Unit 10 Reflection & Refraction

Size: px
Start display at page:

Download "Unit 10 Reflection & Refraction"

Transcription

1 Name: Hr: Unit 0 Relection & Reraction Grading: Show all work, keeping it neat and organized. Show equations used and include all units. REFLECTION Vocabulary Relection: The bouncing o light. The angle a beam o light makes when it strikes a surace is described with respect to the normal, an imaginary line drawn perpendicular to the surace. When light shines onto a mirror, the angle at which the light enters the mirror (angle o incidence) is exactly equal to the angle at which the light leaves the mirror (angle o relection). This is called the law o relection and is easily observed in a plane (lat) mirror. Due to the curvature o a spherical or parabolic mirror, light relected rom its surace behaves somewhat dierently than it does when relected rom a plane mirror. There are two types o spherical mirrors: concave (or converging) and convex (or diverging). Concave Convex The ollowing terminology is used when describing how light is relected rom concave and convex mirrors. Vocabulary Object distance: The distance rom the mirror to the object. This value is always a positive number. Vocabulary Image distance: The distance rom the mirror to the image. An image can be real (able to be projected on a screen), or virtual (not able to be projected on a screen). Vocabulary Focal point: The point where parallel rays meet (or appear to meet) ater relecting rom a mirror. The distance rom this ocal point to the mirror is called the ocal length. The ocal length o a concave mirror always has a positive value while the ocal length o a convex mirror always has a negative value. Vocabulary Mirror Equation: = + ocal length object distance image distance = d o + d i Note: Many situations involving mirrors can also be solved using ray diagrams. CONCAVE (CONVERGING) MIRRORS I an object is located more than one ocal length rom a concave mirror as shown in igure A, the image it orms is real, inverted, and in ront o the mirror. You can actually project this image onto a piece o paper. Both d o and d i have positive values. I the object is at the ocal point as in igure B, no image is ormed because the relected rays are parallel.

2 I an object is located less than one ocal length rom a concave mirror as in igure C, the image it orms is virtual, upright, enlarged, and behind the mirror. In other words, you must look into the mirror to see the image. Here, d o has a positive value and d i has a negative value. Figure A Figure B Figure C CONVEX (DIVERGING) MIRRORS The image ormed by a convex mirror is always virtual, upright, smaller, and behind the mirror. The image can be seen only by looking into the mirror. Here d o has a positive value while d i has a negative value. Solved Examples Example : Sitting in her parlor one night, Gerty sees the relection o her cat, Whiskers, in the living room window. I the image o Whiskers makes an angle o 40 with the normal, at what angle does Gerty see him relected? Solution: Because the angle o incidence equals the angle o relection, Gerty must see her cat relected at an angle o 40. Example 2: Wendy, a ortune teller, is polishing her crystal ball. It is so shiny that she can see her relection when she gazes into it rom a distance o 5 cm. a) What is the ocal length o Wendy s crystal ball i she can see her relection 4.0 cm behind the surace o the crystal ball? b) Is this image real or virtual? a) Given: d o = 5 cm d i = -4.0 cm Unknown: =? Original Equation: Solve: = + d o d i = + = d o d i + 5 cm -4.0 cm Getting a common denominator o 60 cm gives = cm 60 cm = - 60 cm To ind, take the reciprocal o this sum. = -60 cm = -5.5 cm. The minus sign beore the answer means that this is the ocal length o a convex mirror. b) The image seen behind a curved surace is always a virtual image.

3 Example 3: With his ace 6.0 cm rom his empty water bowl, Spot sees his relection 2 cm behind the bowl and jumps back. a) What is the ocal length o the bowl? b) What was surprising about Spots s relection that may have caused him to jump? a) Given: d o = 6 cm d i = -2.0 cm Unknown: =? Original Equation: Solve: = + d o d i = + = d o d i + 6 cm -2 cm Getting a common denominator o 2 cm gives = 2-2 cm 2 cm = 2 cm To ind, take the reciprocal o this sum. = 2 cm. The positive answer means that the bowl was acting as a concave mirror. b) The surprising thing Spot noticed about his relection was that it appeared larger than lie! REFRACTION Vocabulary Reraction: The change in direction o light due to a change in speed as it passes rom one medium to another. The path o light is described with respect to the normal. I light is slowed down as it enters a new medium, it bends toward the normal. I it speeds up, it bends away rom the normal. The amount o bending is represented with the letter n, which stands or the index o reraction. The index o reraction or a particular medium is a ratio o the speed o light in a vacuum to the speed o light in the medium. index o reraction = speed o light in a vacuum speed o light in another medium or n = c v Because light travels astest in a vacuum, the index o reraction or any other medium is always greater than. Although the index o reraction or air is.0003, in this chapter the value will be written simply as.00. The angle to which light will bend upon passing rom one medium to another depends upon the index o reraction o each o the two media, n and n 2, and the light s angle o incidence. n sin = n 2 sin 2 This equation is known as Snell s Law. The symbols and 2 stand or the angle o incidence and the angle o reraction, respectively.

