Technical Report Example (1) Chartered (CEng) Membership

Size: px
Start display at page:

Download "Technical Report Example (1) Chartered (CEng) Membership"

Transcription

1 Technical Report Example (1) Chartered (CEng) Membership

2 A TECHNICAL REPORT IN SUPPORT OF APPLICATION FOR CHARTERED MEMBERSHIP OF IGEM DESIGN OF 600 (103 BAR) 820MM SELF SEALING REPAIR CLAMP AND VERIFICATION USING LIMIT-LOAD ANALYSIS METHOD DECEMBER

3 Table of Contents 1. DECLARATION OF AUTHENTICITY INTRODUCTION REVIEW OF DESIGN SPECIFICATION Review Customer Specification Develop table of key design/service criteria Determine Appropriate Standards to Apply to Design... Error! Bookmark not defined. 3.4 Initial Decision on Manufacturing Process & Suitable Materials for Clamp Body... Error! Bookmark not defined. 3.5 Suitable Seal Materials... Error! Bookmark not defined. 4. DEVELOPMENT OF DESIGN BY FORMULA CALCULATIONS TO DETERMINE BASIC STRUCTURAL GEOMETRY PRIOR TO MODELLING FOR ANALYSIS PURPOSES Determine Minimum Shell Thickness (see Appendix v, Section A) Determine Clamp Body Thickness. Minimum Shell Wall Thickness Determine Number, Dia., Grade of Bolts Using ASME VIII, Division2, Appendix (see appendix v, Section C)... Error! Bookmark not defined. 4.4 Determine Clamp Side Bar Dimensions (see appendix v, Section D)... Error! Bookmark not defined Minimum Lug Height for Stress Limit - (see appendix v, Section D.1) Bolt Prising - (see appendix v, Section D.2)... Error! Bookmark not defined Minimum Lug Height for Deflection Limit - (see Appendix v, Section D.3)... Error! Bookmark not defined Test Pressure (see Appendix v, Section D.4) PRODUCTION OF SOLID MODEL OF PROPOSED GEOMETRY SIMPLIFICATION OF MODEL FOR ANALYSIS PURPOSES IMPORTING MODEL INTO FINITE ELEMENT SOFTWARE MESH MODEL, APPLY CONSTRAINTS & LOADINGS SOLVE ANALYSIS Limit Load Analysis (Protection against plastic collapse) Elastic Analysis (Protection against local failure) Ratcheting Assessment-Elastic Stress Analysis (Protection against cyclic loading (not fatigue) INTERPRETATION OF RESULTS Limit Load Analysis... Error! Bookmark not defined Elastic Analysis... Error! Bookmark not defined Ratcheting Assessment Elastic Stress Analysis... Error! Bookmark not defined Bolt Areas... Error! Bookmark not defined Deformation on Joint Plane... Error! Bookmark not defined Conclusion COMPILATION OF REPORT SUMMARISING APPROACH & RESULTS

4 12. REVIEW BENEFITS/LIMITATIONS OF USING FINITE ELEMENT ANALYSIS FOR PRESSURE SYSTEM COMPONENTS

5 1. DECLARATION OF AUTHENTICITY I declare that this Technical Report represents an original piece of work by and that the statements made herein are true to the best of my knowledge. Signature: Name: Adam Thistlethwaite BEng MSc CEng MIGEM Membership No Engineering Manager Furmanite EMEA Offshore Panel Chairman Pipeline Industries Guild 2. INTRODUCTION I will demonstrate my knowledge and understanding of engineering principles to M Eng. Level by undertaking the design process for a high pressure self sealing repair clamp. My previous employer, Furmanite, kindly offered to provide me with a project placement during November 2011 so that I could design a clamp as the subject matter of my Technical Report. The clamp will be designed in accordance with API Specification 6H, which requires design to be in accordance with the methodology set out in ASME Boiler and Pressure Vessel Code design Based on Stress Analysis. 4

6 I will develop the basic design using formula calculations to determine basic structural geometry (bolt sizes etc) and carry out stress analysis using finite element analysis of a solid model of the clamp. The design will demonstrate conformance to the requirements of the referenced standards for gross plastic deformation, progressive plastic deformation, bolt areas and service stresses and deflection on the joint faces. My role in the project will be as Design Engineer with responsibility for the product design. Drawing number UKE06163-DWG-03 (see Appendix i) refers to a self sealing clamp suitable for an 820mm pipe which was originally designed to ASME VIII Division1. My project will use the same customer specification and drawing as the basis for a design to ASME VIII Division 2. Division 1 is based on design by rule (code specified Formulae) and Division 2 is design by analysis (more rigorous calculations involved). There are also numerous differences regarding material testing, NDE requirements and low temperature impact testing that should be reviewed prior to selecting a design approach. In short: Division 2 provides an engineered vessel with calculated stresses closer to real stresses, combined with more rigorous testing, allowing for savings in material costs (thinner parts may be used). 3. REVIEW OF DESIGN SPECIFICATION 5

