Scaling Deep Learning. Bryan

Size: px
Start display at page:

Download "Scaling Deep Learning. Bryan"

Transcription

1 Scaling Deep

2 What do we want AI to do? Guide us to content Keep us organized Help us find things Help us communicate 帮助我们沟通 Drive us to work Serve drinks?

3 Image Q&A Baidu IDL Sample questions and answers

4 Medical Diagnostics App Baidu BDL AskADoctor can assess 520 different diseases, representing ~90 percent of the most common medical problems.

5 Progress in AI Idea Test Code Latency from Idea to Idea is the limiting factor

6 Why Deep Learning? 1. Scale Matters Bigger models usually win 2. Data Matters More data means less cleverness necessary Accuracy Deep Learning Many previou methods 3. Productivity Matters Data & Compute Teams with better tools can try out more ideas

7 Scaling up Make progress on AI by focusing on systems Make models bigger Tackle more data Reduce research cycle time Accelerate large-scale experiments

8 Training Deep Neural Networks Computation dominated by dot products GEMM (Compute bound!) Convolutional layers even more compute bound 20 Exaflops to train one model

9 Natural User Interfaces Goal: Make interacting with computers as natural as interacting with humans AI problems: Speech recognition Emotional recognition Semantic understanding Dialog systems Speech synthesis

10 End-to-end speech with Deep Learning Deep neural network predicts characters directly from audio T H _ E D O G......

11 Bidirectional Recurrent Network RNNs model temporal dependence Various flavors used in many applications Especially time series data Sequential dependence complicates parallelism

12 Connectionist Temporal Classification T H _ E D O G?? How to connect speech data with transcription? Use CTC loss function, from [Graves 06] Efficient dynamic programming of all possible alignments to compute error of {audio, transcription} GPU implementation uses ModernGPU + custom kernels to get 10-30X speedup over simple OpenMP implementation

13 SVAIL Infrastructure FT77CB7079 Service Engineer s Manual Software: CUDA, MPI, Majel (SVAIL library) Hardware: 8 * Titan X NVIDIA GeForce GTX Titan X Mellanox FDR Infiniband 1 ~5 Petaflops, SP

14 Parallelism Model Parallel MPI_Allreduce() Training Data Data Parallel Training Data For these models, Data Parallelism works best

15 TFLOP/s Performance for RNN training one node multi node Typical training run 55% of GPU FMA peak using a single GPU ~48% of peak using 8 GPUs in one node Weak scaling very efficient, albeit algorithmically challenged Number of GPUs

16 Scalability Batch size is hard to increase algorithm, memory limits Performance at small batch sizes (32, 64) leads to scalability limits

17 Determinism Determinism very important So much randomness, hard to tell if you have a bug Networks train despite bugs, although accuracy impaired Reproducibility is important For the usual scientific reasons Progress not possible without reproducibility

18 Count Precision FP32 works No need for FP64 FP16 also works Use FP32 for softmax and weight updates Weight Distribution Magnitude

19 Teraflops/s FP16 HGEMM for deployment ner vana baidu Outer dimension n of x in Ax = b Performance on Quadro K1200 (1.1 Tflop peak, 45W) We batch, but n is still small small Custom kernels for HGEMM help 2-2.5X more performance at small batches

20 Conclusion Deep Learning is extreme HPC Systems matter a lot for deep learning We favor dense clusters of GPUs for training Custom software makes it efficient 50 Tflops sustained GPUs work for deployment as well Thanks to Andrew Ng, Adam Coates, Awni Hannun, Patrick LeGresley and all of

Persistent RNNs. (stashing recurrent weights on-chip) Gregory Diamos. April 7, Baidu SVAIL

Persistent RNNs. (stashing recurrent weights on-chip) Gregory Diamos. April 7, Baidu SVAIL (stashing recurrent weights on-chip) Baidu SVAIL April 7, 2016 SVAIL Think hard AI. Goal Develop hard AI technologies that impact 100 million users. Deep Learning at SVAIL 100 GFLOP/s 1 laptop 6 TFLOP/s

More information

Effectively Scaling Deep Learning Frameworks

Effectively Scaling Deep Learning Frameworks Effectively Scaling Deep Learning Frameworks (To 40 GPUs and Beyond) Welcome everyone! I m excited to be here today and get the opportunity to present some of the work that we ve been doing at SVAIL, the

More information

Characterization and Benchmarking of Deep Learning. Natalia Vassilieva, PhD Sr. Research Manager

Characterization and Benchmarking of Deep Learning. Natalia Vassilieva, PhD Sr. Research Manager Characterization and Benchmarking of Deep Learning Natalia Vassilieva, PhD Sr. Research Manager Deep learning applications Vision Speech Text Other Search & information extraction Security/Video surveillance

More information

Building the Most Efficient Machine Learning System

Building the Most Efficient Machine Learning System Building the Most Efficient Machine Learning System Mellanox The Artificial Intelligence Interconnect Company June 2017 Mellanox Overview Company Headquarters Yokneam, Israel Sunnyvale, California Worldwide

More information

GPU FOR DEEP LEARNING. 周国峰 Wuhan University 2017/10/13

GPU FOR DEEP LEARNING. 周国峰 Wuhan University 2017/10/13 GPU FOR DEEP LEARNING chandlerz@nvidia.com 周国峰 Wuhan University 2017/10/13 Why Deep Learning Boost Today? Nvidia SDK for Deep Learning? Agenda CUDA 8.0 cudnn TensorRT (GIE) NCCL DIGITS 2 Why Deep Learning

More information

10 Billion Parameter Neural Networks in your Basement. Adam Coates Stanford University

10 Billion Parameter Neural Networks in your Basement. Adam Coates Stanford University 10 Billion Parameter Neural Networks in your Basement Adam Coates Stanford University Overview: two parts Deep learning and feature learning. ExciEng topic in machine learning. Major area of AI research.