4 A special case o this equation is used when light travels rom a more-dense medium to a less-dense medium and the reracted ray makes an angle o 90.0 with the normal as it skims along the boundary o the two media. When this happens, the incident angle is called the critical angle, c. n sin c = n 2 sin 90.0 This is the condition or total internal relection. I the incident angle is any bigger than the critical angle, there is no reraction. Instead, all the light is relected back inside the object. This is called total internal relection. Example 4: Hickory, a watchmaker, is interested in an old timepiece that s been brought in or a cleaning. I light travels at.90 x 0 8 m/s in the crystal, what is the crystal s index o reraction? Given: c = 3.00 x 0 8 m/s v =.90 x 0 8 m/s Unknown: n =? Original Equation: n = c v Solve: n = c = 3.00 x 08 m/s v.90 x 0 8 m/s The index o reraction has no units because it is just a ratio o the speed o light in two dierent media. Example 5: While ishing out on the lake on summer aternoon, Amy spots a large trout just below the surace o the water at an angle o 60.0 to the vertical, and she tries to scoop it out o the water with her net. a) Draw the ish where Amy sees it. b) At what angle should Amy aim or the ish (n water =.33). a) The ish will appear to be straight ahead according to Amy. However, because light travels slower in water than in air, the ish is closer to Amy (and deeper in the water) than she thinks. b) Given: n =.33 (water) n 2 =.00 (air) 2 = 60.0 Unknown: 2 =? Original Equation: n sin = n 2 sin 2 Solve: sin = n 2 sin θ 2 n = (.00) sin (60.0 ).33 = sin - (0.65) = 40.6 = 0.65 Example 6: Binoculars contain prisms inside that relect light entering at an angle larger than the critical angle. I the index o reraction o a glass prism is.58, what is the critical angle or light entering the prism? Given: n =.58 (glass) n 2 =.00 (air) Unknown: c =? Original Equation: n sin c = n 2 sin 90 o Solve: sin c = n 2 sin θ 2 n = (.00) sin (90.0 ).58 = sin - (0.633) = 39.3 = 0.633

5 Exercises Draw a sketch or each exercise! Exercise : Ivan is in a house o mirrors with one o his riends when he comes to two mirrors situated at an angle o 90. Ivan stands so that light shining on his ace is incident on one mirror at an angle o 50, as shown. At what angle will this light relect rom the second mirror? Draw the rays on the diagram, and explain your reasoning below. Exercise 2: A popular lawn ornament in the 960s was a colored relecting sphere that sat in the yard as a decoration. a) I a bird is 0.0 cm rom a blue relecting sphere and sees its image relected 5.0 cm behind the sphere, what is the ocal length o the spherical relector? b) Would the bird s image appear larger or smaller than the bird itsel?

6 Exercise 3: Polly applies her mascara while looking in a concave mirror whose ocal length is 8 cm. She looks into it rom a distance o 2 cm. a) How ar is Polly s image rom the mirror? b) Does it matter whether or not Polly s ace is closer or arther than one ocal length? Explain. Exercise 4: A riend is wearing a pair o mirrored sunglasses whose convex surace has a ocal length o 20.0 cm. I your ace is 40.0 cm rom the sunglasses, how ar behind the sunglasses is your image?

