Make to Innovate Cardinal Flight Aerodynamics Team

Size: px
Start display at page:

Download "Make to Innovate Cardinal Flight Aerodynamics Team"

Transcription

1 Make to Innovate Cardinal Flight Aerodynamics Team Group Members: Alexander Scott Benjamin Vanduyne Brandon Ganey Joseph Cairo Lyle Sorensen 1

2 Abstract The purpose for this milestone was to construct an accurate physics simulation model using RealFlight RC Simulator and explain the analysis involved. This model simulation allows Cardinal Flight to estimate the handling capabilities by creating an aircraft with similar physics to that of Arrow (Cardinal Flight s latest design). The Cooper-Harper rating scale was used in the analysis of the simulation. In addition to this evaluation, this simulation will be used to provide a few recommendations to improve the aircraft. Methodology RealFlight Simulator is a program created to allow pilots to practice flying Radio Controlled (RC) aircraft using a USB controller and a computer (Figure 1). The program allows for the selection of pre-made aircraft or the selection of user designed aircraft. With the option of user designed aircraft, pilots are able to practice flying a custom aircraft design prior to building it. RealFlight uses accurate physics of flight to create a simulation which creates a correct representation of flying the real RC aircraft. By accounting for wind, air density, and many other variables, RealFlight helps create a seamless transition from flying on the computer to flying in real life as seen in Figure 2. While RealFlight is not a perfect simulation, it is extremely close to flying a real RC aircraft. Figure 1. RealFlight 7.5 Interlink Elite Controller Edition 2

3 Figure 2. RealFlight 7.5 Simulation Example Generating a model in the RealFlight simulator requires the user to select from a list of base models, then the user may adjust geometry, physical characteristics, and equipment. The Calypso model (Figure 3) met requirements that made it possible to edit the model in Arrow s likeness; the model was capable of powered flight and had a two-phase dihedral, as it was goal was to minimize editing in general. Once a sufficient aircraft was selected, in this case the Calypso base model, dimensions were adjusted to match the planned Arrow model in its current form, which can be viewed in Table 1. Figure 3: Calypso Visual Representation Model (Left) and Calypso Physics Wireframe Model (Right) Table 1: General Arrow Aircraft Dimensions Chord Span Main Wing Horizontal Tail ¼ Vertical Tail Fuselage length 9 3 3

4 Figure 4 shows the progression of RealFlight s default model toward an aircraft that resembles Arrow. Figure 4 is the skeletonized physics frame of Arrow in comparison to Calypso s frame. Note the difference in size between the two, as well as difference in tail configuration and extended dihedral on Arrow. It is worth mentioning that RealFlight allows the user to input the airfoil of the tail sections and main wing, a NACA 0012 and Selig S7075 respectively, as well as a dihedral of 3 degrees. Figure 4: Original Calypso Physics Wireframe (Left) vs. Edited Arrow Physics Wireframe (Right) In addition to adjusting the geometry of the physics models, the weights and exact drive system equipment installed were selected. The total weight of the aircraft was selected to be 15lbs (estimated weight, per Mechanical Team design). Then the exact drive system was selected for the model. The exact battery configuration was selected: 6S12P Lithium-Ion battery pack. Next a custom motor was created to match the one purchased for the aircraft, Tiger Motor U The following parameters were chosen to model the motor: 170KV, 1.1A no load current,.089 Ohm resistance, and 42 Magnetic Poles. Next a folding Carbon Fiber propeller was selected with the dimensions of 28 diameter with 12 pitch. Discussion In order to evaluate Arrow, the team utilized the Cooper-Harper rating scale to access the handling characteristics of the aircraft. The rating scale is a set of criteria used by test pilots and engineers to evaluate an aircraft performing a specific maneuver. The rating scale ranges from 1 (indicating the best handling characteristics) to 10 (representing the lowest quality of handling characteristics). The grading criteria is outlined in Figure 5. 4

5 Figure 5. Cooper Harper Handling Qualities Rating Scale Cardinal Flight is designing the aircraft to meet a rating of 3 or lower. The rating of 1-3 is regarded as satisfactory performance without required improvement. Cardinal Flight has elected to evaluate the aircraft on 4 basic maneuvers: Powered Climb, Level Flight, Gliding Decent, and Coordinated Turns. Immediately the aircraft was deemed to be extremely stable; however, Arrow as designed by the Mechanical Team was shown to possess a very low degree of control. The aircraft was unable to recover from unusual attitudes so the flight control areas were increased till appropriate control responses were deemed acceptable. The testing could not continue with the original flight controls, so all ratings were accessed with the increased size of flight controls. The size increases are noted later in the Recommendation section of the report. The various ratings assigned to each maneuver can be seen in Table 2. 5

6 Table 2. Cardinal Flight Arrow Cooper Harper Ratings Evaluated Maneuver Rating 1 (Best) 10 (Worst) Powered Climb 1 Level Flight 1 Gliding Decent 1 Coordinated Turns 4 Powered Climb: this maneuver consisted of throttling to 75% power and climbing at the maximum stable attitude in a straight flight path. The aircraft was able to climb at 500 feet per min (FPM). This climb rate was deemed excessive but available during flight. The aircraft remained level in roll and maintained a stable climb attitude automatically with minimal elevator trim. There was no pilot compensation required to maintain course, so the Cooper-Harper Rating for the maneuver was deemed a 1. Level Flight: this maneuver consisted of maintaining level flight in regards to both pitch and roll while holding the throttle at 50% power. The aircraft was quickly trimmed to maintain level flight with zero pilot input to hold the maneuver. Additionally, any control impulse was quickly dampened out with the aircraft returning to un-accelerated flight. There was no pilot compensation required to maintain course, so the Cooper-Harper Rating for the maneuver was deemed a 1. Gliding Decent: this maneuver consisted of maintaining level bank angle while holding the throttle at 0% power. The maneuver was performed after the Level Flight trial so that aircraft was trimmed to maintain attitude. Once a stable glide path was established at a decent of 50 FPM, zero pilot input was required to hold the maneuver. There was no pilot compensation required to maintain course, so the Cooper-Harper Rating for the maneuver was deemed a 1. Coordinated Turn: this maneuver consisted of maintaining a level turn at 20deg holding the throttle at 50% power. During the turns a large amount of rudder input was required to maintain proper coordination. The rudder input varied pending bank angle and was required to prevent departure from a stable flight path. Moderate pilot compensation was required to maintain course. The required compensation was not extreme, only annoying. The so the Cooper-Harper Rating for the maneuver was deemed a 4. Aside from the additional pilot input required for the coordinated turns, the aircraft was extremely stable and easy to fly. The simulator performance yielded great feedback to the pilots of the group, so that improvements to the design could be recommended by the Aero team. The Aero team plans to use this method of evaluation on future aircraft designs. 6