More information

Inference Optimization Using TensorRT with Use Cases. Jack Han / 한재근 Solutions Architect NVIDIA

Inference Optimization Using TensorRT with Use Cases. Jack Han / 한재근 Solutions Architect NVIDIA Inference Optimization Using TensorRT with Use Cases Jack Han / 한재근 Solutions Architect NVIDIA Search Image NLP Maps TensorRT 4 Adoption Use Cases Speech Video AI Inference is exploding 1 Billion Videos

More information

Implementing Deep Learning for Video Analytics on Tegra X1.

Implementing Deep Learning for Video Analytics on Tegra X1. Implementing Deep Learning for Video Analytics on Tegra X1 research@hertasecurity.com Index Who we are, what we do Video analytics pipeline Video decoding Facial detection and preprocessing DNN: learning

More information

Can FPGAs beat GPUs in accelerating next-generation Deep Neural Networks? Discussion of the FPGA 17 paper by Intel Corp. (Nurvitadhi et al.

Can FPGAs beat GPUs in accelerating next-generation Deep Neural Networks? Discussion of the FPGA 17 paper by Intel Corp. (Nurvitadhi et al. Can FPGAs beat GPUs in accelerating next-generation Deep Neural Networks? Discussion of the FPGA 17 paper by Intel Corp. (Nurvitadhi et al.) Andreas Kurth 2017-12-05 1 In short: The situation Image credit:

More information

Building the Most Efficient Machine Learning System

Building the Most Efficient Machine Learning System Building the Most Efficient Machine Learning System Mellanox The Artificial Intelligence Interconnect Company June 2017 Mellanox Overview Company Headquarters Yokneam, Israel Sunnyvale, California Worldwide

More information

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA STATE OF THE ART 2012 18,688 Tesla K20X GPUs 27 PetaFLOPS FLAGSHIP SCIENTIFIC APPLICATIONS

More information

NVIDIA FOR DEEP LEARNING. Bill Veenhuis

NVIDIA FOR DEEP LEARNING. Bill Veenhuis NVIDIA FOR DEEP LEARNING Bill Veenhuis bveenhuis@nvidia.com Nvidia is the world s leading ai platform ONE ARCHITECTURE CUDA 2 GPU: Perfect Companion for Accelerating Apps & A.I. CPU GPU 3 Intro to AI AGENDA

More information

Deep Learning: Transforming Engineering and Science The MathWorks, Inc.

Deep Learning: Transforming Engineering and Science The MathWorks, Inc. Deep Learning: Transforming Engineering and Science 1 2015 The MathWorks, Inc. DEEP LEARNING: TRANSFORMING ENGINEERING AND SCIENCE A THE NEW RISE ERA OF OF GPU COMPUTING 3 NVIDIA A IS NEW THE WORLD S ERA

More information

arxiv: v1 [cs.cl] 28 Nov 2016

arxiv: v1 [cs.cl] 28 Nov 2016 An End-to-End Architecture for Keyword Spotting and Voice Activity Detection arxiv:1611.09405v1 [cs.cl] 28 Nov 2016 Chris Lengerich Mindori Palo Alto, CA chris@mindori.com Abstract Awni Hannun Mindori

More information

End- To- End Speech Recogni0on with Recurrent Neural Networks

End- To- End Speech Recogni0on with Recurrent Neural Networks RTTH Summer School on Speech Technology: A Deep Learning Perspec0ve End- To- End Speech Recogni0on with Recurrent Neural Networks José A. R. Fonollosa Universitat Politècnica de Catalunya. Barcelona Barcelona,

More information

OPTIMIZED GPU KERNELS FOR DEEP LEARNING. Amir Khosrowshahi

OPTIMIZED GPU KERNELS FOR DEEP LEARNING. Amir Khosrowshahi OPTIMIZED GPU KERNELS FOR DEEP LEARNING Amir Khosrowshahi GTC 17 Mar 2015 Outline About nervana Optimizing deep learning at assembler level Limited precision for deep learning neon benchmarks 2 About nervana

More information

NVIDIA DLI HANDS-ON TRAINING COURSE CATALOG

NVIDIA DLI HANDS-ON TRAINING COURSE CATALOG NVIDIA DLI HANDS-ON TRAINING COURSE CATALOG Valid Through July 31, 2018 INTRODUCTION The NVIDIA Deep Learning Institute (DLI) trains developers, data scientists, and researchers on how to use artificial