7 Exercise 5: Alison sees a coin at the bottom o her swimming pool at an angle o 40.0 to the normal and she dives in to retrieve it. However, Alison doesn t like to open her eyes in the water so she must rely on her initial observation o the coin made in the air. At what angle does the light rom the coin travel as it moves toward the surace? (n water =.33) Exercise 6: Here s an interesting trick to try. Place a penny in the bottom o a cup and stand so that the penny is just out o sight, as shown. Then pour water into the cup. Without moving, you will suddenly see the penny magically appear. I you look into the cup at an angle o 70.0 to the normal, at what angle to the normal must the penny be located in order or it to just appear in the bottom o the cup? (n water =.33)

8 Exercise 7: Fletcher makes his girlriend a romantic candlelight dinner and tops it o with a dessert o gelatin illed with blueberries. I a blueberry that appears at an angle o 44.0 to the normal in air is really located at 30.0 to the normal in the gelatin, what is the index o reraction o the gelatin? Exercise 8: A jeweler must decide whether the stone in Mrs. Smigelski s ring is a real diamond or a less-precious zircon. He measures the critical angle o the gem and inds that it is 3.3. Is the stone really a diamond or just a good imitation? (n diamond = 2.4, n zircon =.92)

Unit 10 Reflection. Grading: Show all work, keeping it neat and organized. Show equations used and include all units.

Unit 10 Reflection. Grading: Show all work, keeping it neat and organized. Show equations used and include all units. Name: Hr: Unit 0 Relection Grading: Show all work, keeping it neat and organized. Show equations used and include all units. REFLECTION Vocabulary Relection: The bouncing o light. The angle a beam o light

More information

Refraction: The change in direction of light due to a change in speed as it passes from one medium to another.

Refraction: The change in direction of light due to a change in speed as it passes from one medium to another. 14-3 Refraction Vocabulary Refraction: The change in direction of light due to a change in speed as it passes from one medium to another. The path of light is described with respect to the normal. If light

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

Phys102 Lecture 21/22 Light: Reflection and Refraction

Phys102 Lecture 21/22 Light: Reflection and Refraction Phys102 Lecture 21/22 Light: Reflection and Refraction Key Points The Ray Model of Light Reflection and Mirrors Refraction, Snell s Law Total internal Reflection References 23-1,2,3,4,5,6. The Ray Model

More information

Chapter 5: Light and Vision CHAPTER 5: LIGHT AND VISION

Chapter 5: Light and Vision CHAPTER 5: LIGHT AND VISION CHAPTER 5: LIGHT AND VISION These notes have been compiled in a way to make it easier or revision. The topics are not in order as per the syllabus. 5.1 Mirrors and Lenses 5.1.1 Image Characteristics Image

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

More information

Reflection and Refraction

Reflection and Refraction Relection and Reraction Object To determine ocal lengths o lenses and mirrors and to determine the index o reraction o glass. Apparatus Lenses, optical bench, mirrors, light source, screen, plastic or

More information

Snell s Law n i sin! i = n r sin! r

Snell s Law n i sin! i = n r sin! r Mr. Rawson Physics Snell s Law n i sin! i = n r sin! r Angle o Reraction n glass = 1.5 Angle o Incidence n air = 1.00 32 o 32 o 1 Mr. Rawson Physics 4 Mr. Rawson Physics 2 Mr. Rawson Physics 3 !"#$%&&&&

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics 23.1 The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization,

More information

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image.

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image. I. What is GEOMTERIC OPTICS GEOMETRIC OPTICS In geometric optics, LIGHT is treated as imaginary rays. How these rays interact with at the interface of different media, including lenses and mirrors, is

More information

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses LIGHT Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses Light = Electromagnetic Wave Requires No Medium to Travel Oscillating Electric and Magnetic Field Travel at the speed of light

More information

Textbook Reference: Glencoe Physics: Chapters 16-18

Textbook Reference: Glencoe Physics: Chapters 16-18 Honors Physics-121B Geometric Optics Introduction: A great deal of evidence suggests that light travels in straight lines. A source of light like the sun casts distinct shadows. We can hear sound from

More information

The Ray model of Light. Reflection. Class 18

The Ray model of Light. Reflection. Class 18 The Ray model of Light Over distances of a terrestrial scale light travels in a straight line. The path of a laser is now the best way we have of defining a straight line. The model of light which assumes

More information

Light: Geometric Optics (Chapter 23)

Light: Geometric Optics (Chapter 23) Light: Geometric Optics (Chapter 23) Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Index of Refraction Refraction: Snell s Law 1

More information

Chapter 5 Mirrors and Lenses

Chapter 5 Mirrors and Lenses Chapter 5 Notes: Mirrors and Lenses Name: Block: The Ray Model of Light The ray model of light represents light as a line, or ray, indicating the path of a beam of light. Light travels in straight lines

More information

1. What is the law of reflection?

1. What is the law of reflection? Name: Skill Sheet 7.A The Law of Reflection The law of reflection works perfectly with light and the smooth surface of a mirror. However, you can apply this law to other situations. For example, how would

More information

Reflection and Refraction. Geometrical Optics

Reflection and Refraction. Geometrical Optics Reflection and Refraction Geometrical Optics Reflection Angle of incidence = Angle of reflection The angle of incidence,i, is always equal to the angle of reflection, r. The incident ray, reflected ray

More information

Light travels in straight lines, this is referred to as... this means that light does not bend...