7 Recommendations After reviewing the Cooper-Harper rating scale, the Aerodynamics team came to a consensus on two major points from the simulation; the first regarding the sizing of the control surfaces of Arrow, and the second surrounding the controllability of the aircraft. For the first recommendation, the Aerodynamic Team advises adding more area to the ailerons, elevators, and rudder. The Aero team s recommendations are listed in Table 3 in order increase response to pilot control input. Table 3. Original Flight Control Dimensions vs. Recommended Flight Control Dimensions Original Recommended Chord Span Chord Span Aileron Elevator Rudder The second area of concern dealt with a physics phenomenon that occurs for larger aircraft, which is called adverse yaw. This phenomenon occurs when the control surfaces are large enough that when deflected down, the drag and resulting moment created on the side of the aircraft in question causes a noticeable yaw opposite the direction of the roll. To account for this, the Aero team suggests mixing rudder and aileron commands such that there is a linear relation between pilot input for aileron deflection and resulting rudder compensation, in the neighborhood of 30% to 50%. One other remedy is to have differential throws for the ailerons such that a deflection down is a fraction of the deflection upward on the opposite side to equalize drag. Conclusion Using RealFlight RC Simulator was a great way to evaluate the handling capabilities of Arrow. By utilizing the quantifications given by the Cooper-Harper rating scale and the model of Arrow created in RealFlight, the Aero Team was able to provide recommendations to improve the aircraft. This milestone has reassured Cardinal Flight of Arrow s flight performance and helped to minimize potential problems with the flight control system. Furthermore, the data collected from the simulator will help Cardinal Flight perfect the overall design of the aircraft. 7

Fixed Wing Models 45

Fixed Wing Models 45 Fixed Wing Models 45 FLAP FLAPERON Flap Flaperon Mixer Aileron Rudder Mixer Aileron Differential Mixer The mixer "F-A" allows an adjustable portion of the flap control system to be fed to the aileron channels

More information

Introduction. AirWizEd User Interface

Introduction. AirWizEd User Interface Introduction AirWizEd is a flight dynamics development system for Microsoft Flight Simulator (MSFS) that allows developers to edit flight dynamics files in detail, while simultaneously analyzing the performance

More information

Aircraft Stability and Performance 2nd Year, Aerospace Engineering. Dr. M. Turner

Aircraft Stability and Performance 2nd Year, Aerospace Engineering. Dr. M. Turner Aircraft Stability and Performance 2nd Year, Aerospace Engineering Dr. M. Turner Basic Info Timetable 15.00-16.00 Monday ENG LT1 16.00-17.00 Monday ENG LT1 Typical structure of lectures Part 1 Theory Part

More information

Critical Design Review. Almog Dov Assaf Aloush Bar Ovadia Dafna Lavi Orad Eldar. Supervisor: Dror Artzi

Critical Design Review. Almog Dov Assaf Aloush Bar Ovadia Dafna Lavi Orad Eldar. Supervisor: Dror Artzi Critical Design Review Almog Dov Assaf Aloush Bar Ovadia Dafna Lavi Orad Eldar Supervisor: Dror Artzi Man-portable UAV Over the hill / Urban surveillance Fast field deployment Endurance: 3 min Simple to

More information

1. INTRODUCTION. Constrained Control Allocation for Systems with Redundant Control Effectors

1. INTRODUCTION. Constrained Control Allocation for Systems with Redundant Control Effectors 1. INTRODUCTION Control allocation algorithms determine how the controls of a system should be positioned so that they produce some desired effect. Constrained controls have limits on their maximum positions

More information

Introduction. AirWrench Operation

Introduction. AirWrench Operation Introduction AirWrench is a user-friendly software tool for creating flight dynamics for Microsoft Flight Simulator. AirWrench is not a traditional air file editor it compiles a complete air file, the

More information

What s New in AAA? Design Analysis Research. Version 3.3. February 2011

What s New in AAA? Design Analysis Research. Version 3.3. February 2011 Design Analysis Research What s New in AAA? Version 3.3 February 2011 AAA 3.3 contains various enhancements and revisions to version 3.2 as well as bug fixes. This version has 287,000 lines of code and

More information

Design and Development of Unmanned Tilt T-Tri Rotor Aerial Vehicle

Design and Development of Unmanned Tilt T-Tri Rotor Aerial Vehicle Design and Development of Unmanned Tilt T-Tri Rotor Aerial Vehicle K. Senthil Kumar, Mohammad Rasheed, and T.Anand Abstract Helicopter offers the capability of hover, slow forward movement, vertical take-off

More information

STUDY ABOUT THE STABILITY AND CONTROL OF A ROTOR AIRPLANE

STUDY ABOUT THE STABILITY AND CONTROL OF A ROTOR AIRPLANE STUDY ABOUT THE STABILITY AND CONTROL OF A ROTOR AIRPLANE Victor Stafy Aristeu Silveira Neto victorstafy@aero.ufu.br aristeus@ufu.br Fluid Mechanics Laboratory- MFlab, Federal University of Uberlândia-