More information

MIXED PRECISION TRAINING: THEORY AND PRACTICE Paulius Micikevicius

MIXED PRECISION TRAINING: THEORY AND PRACTICE Paulius Micikevicius MIXED PRECISION TRAINING: THEORY AND PRACTICE Paulius Micikevicius What is Mixed Precision Training? Reduced precision tensor math with FP32 accumulation, FP16 storage Successfully used to train a variety

More information

NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORKS

NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORKS TECHNICAL OVERVIEW NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORKS A Guide to the Optimized Framework Containers on NVIDIA GPU Cloud Introduction Artificial intelligence is helping to solve some of the most

More information

HPE Deep Learning Cookbook: Recipes to Run Deep Learning Workloads. Natalia Vassilieva, Sergey Serebryakov

HPE Deep Learning Cookbook: Recipes to Run Deep Learning Workloads. Natalia Vassilieva, Sergey Serebryakov HPE Deep Learning Cookbook: Recipes to Run Deep Learning Workloads Natalia Vassilieva, Sergey Serebryakov Deep learning ecosystem today Software Hardware 2 HPE s portfolio for deep learning Government,

More information

How to Build Optimized ML Applications with Arm Software

How to Build Optimized ML Applications with Arm Software How to Build Optimized ML Applications with Arm Software Arm Technical Symposia 2018 ML Group Overview Today we will talk about applied machine learning (ML) on Arm. My aim for today is to show you just

More information

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CMPE655 - Multiple Processor Systems Fall 2015 Rochester Institute of Technology Contents What is GPGPU? What s the need? CUDA-Capable GPU Architecture

More information

SUPERCHARGE DEEP LEARNING WITH DGX-1. Markus Weber SC16 - November 2016

SUPERCHARGE DEEP LEARNING WITH DGX-1. Markus Weber SC16 - November 2016 SUPERCHARGE DEEP LEARNING WITH DGX-1 Markus Weber SC16 - November 2016 NVIDIA Pioneered GPU Computing Founded 1993 $7B 9,500 Employees 100M NVIDIA GeForce Gamers The world s largest gaming platform Pioneering

More information

Large scale Imaging on Current Many- Core Platforms

Large scale Imaging on Current Many- Core Platforms Large scale Imaging on Current Many- Core Platforms SIAM Conf. on Imaging Science 2012 May 20, 2012 Dr. Harald Köstler Chair for System Simulation Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,

More information

EFFICIENT INFERENCE WITH TENSORRT. Han Vanholder

EFFICIENT INFERENCE WITH TENSORRT. Han Vanholder EFFICIENT INFERENCE WITH TENSORRT Han Vanholder AI INFERENCING IS EXPLODING 2 Trillion Messages Per Day On LinkedIn 500M Daily active users of iflytek 140 Billion Words Per Day Translated by Google 60

More information

Object recognition and computer vision using MATLAB and NVIDIA Deep Learning SDK

Object recognition and computer vision using MATLAB and NVIDIA Deep Learning SDK Object recognition and computer vision using MATLAB and NVIDIA Deep Learning SDK 17 May 2016, Melbourne 24 May 2016, Sydney Werner Scholz, CTO and Head of R&D, XENON Systems Mike Wang, Solutions Architect,

More information

NVIDIA DEEP LEARNING INSTITUTE

NVIDIA DEEP LEARNING INSTITUTE NVIDIA DEEP LEARNING INSTITUTE TRAINING CATALOG Valid Through July 31, 2018 INTRODUCTION The NVIDIA Deep Learning Institute (DLI) trains developers, data scientists, and researchers on how to use artificial

More information

Demystifying Deep Learning

Demystifying Deep Learning Demystifying Deep Learning Let the computers do the hard work Jérémy Huard 2015 The MathWorks, Inc. 1 2 Why MATLAB for Deep Learning? MATLAB is Productive MATLAB is Fast MATLAB Integrates with Open Source

More information

Deep Learning mit PowerAI - Ein Überblick

Deep Learning mit PowerAI - Ein Überblick Stephen Lutz Deep Learning mit PowerAI - Open Group Master Certified IT Specialist Technical Sales IBM Cognitive Infrastructure IBM Germany Ein Überblick Stephen.Lutz@de.ibm.com What s that? and what s

More information

Recurrent Neural Networks. Deep neural networks have enabled major advances in machine learning and AI. Convolutional Neural Networks

Recurrent Neural Networks. Deep neural networks have enabled major advances in machine learning and AI. Convolutional Neural Networks Deep neural networks have enabled major advances in machine learning and AI Computer vision Language translation Speech recognition Question answering And more Problem: DNNs are challenging to serve and

More information

IBM CORAL HPC System Solution

IBM CORAL HPC System Solution IBM CORAL HPC System Solution HPC and HPDA towards Cognitive, AI and Deep Learning Deep Learning AI / Deep Learning Strategy for Power Power AI Platform High Performance Data Analytics Big Data Strategy

More information

The Cray CX1 puts massive power and flexibility right where you need it in your workgroup

The Cray CX1 puts massive power and flexibility right where you need it in your workgroup The Cray CX1 puts massive power and flexibility right where you need it in your workgroup Up to 96 cores of Intel 5600 compute power 3D visualization Up to 32TB of storage GPU acceleration Small footprint

More information

Developing, Debugging, and Optimizing GPU Codes for High Performance Computing with Allinea Forge