Light travels in straight lines, this is referred to as... this means that light does not bend... SNC 2DI - 10.2 Properties of Light and Reflection Light travels in straight lines, this is referred to as... this means that light does not bend... Reflection : Light travels in a straight line as long

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Physics 102: Lecture 17 Reflection and Refraction of Light

Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17, Slide 1 Today Last Time Recall from last time. Reflection: q i = q r Flat Mirror: image equidistant behind Spherical

More information

Refraction and Lenses. Honors Physics

Refraction and Lenses. Honors Physics Refraction and Lenses Honors Physics Refraction Refraction is based on the idea that LIGHT is passing through one MEDIUM into another. The question is, WHAT HAPPENS? Suppose you are running on the beach

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

4. Refraction. glass, air, Perspex and water.

4. Refraction. glass, air, Perspex and water. Mr. C. Grima 11 1. Rays and Beams A ray of light is a narrow beam of parallel light, which can be represented by a line with an arrow on it, in diagrams. A group of rays makes up a beam of light. In laboratory

More information

Outline F. OPTICS. Objectives. Introduction. Wavefronts. Light Rays. Geometrical Optics. Reflection and Refraction

Outline F. OPTICS. Objectives. Introduction. Wavefronts. Light Rays. Geometrical Optics. Reflection and Refraction F. OPTICS Outline 22. Spherical mirrors 22.2 Reraction at spherical suraces 22.3 Thin lenses 22. Geometrical optics Objectives (a) use the relationship = r/2 or spherical mirrors (b) draw ray agrams to

More information

3. For an incoming ray of light vacuum wavelength 589 nm, fill in the unknown values in the following table.

3. For an incoming ray of light vacuum wavelength 589 nm, fill in the unknown values in the following table. Homework Set 15A: Mirrors and Lenses 1. Find the angle of refraction for a ray of light that enters a bucket of water from air at an angle of 25 degrees to the normal. 2. A ray of light of vacuum wavelength

More information

Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror

Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror Optics INTRODUCTION Geometric optics is one of the oldest branches of physics, dealing with the laws of reflection and refraction. Reflection takes place on the surface of an object, and refraction occurs

More information

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light Physics 11 Ray Optics Ray Model of Light Reflection Plane Mirrors Spherical Mirrors Ray Tracing Images from a Concave Mirror Images from a Convex Mirror Slide 18-3 The Ray Model of Light Sources of Light

More information

Kiangsu-Chekiang College (Shatin)

Kiangsu-Chekiang College (Shatin) Kiangsu-Chekiang College (Shatin) Physics Revision Test (2002-2003) Name : ( ) Time : 60 minutes Class : F.3 Marks : / 100 Date : 03-Apr-2003 Section A: Multiple-choice questions (30 marks) Answer ALL

More information

CHAPTER 35. Answer to Checkpoint Questions

CHAPTER 35. Answer to Checkpoint Questions 956 CHAPTER 35 GEMETRICAL PTICS CHAPTER 35 Answer to Checkpoint Questions answer to kaleidoscope question: two mirrors that orm a V with an angle o 60. 0:d, :8d, :d. (a) real; (b) inverted; (c) same 3.

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

M = h' h = #i. n = c v

M = h' h = #i. n = c v Name: Physics Chapter 14 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: c = 3 "10 8 m s 1 i + 1 o = 1 f M = h' h =

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

Light and Mirrors MIRRORS

Light and Mirrors MIRRORS Light and Mirrors MIRRORS 1 Polarized Sunglasses- How do they work? light waves vibrate in more than one plane light waves can be made to vibrate in a single plane by use of polarizing filters. 2 polarizing

More information

Geometrical Optics INTRODUCTION. Wave Fronts and Rays

Geometrical Optics INTRODUCTION. Wave Fronts and Rays Geometrical Optics INTRODUCTION In this experiment, the optical characteristics of mirrors, lenses, and prisms will be studied based on using the following physics definitions and relationships plus simple