More information

Aerodynamic Analysis of Forward Swept Wing Using Prandtl-D Wing Concept

Aerodynamic Analysis of Forward Swept Wing Using Prandtl-D Wing Concept Aerodynamic Analysis of Forward Swept Wing Using Prandtl-D Wing Concept Srinath R 1, Sahana D S 2 1 Assistant Professor, Mangalore Institute of Technology and Engineering, Moodabidri-574225, India 2 Assistant

More information

MSC Software Aeroelastic Tools. Mike Coleman and Fausto Gill di Vincenzo

MSC Software Aeroelastic Tools. Mike Coleman and Fausto Gill di Vincenzo MSC Software Aeroelastic Tools Mike Coleman and Fausto Gill di Vincenzo MSC Software Confidential 2 MSC Software Confidential 3 MSC Software Confidential 4 MSC Software Confidential 5 MSC Flightloads An

More information

CFD ANALYSIS OF UAVs USING VORSTAB, FLUENT, AND ADVANCED AIRCRAFT ANALYSIS SOFTWARE. Benjamin Sweeten

CFD ANALYSIS OF UAVs USING VORSTAB, FLUENT, AND ADVANCED AIRCRAFT ANALYSIS SOFTWARE. Benjamin Sweeten CFD ANALYSIS OF UAVs USING VORSTAB, FLUENT, AND ADVANCED AIRCRAFT ANALYSIS SOFTWARE BY Benjamin Sweeten Submitted to the graduate degree program in Aerospace Engineering and the Graduate Faculty of the

More information

MINISTAB SYSTEM DESCRIPTION

MINISTAB SYSTEM DESCRIPTION MINISTAB SYSTEM DESCRIPTION Quote From Grampaw Pettibone: When you are flying a helicopter with an AFCS, you re not flying the helicopter you are flying the AFCS! The sooner you learn that, the sooner

More information

Flight Link Technical Setup Document for the Advanced Rotor Wing Control Package with Microsoft Flight Simulator X (FSX)*

Flight Link Technical Setup Document for the Advanced Rotor Wing Control Package with Microsoft Flight Simulator X (FSX)* Flight Link Technical Setup Document for the Advanced Rotor Wing Control Package with Microsoft Flight Simulator X (FSX)* The set up method described in this document attempts to maximize the realism of

More information

2 Aircraft Design Sequence

2 Aircraft Design Sequence 2-1 2 Aircraft Design Sequence The sequence of activities during the project phase (see Fig. 1.3) can be divided in two steps: 1.) preliminary sizing 2.) conceptual design. Beyond this there is not much

More information

ET312 GPS-UAV Development Platform. Part 2: Flight dynamics and control theory

ET312 GPS-UAV Development Platform. Part 2: Flight dynamics and control theory ET312 GPS-UAV Development Platform Part 2: Flight dynamics and control theory ET312 GPS-UAV Development Platform This is the second part of a three part series of manuals for the ET312 GPS-UAV. The first

More information

Validation of Wake Vortex Encounter Simulation Models Using Flight Test Data

Validation of Wake Vortex Encounter Simulation Models Using Flight Test Data Validation of Wake Vortex Encounter Simulation Models Using Flight Test Data Assessment of Wake Vortex Safety Dietrich Fischenberg DLR Braunschweig Workshop WakeNet2-Europe, Working Group 5, Hamburg, -11

More information

REALTRIM PROFESSIONAL

REALTRIM PROFESSIONAL VERSION [2.0.0.0] REALTRIM PROFESSIONAL PRESENTED BY: KURT KÄFERBÖCK THIS MANUAL WAS COMPILED FOR USE ONLY WITH THE REAL TRIM SOFTWARE FOR MICROSOFT FLIGHT SIMULATOR X. THE INFORMATION CONTAINED WITHIN

More information

863. Development of a finite element model of the sailplane fuselage

863. Development of a finite element model of the sailplane fuselage 863. Development of a finite element model of the sailplane fuselage M. Andrikaitis 1, A. Fedaravičius 2 Kaunas University of Technology, Kęstučio 27, 44312 Kaunas, Lithuania E-mail: 1 marius.andrikaitis@gmail.com,

More information

Experimental study of UTM-LST generic half model transport aircraft

Experimental study of UTM-LST generic half model transport aircraft IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Experimental study of UTM-LST generic half model transport aircraft To cite this article: M I Ujang et al 2016 IOP Conf. Ser.:

More information

Impact of Computational Aerodynamics on Aircraft Design

Impact of Computational Aerodynamics on Aircraft Design Impact of Computational Aerodynamics on Aircraft Design Outline Aircraft Design Process Aerodynamic Design Process Wind Tunnels &Computational Aero. Impact on Aircraft Design Process Revealing details

More information

Aeroelasticity in MSC.Nastran

Aeroelasticity in MSC.Nastran Aeroelasticity in MSC.Nastran Hybrid Static Aeroelasticity new capabilities - CFD data management Presented By: Fausto Gill Di Vincenzo 04-06-2012 Hybrid Static Aeroelastic Solution with CFD data MSC.Nastran

More information

Figure (2) The arrows show the directions of the hinge vectors and the hinge orientation angles (φ h )

Figure (2) The arrows show the directions of the hinge vectors and the hinge orientation angles (φ h ) In this example we will analyze a rocket vehicle during level flight. It is controlled by five aerosurfaces and a fixed engine, similar to the vehicle shown in Figure (1). The control surfaces are: two

More information

User Manual for ARRIS FPV250 with SPRacing F3 Flight Controller With Cleanflight

User Manual for ARRIS FPV250 with SPRacing F3 Flight Controller With Cleanflight User Manual for ARRIS FPV250 with SPRacing F3 Flight Controller With Cleanflight 1.12.00 1. How to Connect the F3 Flight Controller to the Computer. 1.1. Do not connect the F3 flight controller to the

More information

Optimate CFD Evaluation Optimate Glider Optimization Case

Optimate CFD Evaluation Optimate Glider Optimization Case Optimate CFD Evaluation Optimate Glider Optimization Case Authors: Nathan Richardson LMMFC CFD Lead 1 Purpose For design optimization, the gold standard would be to put in requirements and have algorithm