Developing, Debugging, and Optimizing GPU Codes for High Performance Computing with Allinea Forge Developing, Debugging, and Optimizing GPU Codes for High Performance Computing with Allinea Forge Ryan Hulguin Applications Engineer ryan.hulguin@arm.com Agenda Introduction Overview of Allinea Products

More information

Lecture 7: Neural network acoustic models in speech recognition

Lecture 7: Neural network acoustic models in speech recognition CS 224S / LINGUIST 285 Spoken Language Processing Andrew Maas Stanford University Spring 2017 Lecture 7: Neural network acoustic models in speech recognition Outline Hybrid acoustic modeling overview Basic

More information

Deep learning in MATLAB From Concept to CUDA Code

Deep learning in MATLAB From Concept to CUDA Code Deep learning in MATLAB From Concept to CUDA Code Roy Fahn Applications Engineer Systematics royf@systematics.co.il 03-7660111 Ram Kokku Principal Engineer MathWorks ram.kokku@mathworks.com 2017 The MathWorks,

More information

System Design of Kepler Based HPC Solutions. Saeed Iqbal, Shawn Gao and Kevin Tubbs HPC Global Solutions Engineering.

System Design of Kepler Based HPC Solutions. Saeed Iqbal, Shawn Gao and Kevin Tubbs HPC Global Solutions Engineering. System Design of Kepler Based HPC Solutions Saeed Iqbal, Shawn Gao and Kevin Tubbs HPC Global Solutions Engineering. Introduction The System Level View K20 GPU is a powerful parallel processor! K20 has

More information

TESLA V100 PERFORMANCE GUIDE. Life Sciences Applications

TESLA V100 PERFORMANCE GUIDE. Life Sciences Applications TESLA V100 PERFORMANCE GUIDE Life Sciences Applications NOVEMBER 2017 TESLA V100 PERFORMANCE GUIDE Modern high performance computing (HPC) data centers are key to solving some of the world s most important

More information

Cloud Acceleration with FPGA s. Mike Strickland, Director, Computer & Storage BU, Altera

Cloud Acceleration with FPGA s. Mike Strickland, Director, Computer & Storage BU, Altera Cloud Acceleration with FPGA s Mike Strickland, Director, Computer & Storage BU, Altera Agenda Mission Alignment & Data Center Trends OpenCL and Algorithm Acceleration Networking Acceleration Data Access

More information

Interconnect Your Future Enabling the Best Datacenter Return on Investment. TOP500 Supercomputers, November 2017

Interconnect Your Future Enabling the Best Datacenter Return on Investment. TOP500 Supercomputers, November 2017 Interconnect Your Future Enabling the Best Datacenter Return on Investment TOP500 Supercomputers, November 2017 InfiniBand Accelerates Majority of New Systems on TOP500 InfiniBand connects 77% of new HPC

More information

Review: The best frameworks for machine learning and deep learning

Review: The best frameworks for machine learning and deep learning Review: The best frameworks for machine learning and deep learning infoworld.com/article/3163525/analytics/review-the-best-frameworks-for-machine-learning-and-deep-learning.html By Martin Heller Over the

More information

GPU-Accelerated Deep Learning

GPU-Accelerated Deep Learning GPU-Accelerated Deep Learning July 6 th, 2016. Greg Heinrich. Credits: Alison B. Lowndes, Julie Bernauer, Leo K. Tam. PRACTICAL DEEP LEARNING EXAMPLES Image Classification, Object Detection, Localization,

More information

16-785: Integrated Intelligence in Robotics: Vision, Language, and Planning. Spring 2018 Lecture 14. Image to Text

16-785: Integrated Intelligence in Robotics: Vision, Language, and Planning. Spring 2018 Lecture 14. Image to Text 16-785: Integrated Intelligence in Robotics: Vision, Language, and Planning Spring 2018 Lecture 14. Image to Text Input Output Classification tasks 4/1/18 CMU 16-785: Integrated Intelligence in Robotics

More information

SDA: Software-Defined Accelerator for Large- Scale DNN Systems

SDA: Software-Defined Accelerator for Large- Scale DNN Systems SDA: Software-Defined Accelerator for Large- Scale DNN Systems Jian Ouyang, 1 Shiding Lin, 1 Wei Qi, Yong Wang, Bo Yu, Song Jiang, 2 1 Baidu, Inc. 2 Wayne State University Introduction of Baidu A dominant

More information

Lecture 1: Introduction and Computational Thinking

Lecture 1: Introduction and Computational Thinking PASI Summer School Advanced Algorithmic Techniques for GPUs Lecture 1: Introduction and Computational Thinking 1 Course Objective To master the most commonly used algorithm techniques and computational

More information

HPC and Big Data: Updates about China. Haohuan FU August 29 th, 2017

HPC and Big Data: Updates about China. Haohuan FU August 29 th, 2017 HPC and Big Data: Updates about China Haohuan FU August 29 th, 2017 1 Outline HPC and Big Data Projects in China Recent Efforts on Tianhe-2 Recent Efforts on Sunway TaihuLight 2 MOST HPC Projects 2016

