created when

More information

Information virtual indicator with combination of diffractive optical elements

Information virtual indicator with combination of diffractive optical elements Journal of Physics: Conference Series PAPER OPEN ACCESS Information virtual indicator with combination of diffractive optical elements To cite this article: Y A Grad et al 2016 J. Phys.: Conf. Ser. 737

More information

Physics 214 Midterm Fall 2003 Form A

Physics 214 Midterm Fall 2003 Form A 1. A ray of light is incident at the center of the flat circular surface of a hemispherical glass object as shown in the figure. The refracted ray A. emerges from the glass bent at an angle θ 2 with respect

More information

Hyperspectral interferometry for single-shot absolute measurement of 3-D shape and displacement fields

Hyperspectral interferometry for single-shot absolute measurement of 3-D shape and displacement fields EPJ Web of Conferences 6, 6 10007 (2010) DOI:10.1051/epjconf/20100610007 Owned by the authors, published by EDP Sciences, 2010 Hyperspectral interferometry for single-shot absolute measurement of 3-D shape

More information

Measurements of the characteristics of spray droplets using in-line digital particle holography

Measurements of the characteristics of spray droplets using in-line digital particle holography Journal of Mechanical Science and Technology 3 (9) 67~679 Journal of Mechanical Science and Technology www.springerlink.com/content/738-494x DOI.7/s6-9-47- Measurements of the characteristics of spray

More information

Chapter 38. Diffraction Patterns and Polarization

Chapter 38. Diffraction Patterns and Polarization Chapter 38 Diffraction Patterns and Polarization Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This

More information

Surface and thickness measurement of a transparent film using wavelength scanning interferometry

Surface and thickness measurement of a transparent film using wavelength scanning interferometry Surface and thickness measurement of a transparent film using wavelength scanning interferometry Feng Gao, Hussam Muhamedsalih, and Xiangqian Jiang * Centre for Precision Technologies, University of Huddersfield,

More information

Retardagraphy: A novel technique for optical recording of the. retardance pattern of an optical anisotropic object on a

Retardagraphy: A novel technique for optical recording of the. retardance pattern of an optical anisotropic object on a Retardagraphy: A novel technique for optical recording of the retardance pattern of an optical anisotropic object on a polarization-sensitive film using a single beam Daisuke Barada, 1,, Kiyonobu Tamura,

More information

Chapter 37. Interference of Light Waves

Chapter 37. Interference of Light Waves Chapter 37 Interference of Light Waves Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics These phenomena include: Interference Diffraction

More information

Optics Vac Work MT 2008

Optics Vac Work MT 2008 Optics Vac Work MT 2008 1. Explain what is meant by the Fraunhofer condition for diffraction. [4] An aperture lies in the plane z = 0 and has amplitude transmission function T(y) independent of x. It is

More information

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

Real-time Image Processing using Photorefractive Crystals

Real-time Image Processing using Photorefractive Crystals Invited Paper Real-time Image Processing using Photorefractive Crystals Ken Y. Hsu, S. H. Lin Institute of Electro-Optical Engineering National Chiao lung University Hsinchu, Taiwan, R.O.C. and T. C. Hsieh

More information

2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes

2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes 2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes Answer all four questions. All questions count equally. 3(a) A linearly polarized

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Apr 22, 2012 Light from distant things We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can

More information

PHYSICS 213 PRACTICE EXAM 3*

PHYSICS 213 PRACTICE EXAM 3* PHYSICS 213 PRACTICE EXAM 3* *The actual exam will contain EIGHT multiple choice quiz-type questions covering concepts from lecture (16 points), ONE essay-type question covering an important fundamental

More information

Diffraction and Interference

Diffraction and Interference Diffraction and Interference Kyle Weigand, Mark Hillstrom Abstract: We measure the patterns produced by a CW laser near 650 nm passing through one and two slit apertures with a detector mounted on a linear

More information

arxiv: v1 [physics.ins-det] 13 Jan 2015

arxiv: v1 [physics.ins-det] 13 Jan 2015 The Assembly of the Belle II TOP Counter Boqun Wang, On behalf of the Belle II PID Group Department of Physics, University of Cincinnati, Cincinnati, OH, USA University of Cincinnati preprint UCHEP-14-01

More information

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) s Problem 1 (5x2 = 10 points) Label the following statements as True or False, with a one- or two-sentence explanation for why you chose

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

Imaging Sphere Measurement of Luminous Intensity, View Angle, and Scatter Distribution Functions

Imaging Sphere Measurement of Luminous Intensity, View Angle, and Scatter Distribution Functions Imaging Sphere Measurement of Luminous Intensity, View Angle, and Scatter Distribution Functions Hubert Kostal, Vice President of Sales and Marketing Radiant Imaging, Inc. 22908 NE Alder Crest Drive, Suite

More information

index of refraction-light speed

index of refraction-light speed AP Physics Study Guide Chapters 22, 23, 24 Reflection, Refraction and Interference Name Write each of the equations specified below, include units for all quantities. Law of Reflection Lens-Mirror Equation

More information

E x Direction of Propagation. y B y

E x Direction of Propagation. y B y x E x Direction of Propagation k z z y B y An electromagnetic wave is a travelling wave which has time varying electric and magnetic fields which are perpendicular to each other and the direction of propagation,

More information

Photopolymer Diffractive Optical Elements in Electronic Speckle Pattern Shearing Interferometry

Photopolymer Diffractive Optical Elements in Electronic Speckle Pattern Shearing Interferometry Dublin Institute of Technology ARROW@DIT Articles Centre for Industrial and Engineering Optics 2006-01-01 Photopolymer Diffractive Optical Elements in Electronic Speckle Pattern Shearing Interferometry

More information

Fresnel Reflection. angle of transmission. Snell s law relates these according to the

Fresnel Reflection. angle of transmission. Snell s law relates these according to the Fresnel Reflection 1. Reflectivity of polarized light The reflection of a polarized beam of light from a dielectric material such as air/glass was described by Augustin Jean Fresnel in 1823. While his

More information

UNIT 102-9: INTERFERENCE AND DIFFRACTION

UNIT 102-9: INTERFERENCE AND DIFFRACTION Name St.No. - Date(YY/MM/DD) / / Section Group # UNIT 102-9: INTERFERENCE AND DIFFRACTION Patterns created by interference of light in a thin film. OBJECTIVES 1. Understand the creation of double-slit

More information

Holography. How is that different than photography? How is it accomplished? Amplitude & Phase

Holography. How is that different than photography? How is it accomplished? Amplitude & Phase Holography 1948: Dennis Gabor proposes lensless imaging: wavefront reconstruction. Calls it total recording or Holo gram Concept: record and recreate wavefront incident on film. Amplitude & Phase How is

More information

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2 Lenses lens equation (for a thin lens) 1 1 1 ---- = (η η ) ------ - ------ f r 1 r 2 Where object o f = focal length η = refractive index of lens material η = refractive index of adjacent material r 1

More information

C101-E137 TALK LETTER. Vol. 14

C101-E137 TALK LETTER. Vol. 14 C101-E137 TALK LETTER Vol. 14 Diffuse Reflectance Measurement of Powder Samples and Kubelka-Munk Transformation ------- 02 Application: Measuring Food Color ------- 08 Q&A: What effect does the scan speed

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Nanorelief measurements errors for a white-light interferometer with chromatic aberrations

Nanorelief measurements errors for a white-light interferometer with chromatic aberrations Nanorelief measurements errors for a white-light interferometer with chromatic aberrations Evgeny V. Sysoev Technological Design Institute of Scientific Instrument Engineering (TDI SIE) Siberian Branch

More information