More information

Prediction of Icing Effects on the Coupled Dynamic Response of Light Airplanes

Prediction of Icing Effects on the Coupled Dynamic Response of Light Airplanes JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS Vol. 3, No. 3, May June 8 Prediction of Icing Effects on the Coupled Dynamic Response of Light Airplanes Amanda Lampton and John Valasek Texas A&M University,

More information

CYCLOPS TORNADO OSD V1.0 manual

CYCLOPS TORNADO OSD V1.0 manual CYCLOPS TORNADO OSD V1.0 manual Thanks for buying and using CYCLOPS OSD series products, please read this manual carefully before use. Installation of connections Important: select Jumper instructions:

More information

Caution Notes. Features. Specifications. A3-L User Manual V1.0

Caution Notes. Features. Specifications. A3-L User Manual V1.0 Caution Notes Thank you for choosing our products. If any difficulties are encountered while setting up or operating it, please consult this manual first. For further help, please don t hesitate to contact

More information

THIS IS THE CURRENT FF USER GUIDE AS OF PLEASE DO NOT USE ANY PREVIOUSLY DATED VERSIONS

THIS IS THE CURRENT FF USER GUIDE AS OF PLEASE DO NOT USE ANY PREVIOUSLY DATED VERSIONS THIS IS THE CURRENT FF USER GUIDE AS OF 05-04-2012 PLEASE DO NOT USE ANY PREVIOUSLY DATED VERSIONS INTRODUCTION: I compiled this guide from information posted on RCGroups.COM and from GoodLuckBuy.COM where

More information

FREE-FLIGHT INVESTIGATION OF FOREBODY BLOWING FOR STABILITY AND CONTROL. Jay M. Brandon* NASA Langley Research Center Hampton, VA

FREE-FLIGHT INVESTIGATION OF FOREBODY BLOWING FOR STABILITY AND CONTROL. Jay M. Brandon* NASA Langley Research Center Hampton, VA FREE-FLIGHT INVESTIGATION OF FOREBODY BLOWING FOR STABILITY AND CONTROL Jay M. Brandon* NASA Langley Research Center Hampton, VA 23681-1 James M. Simon WL/FIGC WPAFB, OH 45433-7531 D. Bruce Owens National

More information

OPTIMAL CONTROL SURFACE MIXING OF A RHOMBOID WING UAV

OPTIMAL CONTROL SURFACE MIXING OF A RHOMBOID WING UAV OPTIMAL CONTROL SURFACE MIXING OF A RHOMBOID WING UAV E Miles*, BA Broughton**, *Council for Scientific and Industrial Research, **Incomar Aeronautics emiles@csir.co.za, bbroughton@incoaero.com Keywords:

More information

THIS IS THE CURRENT FF USER GUIDE AS OF PLEASE DO NOT USE ANY PREVIOUSLY DATED VERSIONS

THIS IS THE CURRENT FF USER GUIDE AS OF PLEASE DO NOT USE ANY PREVIOUSLY DATED VERSIONS THIS IS THE CURRENT FF USER GUIDE AS OF 02-26-2012 PLEASE DO NOT USE ANY PREVIOUSLY DATED VERSIONS INTRODUCTION: I compiled this guide from information posted on RCGroups.COM and from GoodLuckBuy.COM where

More information

AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING

AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING M. Figat Warsaw University of Technology Keywords: Aerodynamic design, CFD Abstract This paper presents an aerodynamic design process

More information

AIR LOAD CALCULATION FOR ISTANBUL TECHNICAL UNIVERSITY (ITU), LIGHT COMMERCIAL HELICOPTER (LCH) DESIGN ABSTRACT

AIR LOAD CALCULATION FOR ISTANBUL TECHNICAL UNIVERSITY (ITU), LIGHT COMMERCIAL HELICOPTER (LCH) DESIGN ABSTRACT AIR LOAD CALCULATION FOR ISTANBUL TECHNICAL UNIVERSITY (ITU), LIGHT COMMERCIAL HELICOPTER (LCH) DESIGN Adeel Khalid *, Daniel P. Schrage + School of Aerospace Engineering, Georgia Institute of Technology

More information

Make a Quadcopter using KK Flight Controller

Make a Quadcopter using KK Flight Controller Make a Quadcopter using KK 2.1.5 Flight Controller 1 Typical Applications A quadcopter, also called a quadrotor helicopter or quadrotor, is a multirotor helicopter that is lifted and propelled by four

More information

F-35 LIGHTNING FLIGHT CONTROLLER USER MANUAL VERSION 1.2

F-35 LIGHTNING FLIGHT CONTROLLER USER MANUAL VERSION 1.2 F-35 LIGHTNING FLIGHT CONTROLLER USER MANUAL VERSION 1.2 Please contact us if you need further assistance: Tech support: tech@furiousfpv.com Sales support: sales@furiousfpv.com Website: http://furiousfpv.com/

More information

Validation of a numerical simulation tool for aircraft formation flight.

Validation of a numerical simulation tool for aircraft formation flight. Validation of a numerical simulation tool for aircraft formation flight. T. Melin Fluid and Mechatronic Systems, Department of Management and Engineering, the Institute of Technology, Linköping University,

More information

Flight Test Research

Flight Test Research Flight Test Research Principal Investigator:Mike Bragg and Tom Ratvasky Post Doc s: Andy Broeren Sam Lee Graduate Students: James Melody Edward Whalen Core Technologies SMART ICING SYSTEMS Research Organization

More information

CONTROL OF MICRO AIR VEHICLES USING WING MORPHING

CONTROL OF MICRO AIR VEHICLES USING WING MORPHING CONTROL OF MICRO AIR VEHICLES USING WING MORPHING By HELEN MICHELLE GARCIA A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