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 개발에서구현까지 MATLAB 환경에서의딥러닝 김종남 Application Engineer 2015 The MathWorks, Inc. 2 3 Why MATLAB for Deep Learning? MATLAB is Productive MATLAB is Fast MATLAB Integrates with Open Source

More information

Lecture 9 Basic Parallelization

Lecture 9 Basic Parallelization Lecture 9 Basic Parallelization I. Introduction II. Data Dependence Analysis III. Loop Nests + Locality IV. Interprocedural Parallelization Chapter 11.1-11.1.4 CS243: Parallelization 1 Machine Learning

More information

Lecture 9 Basic Parallelization

Lecture 9 Basic Parallelization Lecture 9 Basic Parallelization I. Introduction II. Data Dependence Analysis III. Loop Nests + Locality IV. Interprocedural Parallelization Chapter 11.1-11.1.4 CS243: Parallelization 1 Machine Learning

More information

The Dell Precision T3620 tower as a Smart Client leveraging GPU hardware acceleration

The Dell Precision T3620 tower as a Smart Client leveraging GPU hardware acceleration The Dell Precision T3620 tower as a Smart Client leveraging GPU hardware acceleration Dell IP Video Platform Design and Calibration Lab June 2018 H17415 Reference Architecture Dell EMC Solutions Copyright

More information

Hello Edge: Keyword Spotting on Microcontrollers

Hello Edge: Keyword Spotting on Microcontrollers Hello Edge: Keyword Spotting on Microcontrollers Yundong Zhang, Naveen Suda, Liangzhen Lai and Vikas Chandra ARM Research, Stanford University arxiv.org, 2017 Presented by Mohammad Mofrad University of

More information

Accelerating Nanopore Sequencing Using AI and Volta

Accelerating Nanopore Sequencing Using AI and Volta Accelerating Nanopore Sequencing Using AI and Volta Chuck Seberino Director of Accelerated Computing Roche Sequencing Solutions, Santa Clara S8947 - GPU Technology Conference 2018 Disclaimer This presentation

More information

Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective. Kim Hazelwood Facebook AI Infrastructure

Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective. Kim Hazelwood Facebook AI Infrastructure Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective Kim Hazelwood Facebook AI Infrastructure Citation Count Re-Emergence of Machine Learning 3000 Gradient-Based Learning Applied

More information

HPC with GPU and its applications from Inspur. Haibo Xie, Ph.D

HPC with GPU and its applications from Inspur. Haibo Xie, Ph.D HPC with GPU and its applications from Inspur Haibo Xie, Ph.D xiehb@inspur.com 2 Agenda I. HPC with GPU II. YITIAN solution and application 3 New Moore s Law 4 HPC? HPC stands for High Heterogeneous Performance

More information

Implementation of Deep Convolutional Neural Net on a Digital Signal Processor

Implementation of Deep Convolutional Neural Net on a Digital Signal Processor Implementation of Deep Convolutional Neural Net on a Digital Signal Processor Elaina Chai December 12, 2014 1. Abstract In this paper I will discuss the feasibility of an implementation of an algorithm

More information

MIXED PRECISION TRAINING OF NEURAL NETWORKS. Carl Case, Senior Architect, NVIDIA

MIXED PRECISION TRAINING OF NEURAL NETWORKS. Carl Case, Senior Architect, NVIDIA MIXED PRECISION TRAINING OF NEURAL NETWORKS Carl Case, Senior Architect, NVIDIA OUTLINE 1. What is mixed precision training with FP16? 2. Considerations and methodology for mixed precision training 3.

More information

Predicting Service Outage Using Machine Learning Techniques. HPE Innovation Center

Predicting Service Outage Using Machine Learning Techniques. HPE Innovation Center Predicting Service Outage Using Machine Learning Techniques HPE Innovation Center HPE Innovation Center - Our AI Expertise Sense Learn Comprehend Act Computer Vision Machine Learning Natural Language Processing

More information

Architectures for Scalable Media Object Search

Architectures for Scalable Media Object Search Architectures for Scalable Media Object Search Dennis Sng Deputy Director & Principal Scientist NVIDIA GPU Technology Workshop 10 July 2014 ROSE LAB OVERVIEW 2 Large Database of Media Objects Next- Generation

More information

PARALLEL SYSTEMS PROJECT

PARALLEL SYSTEMS PROJECT PARALLEL SYSTEMS PROJECT CSC 548 HW6, under guidance of Dr. Frank Mueller Kaustubh Prabhu (ksprabhu) Narayanan Subramanian (nsubram) Ritesh Anand (ranand) Assessing the benefits of CUDA accelerator on

More information

DEEP NEURAL NETWORKS AND GPUS. Julie Bernauer

DEEP NEURAL NETWORKS AND GPUS. Julie Bernauer DEEP NEURAL NETWORKS AND GPUS Julie Bernauer GPU Computing GPU Computing Run Computations on GPUs x86 CUDA Framework to Program NVIDIA GPUs A simple sum of two vectors (arrays) in C void vector_add(int

More information

CS500 SMARTER CLUSTER SUPERCOMPUTERS

CS500 SMARTER CLUSTER SUPERCOMPUTERS CS500 SMARTER CLUSTER SUPERCOMPUTERS OVERVIEW Extending the boundaries of what you can achieve takes reliable computing tools matched to your workloads. That s why we tailor the Cray CS500 cluster supercomputer