More information

Reflections. I feel pretty, oh so pretty

Reflections. I feel pretty, oh so pretty Reflections I feel pretty, oh so pretty Objectives By the end of the lesson, you should be able to: Draw an accurate reflective angle Determine the focal length of a spherical mirror Light Review Light

More information

CHAPTER 29: REFLECTION

CHAPTER 29: REFLECTION CHAPTER 29: REFLECTION 29.1 REFLECTION The return of a wave back to its original medium is called reflection. Fasten a spring to a wall and send a pulse along the spring s length. The wall is a very rigid

More information

CHAPTER- 10 LIGHT REFLECTION AND REFRACTION

CHAPTER- 10 LIGHT REFLECTION AND REFRACTION CHAPTER- 10 LIGHT REFLECTION AND REFRACTION LIGHT Light is a form of energy, which enable us to see the object. Its speed is 3 10 8 m/s in vacuum. Light always travel in straight line. Reflection: The

More information

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

Video: The Mirror. Unit #3 - Optics. Geometric Optics. A) The Law of Reflection. applications Mirrors.

Video: The Mirror. Unit #3 - Optics. Geometric Optics. A) The Law of Reflection. applications Mirrors. Video: The Mirror http://vimeo.com/6212004 Unit #3 - Optics 11.1 - Mirrors Geometric Optics the science of how light reflects and bends optical device is any technology that uses light A) The Law of Reflection

More information

Lecture Outlines Chapter 26

Lecture Outlines Chapter 26 Lecture Outlines Chapter 26 11/18/2013 2 Chapter 26 Geometrical Optics Objectives: After completing this module, you should be able to: Explain and discuss with diagrams, reflection and refraction of light

More information

1. Observe Observe your image on each side of a spoon. Record your observations using words and a picture.

1. Observe Observe your image on each side of a spoon. Record your observations using words and a picture. Concave Mirrors 1. Observe Observe your image on each side o a spoon. Record your observations using words and a picture. Inner spoon Outer spoon 2. Observe and Explain http://www.youtube.com/watch?v=kqxdwpmof9c&eature=player_embedded

More information

Kiangsu-Chekiang College (Shatin)

Kiangsu-Chekiang College (Shatin) Kiangsu-hekiang ollege (Shatin) Physics Revision Test (2002-2003) Name : ( ) Time : 60 minutes lass : F.3 Marks : / 100 Date : 03-pr-2003 nswer LL questions Section : Multiple-choice questions (30 marks)

More information

Section 2 Flat Mirrors. Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors.

Section 2 Flat Mirrors. Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors. Section 2 Flat Mirrors Objectives Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors. Describe the nature of images formed by flat mirrors. Section

More information

Homework Set 3 Due Thursday, 07/14

Homework Set 3 Due Thursday, 07/14 Homework Set 3 Due Thursday, 07/14 Problem 1 A room contains two parallel wall mirrors, on opposite walls 5 meters apart. The mirrors are 8 meters long. Suppose that one person stands in a doorway, in

More information

Refraction of Light. This bending of the ray is called refraction

Refraction of Light. This bending of the ray is called refraction Refraction & Lenses Refraction of Light When a ray of light traveling through a transparent medium encounters a boundary leading into another transparent medium, part of the ray is reflected and part of

More information

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2 Amount of bending depends on: - angle of incidence - refractive index of medium Recap: Refraction λ 1 (n 2 > n 1 ) Snell s Law: When light passes from one transparent medium to another, the rays will be

More information

Reflection and Image Formation by Mirrors

Reflection and Image Formation by Mirrors Purpose Theory a. To study the reflection of light Reflection and Image Formation by Mirrors b. To study the formation and characteristics of images formed by different types of mirrors. When light (wave)

More information

Light and Lenses Notes

Light and Lenses Notes Light and Lenses Notes Refraction The change in speed and direction of a wave Due to change in medium Must cross boundary at an angle other than 90 o, otherwise no change in direction I R (unlike reflection)

More information

Light Refraction. 7. For the three situations below, draw a normal line and measure and record the angles of incidence and the angles of refraction.