More information

Aerodynamic Design of a Tailless Aeroplan J. Friedl

Aerodynamic Design of a Tailless Aeroplan J. Friedl Acta Polytechnica Vol. 4 No. 4 5/2 Aerodynamic Design of a Tailless Aeroplan J. Friedl The paper presents an aerodynamic analysis of a one-seat ultralight (UL) tailless aeroplane named L2k, with a very

More information

Aerodynamics of 3D Lifting Surfaces through Vortex Lattice Methods. Introduction to Applications of VLM

Aerodynamics of 3D Lifting Surfaces through Vortex Lattice Methods. Introduction to Applications of VLM Aerodynamics of 3D Lifting Surfaces through Vortex Lattice Methods Introduction to Applications of VLM Basic Concepts Boundary conditions on the mean surface Vortex Theorems, Biot-Savart Law The Horseshoe

More information

DETERMINATION OF FLIGHT STABILITY COEFFICIENTS USING A FINITE ELEMENT CFD

DETERMINATION OF FLIGHT STABILITY COEFFICIENTS USING A FINITE ELEMENT CFD DETERMINATION OF FLIGHT STABILITY OEFFIIENTS USING A FINITE ELEMENT FD harles R. O Neill Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 7477 Abstract A 3D finite element

More information

LESSONS FROM WIND TUNNEL MODELS MADE BY RAPID PROTOTYPING

LESSONS FROM WIND TUNNEL MODELS MADE BY RAPID PROTOTYPING LESSONS FROM WIND TUNNEL MODELS MADE BY RAPID PROTOTYPING Ehud Kroll Faculty of Aerospace Engineering Technion Israel Institute of Technology Technion City, Haifa 32000, Israel Dror Artzi Faculty of Aerospace

More information

1 General description

1 General description 1 General description OAD OAD was set up to develop and sell ADS, which stands for Aircraft Design Software. This software is dedicated to take you through nearly the entire aircraft design process for

More information

TOPOLOGY OPTIMIZATION OF WING RIBS IN CESSNA CITATION

TOPOLOGY OPTIMIZATION OF WING RIBS IN CESSNA CITATION TOPOLOGY OPTIMIZATION OF WING RIBS IN CESSNA CITATION [1],Sathiyavani S [2], Arun K K [3] 1,2 student, 3 Assistant professor Kumaraguru College of technology, Coimbatore Abstract Structural design optimization

More information

Modeling Unmanned Vehicle System

Modeling Unmanned Vehicle System Abstract Modeling Unmanned Vehicle System Ser Keong Lim, Chua Ching Hao Purdue University, Department of Aeronautics and Astronautics The main objective of this research is to obtain a realistic model

More information

ECLIPSE 500. Flight Controls. Do Not Use For Flight

ECLIPSE 500. Flight Controls. Do Not Use For Flight ECLIPSE 500 Flight Controls Do Not Use For Flight 3. Flight Controls 3.1 General The flight control system consists of primary flight controls (ailerons, rudder, and elevator) and secondary flight controls

More information

How to configure your Futaba 10C Transmitter for a Full House Radian Pro

How to configure your Futaba 10C Transmitter for a Full House Radian Pro How to configure your Futaba 10C Transmitter for a Full House Radian Pro This figure shows the default switch assignments for a Mode 2 system as supplied by the factory. You can change many of the switch

More information

THE AIVA FLY-BY-WIRELESS UAV PLATFORM

THE AIVA FLY-BY-WIRELESS UAV PLATFORM THE AIVA FLY-BY-WIRELESS UAV PLATFORM The AIVA project concerns to an UAV aimed to perform aerial surveillance, forest fire detection and also to monitor high voltage cables for stress or failures. The

More information

INSPIRE 1 Release Notes

INSPIRE 1 Release Notes 2016.12.15 1. All-in-One firmware version updated to v1.10.1.40. 2. DJI GO app ios version updated to v3.1.1. 3. DJI GO app Android version updated to v3.1.1. What s New: 1. Optimized Flight Restriction

More information

5. GENERALIZED INVERSE SOLUTIONS

5. GENERALIZED INVERSE SOLUTIONS 5. GENERALIZED INVERSE SOLUTIONS The Geometry of Generalized Inverse Solutions The generalized inverse solution to the control allocation problem involves constructing a matrix which satisfies the equation

More information

2. REVIEW OF LITERATURE

2. REVIEW OF LITERATURE 2. REVIEW OF LITERATURE Early attempts to perform control allocation for aircraft with redundant control effectors involved various control mixing schemes and ad hoc solutions. As mentioned in the introduction,

More information

Computational Fluid Dynamics Study for a Deep Stall Air Vehicle

Computational Fluid Dynamics Study for a Deep Stall Air Vehicle Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6410--11-9339 Computational Fluid Dynamics Study for a Deep Stall Air Vehicle Ravi Ramamurti Center for Reactive Flow and Dynamical Systems Laboratory

More information

ZYX User Manual V Revision

ZYX User Manual V Revision ZYX User Manual V.00 206.07.26 Revision Contents Warning and Disclaimer... 3 I. Product Introduction... 4 II. Product List... 5. Package Contents... 5 III. Mounting & Configuration... 6. Gimbal Controller

More information

MSC/NASTRAN FLUTTER ANALYSES OF T-TAILS INCLUDING HORIZONTAL STABILIZER STATIC LIFT EFFECTS AND T-TAIL TRANSONIC DIP

MSC/NASTRAN FLUTTER ANALYSES OF T-TAILS INCLUDING HORIZONTAL STABILIZER STATIC LIFT EFFECTS AND T-TAIL TRANSONIC DIP MSC/NASTRAN FLUTTER ANALYSES OF T-TAILS INCLUDING HORIZONTAL STABILIZER STATIC LIFT EFFECTS AND T-TAIL TRANSONIC DIP by Emil Suciu* Gulfstream Aerospace Corporation Savannah, Georgia U.S.A. Presented at

More information

Design and Optimization of SUAV Empennage

Design and Optimization of SUAV Empennage From the SelectedWorks of Innovative Research Publications IRP India Summer June 1, 2015 Design and Optimization of SUAV Empennage Innovative Research Publications, IRP India, Innovative Research Publications