7 3.1 Review Customer Specification The customer specification details are recorded using a Furmanite Specification Sheet (see Appendix ii) which utilises drop down boxes to limit the range of options and to guide the sales department. This information was used to define the specification of the clamp designed. 3.2 Develop table of key design/service criteria Furmanite uses a Design Specification Review process (see Appendix iii) which set out the design requirements in a standard tabular manner which aides the review process and contributes to the design of a fit for purpose product. Furmanite s offers self seal clamps that conform to API 6H. The key requirements for the project are: Feature Requirement Design Pressure Design Temperature Nominal Pipe Dimensions Defect Envelope Materials Corrosion Allowance Design Calculations Content Bar (1500 Psi) -29 C to 40 C Nominal pipe O/D mm Pipe tolerance as per API 5L will be apply (+ 0.75%, -0.25%) Ovality limits will be assumed to be within the envelope defined above. Max mm Min mm 152mm Between Seals Shell Material - ASTM SA 516 Gr 60 Bolted Lugs ASTM SA 516 Gr 60 Bolts ASTM A193 B7 Nuts ASTM A194 2H 3.2mm corrosion allowance Generally in accordance with the requirements of ASME VIII Div. 2 Methane 6

8 Sections redacted. 4. DEVELOPMENT OF DESIGN BY FORMULA CALCULATIONS TO DETERMINE BASIC STRUCTURAL GEOMETRY PRIOR TO MODELLING FOR ANALYSIS PURPOSES 4.1 Determine Minimum Shell Thickness (see Appendix v, Section A) The determination of the shell thickness is derived from the basic formula for hoop stress: H P D 2t Where H = hoop stress (MPa) P = internal pressure (MPa) D = Inside diameter (mm) t = thickness of wall (mm) I have calculated the minimum wall thickness in accordance with ASME VIII Division 2, 2007 Part 4. Main Shell thickness t D mm. min Actual corroded shell thickness t Da mm The final shell wall thickness of 42.5mm exceeds the minimum requirements. 4.2 Determine Clamp Body Thickness. Minimum Shell Wall Thickness Requirements & General Membrane Stress Intensity Limits (at design & test conditions) Based on Formula for Cylindrical Shells Given in ASME VIII 2, Appendix (see Appendix v, Section B). 7

9 API 6H requires a check using a calculation for general membrane stress at test pressure. The maximum membrane stress ( P mfact ) must not exceed 83% ( P ) of the yield stress ( S m yplate ) for the plate material It can be seen that: P mfact % and is less than P m Sections redacted Minimum Lug Height for Stress Limit - (see appendix v, Section D.1) The maximum bending stress occurs in the plane of the bolt centrelines. The effective length of the lug in this plane is reduced by the bolt holes and is calculated as follows: L i n Le LL i 1 N Bi D BCi Where the index i is used to identify each of the n different stud/bolt sizes used in the sector. The minimum allowable height for the bolting lug H L min1, to meet the stress limit, is given by: 2 4 H L min 1 H mm 2 L min Sections redacted 8

10 4.4.4 Test Pressure (see Appendix v, Section D.4) The clamp will be tested in excess of the design pressure (a proof test) and so the lug and bolt arrangement needs to be designed to prevent excessive lug separation in the seal region at the test pressure. The deflection due to bending and possible prising of the lugs should be within the recommended allowable limit, Y Sa : It can be seen from Appendix V section D.4 that the actial prising is YS t mm 5. PRODUCTION OF SOLID MODEL OF PROPOSED GEOMETRY A 3D Computer Aided Design (CAD) package was used and I worked with the Furmanite design engineer who developed the 2D design into a 3D solid model which was then imported into the Finite Element Analysis (FEA) software. The creation of a 3D model creates geometry that the FEA software can interpret and use to mesh the structure (see Figure 1). 9