Light Refraction. 7. For the three situations below, draw a normal line and measure and record the angles of incidence and the angles of refraction. Name: Light Refraction Read from Lesson 1 of the Refraction and Lenses chapter at The Physics Classroom: http://www.physicsclassroom.com/class/refrn/u14l1a.html http://www.physicsclassroom.com/class/refrn/u14l1b.html

More information

Physics 102: Lecture 17 Reflection and Refraction of Light

Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17, Slide 1 Recall from last time. Today Last Time Reflection: θ i = θ r Flat Mirror: image equidistant behind Spherical

More information

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction Holt Chapter 14 Student Outline Light and Refraction Variables introduced or used in chapter: Quantity Symbol Units Speed of light frequency wavelength angle Object Distance Image Distance Radius of Curvature

More information

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation Chapter 6 Geometrical Optics Outline 6-1 The Reflection of Light 6- Forming Images with a Plane Mirror 6-3 Spherical Mirror 6-4 Ray Tracing and the Mirror Equation 6-5 The Refraction of Light 6-6 Ray Tracing

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

More information

General Physics II. Mirrors & Lenses

General Physics II. Mirrors & Lenses General Physics II Mirrors & Lenses Nothing New! For the next several lectures we will be studying geometrical optics. You already know the fundamentals of what is going on!!! Reflection: θ 1 = θ r incident

More information

When light strikes an object there are different ways it can be affected. Light can be

When light strikes an object there are different ways it can be affected. Light can be When light strikes an object there are different ways it can be affected. Light can be transmitted, reflected, refracted, and absorbed, It depends on the type of matter that it strikes. For example light

More information

The Reflection of Light

The Reflection of Light King Saud University College of Applied Studies and Community Service Department of Natural Sciences The Reflection of Light General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Introduction

More information

Stevens High School AP Physics II Work for Not-school

Stevens High School AP Physics II Work for Not-school 1. Gravitational waves are ripples in the fabric of space-time (more on this in the next unit) that travel at the speed of light (c = 3.00 x 10 8 m/s). In 2016, the LIGO (Laser Interferometry Gravitational

More information

Reflection & Mirrors

Reflection & Mirrors Reflection & Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media A ray of light is

More information

Light. Reflection of light. Types of reflection

Light. Reflection of light. Types of reflection Light Reflection of light Reflection is when light bounces off an object. If the surface is smooth and shiny, like glass, water or polished metal, the light will reflect at the same angle as it hit the

More information

Lenses & Prism Consider light entering a prism At the plane surface perpendicular light is unrefracted Moving from the glass to the slope side light

Lenses & Prism Consider light entering a prism At the plane surface perpendicular light is unrefracted Moving from the glass to the slope side light Lenses & Prism Consider light entering a prism At the plane surace perpendicular light is unreracted Moving rom the glass to the slope side light is bent away rom the normal o the slope Using Snell's law

More information

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well Pre AP Physics Light & Optics Chapters 14-16 Light is an electromagnetic wave Electromagnetic waves: Oscillating electric and magnetic fields that are perpendicular to the direction the wave moves Difference

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

Ch. 26: Geometrical Optics

Ch. 26: Geometrical Optics Sec. 6-1: The Reflection of Light Wave Fronts and Rays Ch. 6: Geometrical Optics Wave front: a surface on which E is a maximum. Figure 5-3: Plane Wave *For this wave, the wave fronts are a series of planes.

More information

Investigation 21A: Refraction of light

Investigation 21A: Refraction of light Investigation 21A: Refraction of light Essential question: How does light refract at a boundary? What is the index of refraction of water? Refraction may change the direction of light rays passing from

More information

Refraction Section 1. Preview. Section 1 Refraction. Section 2 Thin Lenses. Section 3 Optical Phenomena. Houghton Mifflin Harcourt Publishing Company

Refraction Section 1. Preview. Section 1 Refraction. Section 2 Thin Lenses. Section 3 Optical Phenomena. Houghton Mifflin Harcourt Publishing Company Refraction Section 1 Preview Section 1 Refraction Section 2 Thin Lenses Section 3 Optical Phenomena Refraction Section 1 TEKS The student is expected to: 7D investigate behaviors of waves, including reflection,

More information

Light, Photons, and MRI

Light, Photons, and MRI Light, Photons, and MRI When light hits an object, some of it will be reflected. The reflected light can form an image. We usually want to be able to characterize the image given what we know about the

More information

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 34 Lecture RANDALL D. KNIGHT Chapter 34 Ray Optics IN THIS CHAPTER, you will learn about and apply the ray model of light Slide 34-2