More information

INSPIRE 1 Release Notes

INSPIRE 1 Release Notes 2017.07.10 1. All-in-One firmware version updated to v01.11.01.50. 2. Remote Controller firmware version updated to v1.7.80. 3. DJI GO app ios version updated to v3.1.13. 4. DJI GO app Android version

More information

Subsonic Airfoils. W.H. Mason Configuration Aerodynamics Class

Subsonic Airfoils. W.H. Mason Configuration Aerodynamics Class Subsonic Airfoils W.H. Mason Configuration Aerodynamics Class Most people don t realize that mankind can be divided into two great classes: those who take airfoil selection seriously, and those who don

More information

2-Axis Brushless Gimbal User Manual

2-Axis Brushless Gimbal User Manual 2-Axis Brushless Gimbal User Manual I Introduction AGM 2-axis brushless gimbal is designed to accommodate the GoPro Hero3 camera, enhancing such various aspects of aerial videography as entertainment,

More information

Design and Analysis of Control Bay Used in Guided Missile

Design and Analysis of Control Bay Used in Guided Missile Design and Analysis of Control Bay Used in Guided Missile Ragam Prashanth 1, D.Muppala 2, Nirmith Mishra 3 1PG Student, Department of Aerospace, MLR Inst of Tech and Management, Hyderabad, Telangana, India

More information

Post Stall Behavior of a Lifting Line Algorithm

Post Stall Behavior of a Lifting Line Algorithm Post Stall Behavior of a Lifting Line Algorithm Douglas Hunsaker Brigham Young University Abstract A modified lifting line algorithm is considered as a low-cost approach for calculating lift characteristics

More information

MAJOR IMPROVEMENTS IN STORES SEPARATION ANALYSIS USING FLEXIBLE AIRCRAFT

MAJOR IMPROVEMENTS IN STORES SEPARATION ANALYSIS USING FLEXIBLE AIRCRAFT 27 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES MAJOR IMPROVEMENTS IN STORES SEPARATION ANALYSIS USING FLEXIBLE AIRCRAFT Hans Wallenius, Anders Lindberg Saab AB, SE-581 88 Linkoping, Sweden Keywords:

More information

Loads Analysis and Structural Optimization - A Parameterized and Integrated Process

Loads Analysis and Structural Optimization - A Parameterized and Integrated Process DLR.de Chart 1 Loads Analysis and Structural Optimization - A Parameterized and Integrated Process Thomas Klimmek (AE), Thiemo Kier (SR), Andreas Schuster (FA), Tobias Bach (FA), and Dieter Kohlgrüber

More information

Subsonic Airfoils. W.H. Mason Configuration Aerodynamics Class

Subsonic Airfoils. W.H. Mason Configuration Aerodynamics Class Subsonic Airfoils W.H. Mason Configuration Aerodynamics Class Typical Subsonic Methods: Panel Methods For subsonic inviscid flow, the flowfield can be found by solving an integral equation for the potential

More information

SURFACES. My First Model. A Dedicated Help for the First Time User

SURFACES. My First Model. A Dedicated Help for the First Time User SURFACES My First Model A Dedicated Help for the First Time User August 2009 SURFACES My First Model Abbreviations... 3 INTRODUCTION... 4 STEP 1: Download and Extract SURFACES Installation Files... 5 STEP

More information

Autonomous Control of Tilt Tri-Rotor Unmanned Aerial Vehicle

Autonomous Control of Tilt Tri-Rotor Unmanned Aerial Vehicle Indian Journal of Science and Technology, Vol 9(36), DOI: 10.17485/ijst/2016/v9i36/102160, September 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Autonomous Control of Tilt Tri-Rotor Unmanned

More information

AERODYNAMIC MODELING USING FLIGHT MECHANICAL SIMULATIONS, FLIGHT TEST AND OPTIMIZATION

AERODYNAMIC MODELING USING FLIGHT MECHANICAL SIMULATIONS, FLIGHT TEST AND OPTIMIZATION 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AERODYNAMIC MODELING USING FLIGHT MECHANICAL SIMULATIONS, FLIGHT TEST AND OPTIMIZATION Per Weinerfelt*, Roger Larsson* Saab Aerosystems Flight

More information

ME 435 Spring Project Design and Management II. Old Dominion University Department of Mechanical Engineering. Standard Dynamics Model

ME 435 Spring Project Design and Management II. Old Dominion University Department of Mechanical Engineering. Standard Dynamics Model ME 435 Spring 2011 Project Design and Management II Old Dominion University Department of Mechanical Engineering Standard Dynamics Model William Lawrence Andrew Snead TJ Wignall 15 March 2011 Abstract

More information

Installing AlphaTrainer Starter

Installing AlphaTrainer Starter Installing AlphaTrainer Starter The User Guide on the original AlphaTrainer web site was written for use with X-Plane 7.63. Since that time both X-Plane and AlphaTrainer have changed somewhat, so this

More information

ANALYSIS OF AIRCRAFT WING WITH DIFFERENT MATERIALS USING ANSYS SOFTWARE

ANALYSIS OF AIRCRAFT WING WITH DIFFERENT MATERIALS USING ANSYS SOFTWARE ANALYSIS OF AIRCRAFT WING WITH DIFFERENT MATERIALS USING ANSYS SOFTWARE K.Ravindra 1, P.V Divakar Raju 2 1 PG Scholar,Mechanical Engineering,Chadalawada Ramanamma Engineering College,Tirupati,Andhra Pradesh,India.