11 Figure 1 - Featured 3D solid Model: 6. SIMPLIFICATION OF MODEL FOR ANALYSIS PURPOSES Sections redacted 7. IMPORTING MODEL INTO FINITE ELEMENT SOFTWARE I imported the de-featured 3D model (volume), which was now 1/8 th of the final product into ANSYS FEA software as Parasolid file (this is in binary format and can communicate and migrate 3D solids which are understood by the FEA software) which defines volumes, areas, lines and points. Orientation of the clamp was important as Furmanite use standard macro s in ANSYS and manipulation and analysis are easier if conventional axis orientation is observed. For a straight clamp the X axis lies across the half joint plane, Y axis is normal to the half joint face and Z axis along the main centreline. 10

12 8. MESH MODEL, APPLY CONSTRAINTS & LOADINGS The meshing process required the volume to be divided into shell and lug components in order to develop regular elements with minimum distortion to make the analysis as accurate as possible. In the meshing process, I utilised 20 node bricks for the shell and 10 node tetrahedrons for the lugs. The shell/lug interface was meshed using 13 node pyramids, which provide a good transition between the 20 node bricks and 10 node tetrahedrons (see Figure 5). 11

13 Figure 5 - Finite Element Mesh Once the meshing was completed, I used a macro to define the bolting constraints using real constant sets (see table 1), the key steps being:- create lines representing the bolt centres (red line in Figure 5), create pre tension sections at the mid-length point of the bolt line (green point in Figure 5) and link bolts to clamp volumes using constraint equations which defined a rigid region. Table 1 Real Constant Set Real Constant Set Minor Thread Minor Section Area Moment of Dia. Area Inertia Representing TKY and TKZ AREA IYY and IZZ inch mm mm 2 mm 4 Full Bolt 2.25 UN E E E+05 A contact surface was then defined at the half joint faces (where opposing lugs contact one another). As only one lug was being modelled, the contact surface was defined as being rigid and fully constrained. 12

14 It was necessary to ensure that the model had sufficient constraints to prevent rigid body motion, whilst at the same time not over constraining the model and inducing unrealistic stresses and strains. As the clamp has three planes of symmetry, there was no requirement for additional constraints. The model therefore had 6º of freedom, that is, the model was fixed from moving in the X, Y and Z axis and rotating (ROT) in the X, Y and Z axis. The model was then saved to the database. The following material properties were used for the analyses; Yield Stress, Tangent Modulus, Young s modulus and poisons ratio(yield stress only applies to the elasticplastic (limit) analysis). 13

15 Table 2 Material Properties Material ID1 (Solid Structure) Young s Modulus (E) MPa Poisson s Ratio 0.3 Yield Stress MPa 207 Tangent (Plastic) Modulus 0 Plasticity Model Bilinear Kinematic Hardening Material ID2 (Bolts) Young s Modulus (E) MPa Poisson s Ratio 0.3 Yield Stress MPa 723 Tangent (Plastic) Modulus 0 Plasticity Model Bilinear Kinematic Hardening Material ID3 Coefficient of Friction 0 (Joint Contact) 9. SOLVE ANALYSIS ASME VIII, Division 2, Part 5 design-by-analysis, requires that four potential failure modes be considered: a. Protection against plastic collapse b. Protection against local failure c. Protection against collapse from buckling d. Protection against failure from cyclic loading Failure modes a), b) and d), are all applicable to the clamp and conditions being analysed, as the material thickness and configuration are established through 14

16 design-by-analysis rules. The clamp will not be subjected to loads that will induce a compressive stress field and so mode c) is not applicable in this case. Each of the analysis runs were performed on an ANSYS model. The primary pressure loading was applied to a set of areas called AP_1 which represents the pressure area of the sectioned clamp (see Figure 6). Figure 6 - Areas on which internal pressure was imposed 9.1 Limit Load Analysis (Protection against plastic collapse) Sections redacted 9.3 Ratcheting Assessment-Elastic Stress Analysis (Protection against cyclic loading (not fatigue) Sections redacted 15

17 10. INTERPRETATION OF RESULTS Sections redacted Figure 7 Deflection of Half Joint Face at Test Condition 10.6 Conclusion The design was shown to meet the requirements of the referenced standards for gross plastic deformation, progressive plastic deformation, bolt areas and service stresses. Deflection on the joint faces was also within acceptable limits. The design was therefore considered to be acceptable. 16

18 11. COMPILATION OF REPORT SUMMARISING APPROACH & RESULTS The results of the analysis were compiled into a standard design validation report (see appendix IX) that sets out the design specification and performance of the clamp. 12. REVIEW BENEFITS/LIMITATIONS OF USING FINITE ELEMENT ANALYSIS FOR PRESSURE SYSTEM COMPONENTS Sections redacted 17