More information

High Performance Computing

High Performance Computing High Performance Computing 9th Lecture 2016/10/28 YUKI ITO 1 Selected Paper: vdnn: Virtualized Deep Neural Networks for Scalable, MemoryEfficient Neural Network Design Minsoo Rhu, Natalia Gimelshein, Jason

More information

Machine Learning in WAN Research

Machine Learning in WAN Research Machine Learning in WAN Research Mariam Kiran mkiran@es.net Energy Sciences Network (ESnet) Lawrence Berkeley National Lab Oct 2017 Presented at Internet2 TechEx 2017 Outline ML in general ML in network

More information

rcuda: hybrid CPU-GPU clusters Federico Silla Technical University of Valencia Spain

rcuda: hybrid CPU-GPU clusters Federico Silla Technical University of Valencia Spain rcuda: hybrid - clusters Federico Silla Technical University of Valencia Spain Outline 1. Hybrid - clusters 2. Concerns with hybrid clusters 3. One possible solution: virtualize s! 4. rcuda what s that?

More information

RECENT TRENDS IN GPU ARCHITECTURES. Perspectives of GPU computing in Science, 26 th Sept 2016

RECENT TRENDS IN GPU ARCHITECTURES. Perspectives of GPU computing in Science, 26 th Sept 2016 RECENT TRENDS IN GPU ARCHITECTURES Perspectives of GPU computing in Science, 26 th Sept 2016 NVIDIA THE AI COMPUTING COMPANY GPU Computing Computer Graphics Artificial Intelligence 2 NVIDIA POWERS WORLD

More information

Machine Learning in WAN Research

Machine Learning in WAN Research Machine Learning in WAN Research Mariam Kiran mkiran@es.net Energy Sciences Network (ESnet) Lawrence Berkeley National Lab Oct 2017 Presented at Internet2 TechEx 2017 Outline ML in general ML in network

More information

Scientific Computations Using Graphics Processors

Scientific Computations Using Graphics Processors Scientific Computations Using Graphics Processors Blair Perot Ali Khajeh-Saeed Tim McGuiness History Kevin Bowers, X Division Los Alamos Lab (2003) Lots of Memory Uses Memory Banks Cheap (commodity) Relativistic

More information

NVIDIA GPU TECHNOLOGY UPDATE

NVIDIA GPU TECHNOLOGY UPDATE NVIDIA GPU TECHNOLOGY UPDATE May 2015 Axel Koehler Senior Solutions Architect, NVIDIA NVIDIA: The VISUAL Computing Company GAMING DESIGN ENTERPRISE VIRTUALIZATION HPC & CLOUD SERVICE PROVIDERS AUTONOMOUS

More information

InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment. TOP500 Supercomputers, June 2014

InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment. TOP500 Supercomputers, June 2014 InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment TOP500 Supercomputers, June 2014 TOP500 Performance Trends 38% CAGR 78% CAGR Explosive high-performance

More information

Making Sense of Artificial Intelligence: A Practical Guide

Making Sense of Artificial Intelligence: A Practical Guide Making Sense of Artificial Intelligence: A Practical Guide JEDEC Mobile & IOT Forum Copyright 2018 Young Paik, Samsung Senior Director Product Planning Disclaimer This presentation and/or accompanying

More information

Parallel Methods for Verifying the Consistency of Weakly-Ordered Architectures. Adam McLaughlin, Duane Merrill, Michael Garland, and David A.

Parallel Methods for Verifying the Consistency of Weakly-Ordered Architectures. Adam McLaughlin, Duane Merrill, Michael Garland, and David A. Parallel Methods for Verifying the Consistency of Weakly-Ordered Architectures Adam McLaughlin, Duane Merrill, Michael Garland, and David A. Bader Challenges of Design Verification Contemporary hardware

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

19. prosince 2018 CIIRC Praha. Milan Král, IBM Radek Špimr

19. prosince 2018 CIIRC Praha. Milan Král, IBM Radek Špimr 19. prosince 2018 CIIRC Praha Milan Král, IBM Radek Špimr CORAL CORAL 2 CORAL Installation at ORNL CORAL Installation at LLNL Order of Magnitude Leap in Computational Power Real, Accelerated Science ACME

More information

Onto Petaflops with Kubernetes

Onto Petaflops with Kubernetes Onto Petaflops with Kubernetes Vishnu Kannan Google Inc. vishh@google.com Key Takeaways Kubernetes can manage hardware accelerators at Scale Kubernetes provides a playground for ML ML journey with Kubernetes

More information

GAMER : a GPU-accelerated Adaptive-MEsh-Refinement Code for Astrophysics GPU 與自適性網格於天文模擬之應用與效能

GAMER : a GPU-accelerated Adaptive-MEsh-Refinement Code for Astrophysics GPU 與自適性網格於天文模擬之應用與效能 GAMER : a GPU-accelerated Adaptive-MEsh-Refinement Code for Astrophysics GPU 與自適性網格於天文模擬之應用與效能 Hsi-Yu Schive ( 薛熙于 ), Tzihong Chiueh ( 闕志鴻 ), Yu-Chih Tsai ( 蔡御之 ), Ui-Han Zhang ( 張瑋瀚 ) Graduate Institute