More information

S e r i a l T h r o t t l e Q u a d r a n t C o n s o l e S e t u p G u i d e W i t h M i c r o s o f t F l i g h t S i m u l a t o r X

S e r i a l T h r o t t l e Q u a d r a n t C o n s o l e S e t u p G u i d e W i t h M i c r o s o f t F l i g h t S i m u l a t o r X S e r i a l T h r o t t l e Q u a d r a n t C o n s o l e S e t u p G u i d e W i t h M i c r o s o f t F l i g h t S i m u l a t o r X Preface This setup guide will walk you through the necessary steps

More information

GliderThrow. Digital Angle Throw and Differential Meter. Manual

GliderThrow. Digital Angle Throw and Differential Meter. Manual Digital Angle Throw and Differential Meter Manual V1-2018 Introduction Dear Customer, thank you very much for purchasing, a tiny wonder that will make your model airplanes setup much easier and repeatable

More information

Automatic Flight in JSBSim Jon Berndt 1

Automatic Flight in JSBSim Jon Berndt 1 Navigation Where am I? Guidance How do I get where I want to go today? Control Go there. Automatic Flight in JSBSim Jon Berndt 1 One long-time goal of JSBSim has been to support automatic, scripted flights.

More information

Spektrum AirWare Change Log 2016-November-15

Spektrum AirWare Change Log 2016-November-15 Version 1.12 Spektrum AirWare Change Log 2016-November-15 Changes since 2016-January-26 Special Note In the Telemetry menu, some sensors may not be reported properly on the display or audibly after updating.

More information

AERODYNAMIC DATA GENERATION AND DESIGN SUPPORT FOR SOLAR UAV: WIND TUNNEL TESTING

AERODYNAMIC DATA GENERATION AND DESIGN SUPPORT FOR SOLAR UAV: WIND TUNNEL TESTING AERODYNAMIC DATA GENERATION AND DESIGN SUPPORT FOR SOLAR UAV: WIND TUNNEL TESTING Submission Report for Undergraduate Award 2014 Abstract The Solar Unmanned Aerial Vehicle (Solar UAV) project aims to design

More information

Autonomous Underwater Vehicle Control with a 3 Actuator False Center Mechanism

Autonomous Underwater Vehicle Control with a 3 Actuator False Center Mechanism Autonomous Underwater Vehicle Control with a 3 Actuator False Center Mechanism Cheri Everlove, Santa Clara University Mentor: Bill Kirkwood Summer 2004 Keywords: AUV, False Center, Steering Mechanism ABSTRACT

More information

12. Digitizer Introduction. Digitizer

12. Digitizer Introduction. Digitizer 12. Digitizer 12.1 Introduction The Digitizer module is a tool that has been developed to: 1. Use quickly and efficiently all the information contained in a 3 views drawing. - To measure distances - To

More information

NAVAL POSTGRADUATE SCHOOL THESIS

NAVAL POSTGRADUATE SCHOOL THESIS NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS GENERIC UAV MODELING TO OBTAIN ITS AERODYNAMIC AND CONTROL DERIVATIVES by Choon Seong, Chua Thesis Advisor: Co-Advisor: December 28 Anthony J. Healey

More information

Development of a CFD Capability for Full Helicopter Engineering Analysis

Development of a CFD Capability for Full Helicopter Engineering Analysis Development of a CFD Capability for Full Helicopter Engineering Analysis George Barakos Department of Engineering University of Liverpool 5/6 April 2006 Loughborough University Collective effort of more

More information

FLIGHT TESTING METHODOLOGY AND PROCEDURE OF SPIN CHARACTERISTIC ON BASIC TRAINING AIRCRAFT

FLIGHT TESTING METHODOLOGY AND PROCEDURE OF SPIN CHARACTERISTIC ON BASIC TRAINING AIRCRAFT FLIGHT TESTING METHODOLOGY AND PROCEDURE OF SPIN CHARACTERISTIC ON BASIC TRAINING AIRCRAFT SLAĐAN PEKMEZOVIĆ MIROSLAV JOVANOVIĆ ZORAN ILIĆ Abstract: This article describes methodology and procedures of

More information

Identification of a UAV and Design of a Hardware-in-the-Loop System for Nonlinear Control Purposes

Identification of a UAV and Design of a Hardware-in-the-Loop System for Nonlinear Control Purposes Identification of a UAV and Design of a Hardware-in-the-Loop System for Nonlinear Control Purposes Myriam Manaï and André Desbiens LOOP, Université Laval, Quebec City, Quebec, G1K 7P4, Canada Eric Gagnon

More information

C A T I I S y s t e m a n d F S X. S e t U p G u i d e

C A T I I S y s t e m a n d F S X. S e t U p G u i d e C A T I I S y s t e m a n d F S X S e t U p G u i d e Preface This setup guide will walk you through the necessary steps to setup your CAT II System with Microsoft Flight Simulator X. For connection diagram,

More information

FPVMODEL. Rescue-2. Integrated with 1 OX Zoom HD Camera Intended for Search and Rescue Missions USER MANUAL

FPVMODEL. Rescue-2. Integrated with 1 OX Zoom HD Camera Intended for Search and Rescue Missions USER MANUAL FPVMODEL Rescue-2 USER MANUAL Integrated with 1 OX Zoom HD Camera Intended for Search and Rescue Missions FP IU n-= WWW.FPVMODEL.COM Copyright 201 7 FPVMODEL LIMITED WARNING AND DISCLAIMER Make sure not

More information

QUANSER Flight Control Systems Design. 2DOF Helicopter 3DOF Helicopter 3DOF Hover 3DOF Gyroscope. Quanser Education Solutions Powered by

QUANSER Flight Control Systems Design. 2DOF Helicopter 3DOF Helicopter 3DOF Hover 3DOF Gyroscope. Quanser Education Solutions Powered by QUANSER Flight Control Systems Design 2DOF Helicopter 3DOF Helicopter 3DOF Hover 3DOF Gyroscope Quanser Education Solutions Powered by 2 DOF Helicopter What does it represent? Classic helicopter with main

More information

AIRFOIL SHAPE OPTIMIZATION USING EVOLUTIONARY ALGORITHMS

AIRFOIL SHAPE OPTIMIZATION USING EVOLUTIONARY ALGORITHMS AIRFOIL SHAPE OPTIMIZATION USING EVOLUTIONARY ALGORITHMS Emre Alpman Graduate Research Assistant Aerospace Engineering Department Pennstate University University Park, PA, 6802 Abstract A new methodology