MAE 323: Lab 7. Instructions. Pressure Vessel Alex Grishin MAE 323 Lab Instructions 1

MAE 323: Lab 7. Instructions. Pressure Vessel Alex Grishin MAE 323 Lab Instructions 1 Instructions MAE 323 Lab Instructions 1 Problem Definition Determine how different element types perform for modeling a cylindrical pressure vessel over a wide range of r/t ratios, and how the hoop stress

More information

Global to Local Model Interface for Deepwater Top Tension Risers

Global to Local Model Interface for Deepwater Top Tension Risers Global to Local Model Interface for Deepwater Top Tension Risers Mateusz Podskarbi Karan Kakar 2H Offshore Inc, Houston, TX Abstract The water depths from which oil and gas are being produced are reaching

More information

ANSYS Element. elearning. Peter Barrett October CAE Associates Inc. and ANSYS Inc. All rights reserved.

ANSYS Element. elearning. Peter Barrett October CAE Associates Inc. and ANSYS Inc. All rights reserved. ANSYS Element Selection elearning Peter Barrett October 2012 2012 CAE Associates Inc. and ANSYS Inc. All rights reserved. ANSYS Element Selection What is the best element type(s) for my analysis? Best

More information

ASME Verification and Validation Symposium May 13-15, 2015 Las Vegas, Nevada. Phillip E. Prueter, P.E.

ASME Verification and Validation Symposium May 13-15, 2015 Las Vegas, Nevada. Phillip E. Prueter, P.E. VVS2015-8015: Comparing Closed-Form Solutions to Computational Methods for Predicting and Validating Stresses at Nozzle-to-Shell Junctions on Pressure Vessels Subjected to Piping Loads ASME Verification

More information

ANSYS AIM Tutorial Structural Analysis of a Plate with Hole

ANSYS AIM Tutorial Structural Analysis of a Plate with Hole ANSYS AIM Tutorial Structural Analysis of a Plate with Hole Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Problem Specification Pre-Analysis & Start Up Analytical vs. Numerical Approaches

More information

Stiffness Analysis of the Tracker Support Bracket and Its Bolt Connections

Stiffness Analysis of the Tracker Support Bracket and Its Bolt Connections October 25, 2000 Stiffness Analysis of the Tracker Support Bracket and Its Bolt Connections Tommi Vanhala Helsinki Institute of Physics 1. INTRODUCTION...2 2. STIFFNESS ANALYSES...2 2.1 ENVELOPE...2 2.2

More information

Pressure Vessel Engineering Ltd. ASME Calculations - CRN Assistance - Vessel Design - Finite Element Analysis

Pressure Vessel Engineering Ltd. ASME Calculations - CRN Assistance - Vessel Design - Finite Element Analysis PVEng Pressure Vessel Engineering Ltd. ASME Calculations - CRN Assistance - Vessel Design - Finite Element Analysis Design Conditions Code: ASME VIII-1 Year: 2007 Finite Element Analysis Report - VIII-1

More information

COLLAPSE LOAD OF PIPE BENDS WITH ASSUMED AND ACTUAL CROSS SECTIONS UNDER IN-PLANE AND OUT-OF-PLANE MOMENTS

COLLAPSE LOAD OF PIPE BENDS WITH ASSUMED AND ACTUAL CROSS SECTIONS UNDER IN-PLANE AND OUT-OF-PLANE MOMENTS VOL., NO., NOVEMBER 6 ISSN 8968 6-6 Asian Research Publishing Network (ARPN). All rights reserved. COLLAPSE LOAD OF PIPE BENDS WITH ASSUMED AND ACTUAL CROSS SECTIONS UNDER IN-PLANE AND OUT-OF-PLANE MOMENTS

More information

CHAPTER 7 BEHAVIOUR OF THE COMBINED EFFECT OF ROOFING ELEMENTS

CHAPTER 7 BEHAVIOUR OF THE COMBINED EFFECT OF ROOFING ELEMENTS CHAPTER 7 BEHAVIOUR OF THE COMBINED EFFECT OF ROOFING ELEMENTS 7.1 GENERAL An analytical study on behaviour of combined effect of optimised channel sections using ANSYS was carried out and discussed in

More information

Engineering Analysis

Engineering Analysis Engineering Analysis with SOLIDWORKS Simulation 2018 Paul M. Kurowski SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following websites