More information

Parallel one-versus-rest SVM training on the GPU

Parallel one-versus-rest SVM training on the GPU Parallel one-versus-rest SVM training on the GPU Sander Dieleman*, Aäron van den Oord*, Benjamin Schrauwen Electronics and Information Systems (ELIS) Ghent University, Ghent, Belgium {sander.dieleman,

More information

Efficiency and Programmability: Enablers for ExaScale. Bill Dally Chief Scientist and SVP, Research NVIDIA Professor (Research), EE&CS, Stanford

Efficiency and Programmability: Enablers for ExaScale. Bill Dally Chief Scientist and SVP, Research NVIDIA Professor (Research), EE&CS, Stanford Efficiency and Programmability: Enablers for ExaScale Bill Dally Chief Scientist and SVP, Research NVIDIA Professor (Research), EE&CS, Stanford Scientific Discovery and Business Analytics Driving an Insatiable

More information

ACCELERATED COMPUTING: THE PATH FORWARD. Jensen Huang, Founder & CEO SC17 Nov. 13, 2017

ACCELERATED COMPUTING: THE PATH FORWARD. Jensen Huang, Founder & CEO SC17 Nov. 13, 2017 ACCELERATED COMPUTING: THE PATH FORWARD Jensen Huang, Founder & CEO SC17 Nov. 13, 2017 COMPUTING AFTER MOORE S LAW Tech Walker 40 Years of CPU Trend Data 10 7 GPU-Accelerated Computing 10 5 1.1X per year

More information

SDA: Software-Defined Accelerator for Large- Scale DNN Systems

SDA: Software-Defined Accelerator for Large- Scale DNN Systems SDA: Software-Defined Accelerator for Large- Scale DNN Systems Jian Ouyang, 1 Shiding Lin, 1 Wei Qi, 1 Yong Wang, 1 Bo Yu, 1 Song Jiang, 2 1 Baidu, Inc. 2 Wayne State University Introduction of Baidu A

More information

FPGA-based Supercomputing: New Opportunities and Challenges

FPGA-based Supercomputing: New Opportunities and Challenges FPGA-based Supercomputing: New Opportunities and Challenges Naoya Maruyama (RIKEN AICS)* 5 th ADAC Workshop Feb 15, 2018 * Current Main affiliation is Lawrence Livermore National Laboratory SIAM PP18:

More information

n N c CIni.o ewsrg.au

n N c CIni.o ewsrg.au @NCInews NCI and Raijin National Computational Infrastructure 2 Our Partners General purpose, highly parallel processors High FLOPs/watt and FLOPs/$ Unit of execution Kernel Separate memory subsystem GPGPU

More information

Speech Recognition with Quaternion Neural Networks

Speech Recognition with Quaternion Neural Networks Speech Recognition with Quaternion Neural Networks LIA - 2019 Titouan Parcollet, Mohamed Morchid, Georges Linarès University of Avignon, France ORKIS, France Summary I. Problem definition II. Quaternion

More information

General Purpose GPU Computing in Partial Wave Analysis

General Purpose GPU Computing in Partial Wave Analysis JLAB at 12 GeV - INT General Purpose GPU Computing in Partial Wave Analysis Hrayr Matevosyan - NTC, Indiana University November 18/2009 COmputationAL Challenges IN PWA Rapid Increase in Available Data

More information

GPU ARCHITECTURE Chris Schultz, June 2017

GPU ARCHITECTURE Chris Schultz, June 2017 GPU ARCHITECTURE Chris Schultz, June 2017 MISC All of the opinions expressed in this presentation are my own and do not reflect any held by NVIDIA 2 OUTLINE CPU versus GPU Why are they different? CUDA

More information

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D.

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D. Resources Current and Future Systems Timothy H. Kaiser, Ph.D. tkaiser@mines.edu 1 Most likely talk to be out of date History of Top 500 Issues with building bigger machines Current and near future academic

More information

High-Performance Data Loading and Augmentation for Deep Neural Network Training

High-Performance Data Loading and Augmentation for Deep Neural Network Training High-Performance Data Loading and Augmentation for Deep Neural Network Training Trevor Gale tgale@ece.neu.edu Steven Eliuk steven.eliuk@gmail.com Cameron Upright c.upright@samsung.com Roadmap 1. The General-Purpose

More information

Accelerating GPU computation through mixed-precision methods. Michael Clark Harvard-Smithsonian Center for Astrophysics Harvard University

Accelerating GPU computation through mixed-precision methods. Michael Clark Harvard-Smithsonian Center for Astrophysics Harvard University Accelerating GPU computation through mixed-precision methods Michael Clark Harvard-Smithsonian Center for Astrophysics Harvard University Outline Motivation Truncated Precision using CUDA Solving Linear

More information

University at Buffalo Center for Computational Research

University at Buffalo Center for Computational Research University at Buffalo Center for Computational Research The following is a short and long description of CCR Facilities for use in proposals, reports, and presentations. If desired, a letter of support

More information

ACCELERATED COMPUTING: THE PATH FORWARD. Jen-Hsun Huang, Co-Founder and CEO, NVIDIA SC15 Nov. 16, 2015