More information

CHAPTER 2 SENSOR DATA SIMULATION: A KINEMATIC APPROACH

CHAPTER 2 SENSOR DATA SIMULATION: A KINEMATIC APPROACH 27 CHAPTER 2 SENSOR DATA SIMULATION: A KINEMATIC APPROACH 2.1 INTRODUCTION The standard technique of generating sensor data for navigation is the dynamic approach. As revealed in the literature (John Blakelock

More information

SUPPORTING LINEAR MOTION: A COMPLETE GUIDE TO IMPLEMENTING DYNAMIC LOAD SUPPORT FOR LINEAR MOTION SYSTEMS

SUPPORTING LINEAR MOTION: A COMPLETE GUIDE TO IMPLEMENTING DYNAMIC LOAD SUPPORT FOR LINEAR MOTION SYSTEMS SUPPORTING LINEAR MOTION: A COMPLETE GUIDE TO IMPLEMENTING DYNAMIC LOAD SUPPORT FOR LINEAR MOTION SYSTEMS Released by: Keith Knight Catalyst Motion Group Engineering Team Members info@catalystmotiongroup.com

More information

This was written by a designer of inertial guidance machines, & is correct. **********************************************************************

This was written by a designer of inertial guidance machines, & is correct. ********************************************************************** EXPLANATORY NOTES ON THE SIMPLE INERTIAL NAVIGATION MACHINE How does the missile know where it is at all times? It knows this because it knows where it isn't. By subtracting where it is from where it isn't

More information

3-axis Gyro & Flight Stabilizer for fixed-wing

3-axis Gyro & Flight Stabilizer for fixed-wing A3 Super II 3-axis Gyro & Flight Stabilizer for fixed-wing User Manual 2015.4.20 Revision For Firmware Version V1.1, V1.0, Data Version V1.0 Copyright 2011-2015 HOBBYEAGLE. All Rights Reserved. http://www.hobbyeagle.com

More information

DESIGN AND MODELLING OF RC AIRCRAFT IN RACING PLANE CATEGORY USING 3- DIMENSION PRINTER WITH POLYLACTIC ACID MATERIAL

DESIGN AND MODELLING OF RC AIRCRAFT IN RACING PLANE CATEGORY USING 3- DIMENSION PRINTER WITH POLYLACTIC ACID MATERIAL International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 8, August 2018, pp. 470 477, Article ID: IJMET_09_08_051 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=8

More information

OpenVSP: Parametric Geometry for Conceptual Aircraft Design. Rob McDonald, Ph.D. Associate Professor, Cal Poly

OpenVSP: Parametric Geometry for Conceptual Aircraft Design. Rob McDonald, Ph.D. Associate Professor, Cal Poly OpenVSP: Parametric Geometry for Conceptual Aircraft Design Rob McDonald, Ph.D. Associate Professor, Cal Poly 1 Vehicle Sketch Pad (VSP) Rapid parametric geometry for design NASA developed & trusted tool

More information

Aircraft Stability and Control Augmentation

Aircraft Stability and Control Augmentation Aircraft Stability and Control Augmentation Prepared by A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai Inner-Loop Stability and Control

More information

Sensitivity Analysis of Linear Programming and Quadratic Programming Algorithms for Control Allocation

Sensitivity Analysis of Linear Programming and Quadratic Programming Algorithms for Control Allocation Sensitivity Analysis of Linear Programming and Quadratic Programming Algorithms for Control Allocation Susan A. Frost 1 NASA Ames Research Center, Moffett Field, CA 94035 Marc Bodson 2 University of Utah,

More information

How to Enter and Analyze a Wing

How to Enter and Analyze a Wing How to Enter and Analyze a Wing Entering the Wing The Stallion 3-D built-in geometry creation tool can be used to model wings and bodies of revolution. In this example, a simple rectangular wing is modeled

More information

OPTIMIZED TRAJECTORY TRACKING FOR A HYPERSONIC VEHICLE IN VERTICAL FLIGHT

OPTIMIZED TRAJECTORY TRACKING FOR A HYPERSONIC VEHICLE IN VERTICAL FLIGHT OPTIMIZED TRAJECTORY TRACKING FOR A HYPERSONIC VEHICLE IN VERTICAL FLIGHT By ERIK J. KITTRELL A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

High Fidelity Mathematical Modeling of the DA42 L360

High Fidelity Mathematical Modeling of the DA42 L360 High Fidelity Mathematical Modeling of the DA42 L360 PREPARED BY: Aditya, Ron PAGE i of viii Contents 1. INTRODUCTION...1 1.1 General Parameters...2 1.2 Wing Parameters...2 1.3 Control Surface Parameters...3

More information

CFD Analysis of conceptual Aircraft body

CFD Analysis of conceptual Aircraft body CFD Analysis of conceptual Aircraft body Manikantissar 1, Dr.Ankur geete 2 1 M. Tech scholar in Mechanical Engineering, SD Bansal college of technology, Indore, M.P, India 2 Associate professor in Mechanical

More information

BATD Basic Aircraft Training Device Appendix B) Components Description Reviewed:

BATD Basic Aircraft Training Device Appendix B) Components Description Reviewed: Model Serial Number Tail Number BATD Operator Setup and instrument description of the Basic Aircraft Training Device (BATD), which includes the following sections, modules and instruments to simulate the

More information

Product Overview. Features

Product Overview. Features APCF1 Model Tripod Product Overview The Ravelli APCF1 is a Professional Quality Carbon Fiber Tripod providing a solid base for high-end photographic equipment. This model is a mix of carbon fiber and magnesium

More information

Conceptual design, Structural and Flow analysis of an UAV wing

Conceptual design, Structural and Flow analysis of an UAV wing IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 3 Ver. IV (May- Jun. 2016), PP 78-87 www.iosrjournals.org Conceptual design, Structural

More information