More information

UNIT C: LIGHT AND OPTICAL SYSTEMS

UNIT C: LIGHT AND OPTICAL SYSTEMS 1 UNIT C: LIGHT AND OPTICAL SYSTEMS Science 8 2 LIGHT BEHAVES IN PREDICTABLE WAYS. Section 2.0 1 3 LIGHT TRAVELS IN RAYS AND INTERACTS WITH MATERIALS Topic 2.1 RAY DIAGRAMS Scientists use ray diagrams

More information

PHYS2002 Spring 2012 Practice Exam 3 (Chs. 25, 26, 27) Constants

PHYS2002 Spring 2012 Practice Exam 3 (Chs. 25, 26, 27) Constants PHYS00 Spring 01 Practice Exam 3 (Chs. 5, 6, 7) Constants m m q q p e ε = 8.85 o o p e = 1.67 = 9.11 7 9 7 31 = + 1.60 = 1.60 μ = 4π k = 8.99 g = 9.8 m/s 1 kg 19 19 C kg T m/a N m C / N m C / C 1. A convex

More information

Chapter 12 Notes: Optics

Chapter 12 Notes: Optics Chapter 12 Notes: Optics How can the paths traveled by light rays be rearranged in order to form images? In this chapter we will consider just one form of electromagnetic wave: visible light. We will be

More information

Chapter 5 Mirror and Lenses

Chapter 5 Mirror and Lenses Chapter 5 Mirror and Lenses Name: 5.1 Ray Model of Light Another model for light is that it is made up of tiny particles called. Photons travel in perfect, lines from a light source This model helps us

More information

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane.

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane. Laws of reflection Physics UNIT 9 Ray Optics The incident ray, the reflected ray and the normal drawn to the reflecting surface at the point of incidence, all lie in the same plane. The angle of incidence

More information

Physics 1202: Lecture 17 Today s Agenda

Physics 1202: Lecture 17 Today s Agenda Physics 1202: Lecture 17 Today s Agenda Announcements: Team problems today Team 10, 11 & 12: this Thursday Homework #8: due Friday Midterm 2: Tuesday April 10 Office hours if needed (M-2:30-3:30 or TH

More information

Physics 11 Chapter 18: Ray Optics

Physics 11 Chapter 18: Ray Optics Physics 11 Chapter 18: Ray Optics "... Everything can be taken from a man but one thing; the last of the human freedoms to choose one s attitude in any given set of circumstances, to choose one s own way.

More information

THIN LENSES: BASICS. There are at least three commonly used symbols for object and image distances:

THIN LENSES: BASICS. There are at least three commonly used symbols for object and image distances: THN LENSES: BASCS BJECTVE: To study and veriy some o the laws o optics applicable to thin lenses by determining the ocal lengths o three such lenses ( two convex, one concave) by several methods. THERY:

More information

Reflection & refraction

Reflection & refraction 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Reflection & refraction Reflection revision Reflection is the bouncing of light rays off a surface Reflection from a mirror: Normal

More information

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles.

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. Optics 1- Light Nature: a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. The particles were either emitted by the object being viewed or emanated from

More information

Lab 9 - GEOMETRICAL OPTICS

Lab 9 - GEOMETRICAL OPTICS 161 Name Date Partners Lab 9 - GEOMETRICAL OPTICS OBJECTIVES Optics, developed in us through study, teaches us to see - Paul Cezanne Image rom www.weidemyr.com To examine Snell s Law To observe total internal

More information

What is it? How does it work? How do we use it?

What is it? How does it work? How do we use it? What is it? How does it work? How do we use it? Dual Nature http://www.youtube.com/watch?v=dfpeprq7ogc o Electromagnetic Waves display wave behavior o Created by oscillating electric and magnetic fields

More information

Key Terms write the definitions of the boldface terms on your own paper, definitions are available at theteterszone.net

Key Terms write the definitions of the boldface terms on your own paper, definitions are available at theteterszone.net On-level Physics Optics This unit will allow each student to: a. gain a better understanding of the behavior and characteristics of light as it is reflected and refracted by s and lenses b. continue making

More information

Ch. 25 The Reflection of Light

Ch. 25 The Reflection of Light Ch. 25 The Reflection of Light 25. Wave fronts and rays We are all familiar with mirrors. We see images because some light is reflected off the surface of the mirror and into our eyes. In order to describe