ACCELERATED COMPUTING: THE PATH FORWARD. Jen-Hsun Huang, Co-Founder and CEO, NVIDIA SC15 Nov. 16, 2015 ACCELERATED COMPUTING: THE PATH FORWARD Jen-Hsun Huang, Co-Founder and CEO, NVIDIA SC15 Nov. 16, 2015 COMMODITY DISRUPTS CUSTOM SOURCE: Top500 ACCELERATED COMPUTING: THE PATH FORWARD It s time to start

More information

IT4Innovations national supercomputing center. Branislav Jansík

IT4Innovations national supercomputing center. Branislav Jansík IT4Innovations national supercomputing center Branislav Jansík branislav.jansik@vsb.cz Anselm Salomon Data center infrastructure Anselm and Salomon Anselm Intel Sandy Bridge E5-2665 2x8 cores 64GB RAM

More information

S8822 OPTIMIZING NMT WITH TENSORRT Micah Villmow Senior TensorRT Software Engineer

S8822 OPTIMIZING NMT WITH TENSORRT Micah Villmow Senior TensorRT Software Engineer S8822 OPTIMIZING NMT WITH TENSORRT Micah Villmow Senior TensorRT Software Engineer 2 100 倍以上速く 本当に可能ですか? 2 DOUGLAS ADAMS BABEL FISH Neural Machine Translation Unit 3 4 OVER 100X FASTER, IS IT REALLY POSSIBLE?

More information

Keras: Handwritten Digit Recognition using MNIST Dataset

Keras: Handwritten Digit Recognition using MNIST Dataset Keras: Handwritten Digit Recognition using MNIST Dataset IIT PATNA January 31, 2018 1 / 30 OUTLINE 1 Keras: Introduction 2 Installing Keras 3 Keras: Building, Testing, Improving A Simple Network 2 / 30

More information

Machine Learning on VMware vsphere with NVIDIA GPUs

Machine Learning on VMware vsphere with NVIDIA GPUs Machine Learning on VMware vsphere with NVIDIA GPUs Uday Kurkure, Hari Sivaraman, Lan Vu GPU Technology Conference 2017 2016 VMware Inc. All rights reserved. Gartner Hype Cycle for Emerging Technology

More information

Making Supercomputing More Available and Accessible Windows HPC Server 2008 R2 Beta 2 Microsoft High Performance Computing April, 2010

Making Supercomputing More Available and Accessible Windows HPC Server 2008 R2 Beta 2 Microsoft High Performance Computing April, 2010 Making Supercomputing More Available and Accessible Windows HPC Server 2008 R2 Beta 2 Microsoft High Performance Computing April, 2010 Windows HPC Server 2008 R2 Windows HPC Server 2008 R2 makes supercomputing

More information

CME 213 S PRING Eric Darve

CME 213 S PRING Eric Darve CME 213 S PRING 2017 Eric Darve Summary of previous lectures Pthreads: low-level multi-threaded programming OpenMP: simplified interface based on #pragma, adapted to scientific computing OpenMP for and

More information

Deploying Deep Learning Networks to Embedded GPUs and CPUs

Deploying Deep Learning Networks to Embedded GPUs and CPUs Deploying Deep Learning Networks to Embedded GPUs and CPUs Rishu Gupta, PhD Senior Application Engineer, Computer Vision 2015 The MathWorks, Inc. 1 MATLAB Deep Learning Framework Access Data Design + Train

More information

How HPC Hardware and Software are Evolving Towards Exascale

How HPC Hardware and Software are Evolving Towards Exascale How HPC Hardware and Software are Evolving Towards Exascale Kathy Yelick Associate Laboratory Director and NERSC Director Lawrence Berkeley National Laboratory EECS Professor, UC Berkeley NERSC Overview

More information

MoonRiver: Deep Neural Network in C++

MoonRiver: Deep Neural Network in C++ MoonRiver: Deep Neural Network in C++ Chung-Yi Weng Computer Science & Engineering University of Washington chungyi@cs.washington.edu Abstract Artificial intelligence resurges with its dramatic improvement

More information

Applications of Berkeley s Dwarfs on Nvidia GPUs

Applications of Berkeley s Dwarfs on Nvidia GPUs Applications of Berkeley s Dwarfs on Nvidia GPUs Seminar: Topics in High-Performance and Scientific Computing Team N2: Yang Zhang, Haiqing Wang 05.02.2015 Overview CUDA The Dwarfs Dynamic Programming Sparse

More information

ChainerMN: Scalable Distributed Deep Learning Framework

ChainerMN: Scalable Distributed Deep Learning Framework ChainerMN: Scalable Distributed Deep Learning Framework Takuya Akiba Preferred Networks, Inc. akiba@preferred.jp Keisuke Fukuda Preferred Networks, Inc. kfukuda@preferred.jp Shuji Suzuki Preferred Networks,

More information

GPUS FOR NGVLA. M Clark, April 2015

GPUS FOR NGVLA. M Clark, April 2015 S FOR NGVLA M Clark, April 2015 GAMING DESIGN ENTERPRISE VIRTUALIZATION HPC & CLOUD SERVICE PROVIDERS AUTONOMOUS MACHINES PC DATA CENTER MOBILE The World Leader in Visual Computing 2 What is a? Tesla K40

More information