More information

Reflection and Refraction

Reflection and Refraction Reflection and Refraction Theory: Whenever a wave traveling in some medium encounters an interface or boundary with another medium either (or both) of the processes of (1) reflection and (2) refraction

More information

Physics 11. Unit 8 Geometric Optics Part 1

Physics 11. Unit 8 Geometric Optics Part 1 Physics 11 Unit 8 Geometric Optics Part 1 1.Review of waves In the previous section, we have investigated the nature and behaviors of waves in general. We know that all waves possess the following characteristics:

More information

Geometrical optics: Refraction *

Geometrical optics: Refraction * OpenStax-CNX module: m40065 1 Geometrical optics: Refraction * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0

More information

PHY 171 Lecture 6 (January 18, 2012)

PHY 171 Lecture 6 (January 18, 2012) PHY 171 Lecture 6 (January 18, 2012) Light Throughout most of the next 2 weeks, we will be concerned with the wave properties of light, and phenomena based on them (interference & diffraction). Light also

More information

PHYSICS. Light FORM 4. Chapter 5. Compiled by Cikgu Desikan

PHYSICS. Light FORM 4. Chapter 5. Compiled by Cikgu Desikan PHYSICS RM 4 Chapter 5 Light Compiled by Cikgu Desikan PRE SPM PHYSICS 2016 Chapter 5 Light Dear students, The two basic processes of education are knowing and valuing. Learning bjectives : 1. Understanding

More information

Chapter 7: Geometrical Optics

Chapter 7: Geometrical Optics Chapter 7: Geometrical Optics 7. Reflection at a Spherical Surface L.O 7.. State laws of reflection Laws of reflection state: L.O The incident ray, the reflected ray and the normal all lie in the same

More information

Light, Lenses, Mirrors

Light, Lenses, Mirrors Light, Lenses, Mirrors Optics Light is Dual in nature- has both particle and wave properties. Light = range of frequencies of electromagnetic waves that stimulates the eye s retina Facts About Light It

More information

Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

More information

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview Chapter 23 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 23-2 Chapter 23 Preview Slide 23-3 Chapter 23 Preview Slide 23-4 1 Chapter 23 Preview Slide 23-5 Chapter 23 Preview

More information

Draw a diagram showing the fibre and the path of the ray of light. Describe one use of optical fibres in medicine. You may draw a diagram.

Draw a diagram showing the fibre and the path of the ray of light. Describe one use of optical fibres in medicine. You may draw a diagram. 1 (a) (i) A ray of light passes through a length of curved optical fibre. Draw a diagram showing the fibre and the path of the ray of light. [1] Describe one use of optical fibres in medicine. You may

More information

Refraction of Light. Research Problem. Materials. Procedure. Due Date. Glass Block Protractor Ruler PENCIL 4 Pins Cardboard

Refraction of Light. Research Problem. Materials. Procedure. Due Date. Glass Block Protractor Ruler PENCIL 4 Pins Cardboard Name SI Physics Period Date Lab #0(90 pts) Mrs. Nadworny Due Date Research Problem Materials Refraction of Light When a ray of light passes obliquely (at an angle) from air to glass, it is refracted. The

More information

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments Chapter 23 Geometrical Optics: Mirrors and Lenses and other Instruments HITT1 A small underwater pool light is 1 m below the surface of a swimming pool. What is the radius of the circle of light on the

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XIII Refraction of light Snell s law Dispersion and rainbow Mirrors and lens Plane mirrors Concave and convex mirrors Thin lenses http://www.physics.wayne.edu/~apetrov/phy2130/

More information

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 24 Geometrical Optics Marilyn Akins, PhD Broome Community College Optics The study of light is called optics Some highlights in the history

More information

index of refraction-light speed

index of refraction-light speed AP Physics Study Guide Chapters 22, 23, 24 Reflection, Refraction and Interference Name Write each of the equations specified below, include units for all quantities. Law of Reflection Lens-Mirror Equation

More information

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1 LIGHT & OPTICS Fundamentals of Physics 22 Chapter 34 Chapter 34 Images. Two Types of Images 2. Plane Mirrors 3. Spherical Mirrors 4. Images from Spherical Mirrors 5. Spherical Refracting Surfaces 6. Thin

More information

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses Optics Course (Phys ) Geometrical Optics Refraction through Lenses Lecturer: Dr Zeina Hashim Slide 1 Objectives covered in this lesson : 1. Refraction through single spherical refracting surfaces. 2. Lenses:

More information