More information

3D Finite Element Software for Cracks. Version 3.2. Benchmarks and Validation

3D Finite Element Software for Cracks. Version 3.2. Benchmarks and Validation 3D Finite Element Software for Cracks Version 3.2 Benchmarks and Validation October 217 1965 57 th Court North, Suite 1 Boulder, CO 831 Main: (33) 415-1475 www.questintegrity.com http://www.questintegrity.com/software-products/feacrack

More information

2: Static analysis of a plate

2: Static analysis of a plate 2: Static analysis of a plate Topics covered Project description Using SolidWorks Simulation interface Linear static analysis with solid elements Finding reaction forces Controlling discretization errors

More information

About the Author. Acknowledgements

About the Author. Acknowledgements About the Author Dr. Paul Kurowski obtained his M.Sc. and Ph.D. in Applied Mechanics from Warsaw Technical University. He completed postdoctoral work at Kyoto University. Dr. Kurowski is an Assistant Professor

More information

studying of the prying action effect in steel connection

studying of the prying action effect in steel connection studying of the prying action effect in steel connection Saeed Faraji Graduate Student, Department of Civil Engineering, Islamic Azad University, Ahar Branch S-faraji@iau-ahar.ac.ir Paper Reference Number:

More information

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force CHAPTER 4 Numerical Models This chapter presents the development of numerical models for sandwich beams/plates subjected to four-point bending and the hydromat test system. Detailed descriptions of the

More information

DETECTION AND QUANTIFICATION OF CRACKS IN PRESSURE VESSELS USING ESPI AND FEA MODELLS

DETECTION AND QUANTIFICATION OF CRACKS IN PRESSURE VESSELS USING ESPI AND FEA MODELLS DETECTION AND QUANTIFICATION OF CRACKS IN PRESSURE VESSELS USING ESPI AND FEA MODELLS J GRYZAGORIDIS, DM FINDEIS, JR MYLES Department of Mechanical Engineering University of Cape Town Abstract Non destructive

More information

Element Order: Element order refers to the interpolation of an element s nodal results to the interior of the element. This determines how results can

Element Order: Element order refers to the interpolation of an element s nodal results to the interior of the element. This determines how results can TIPS www.ansys.belcan.com 鲁班人 (http://www.lubanren.com/weblog/) Picking an Element Type For Structural Analysis: by Paul Dufour Picking an element type from the large library of elements in ANSYS can be

More information

EN1740 Computer Aided Visualization and Design Spring /26/2012 Brian C. P. Burke

EN1740 Computer Aided Visualization and Design Spring /26/2012 Brian C. P. Burke EN1740 Computer Aided Visualization and Design Spring 2012 4/26/2012 Brian C. P. Burke Last time: More motion analysis with Pro/E Tonight: Introduction to external analysis products ABAQUS External Analysis

More information

Modelling Flat Spring Performance Using FEA

Modelling Flat Spring Performance Using FEA Modelling Flat Spring Performance Using FEA Blessing O Fatola, Patrick Keogh and Ben Hicks Department of Mechanical Engineering, University of Corresponding author bf223@bath.ac.uk Abstract. This paper

More information

ASME Fatigue DOCUMENTATION. ANSYS Mechanical Application. Extension version Compatible ANSYS version

ASME Fatigue DOCUMENTATION. ANSYS Mechanical Application. Extension version Compatible ANSYS version ASME Fatigue ANSYS Mechanical Application DOCUMENTATION Extension version 180.1 Release date 06-Apr-17 Compatible ANSYS version 18.0 www.edrmedeso.com Table of Contents 1 INTRODUCTION... 3 2 PRODUCT RESTRICTIONS...

More information

ANSYS Workbench Guide

ANSYS Workbench Guide ANSYS Workbench Guide Introduction This document serves as a step-by-step guide for conducting a Finite Element Analysis (FEA) using ANSYS Workbench. It will cover the use of the simulation package through

More information

CHAPTER 4 INCREASING SPUR GEAR TOOTH STRENGTH BY PROFILE MODIFICATION

CHAPTER 4 INCREASING SPUR GEAR TOOTH STRENGTH BY PROFILE MODIFICATION 68 CHAPTER 4 INCREASING SPUR GEAR TOOTH STRENGTH BY PROFILE MODIFICATION 4.1 INTRODUCTION There is a demand for the gears with higher load carrying capacity and increased fatigue life. Researchers in the

More information

Quarter Symmetry Tank Stress (Draft 4 Oct 24 06)

Quarter Symmetry Tank Stress (Draft 4 Oct 24 06) Quarter Symmetry Tank Stress (Draft 4 Oct 24 06) Introduction You need to carry out the stress analysis of an outdoor water tank. Since it has quarter symmetry you start by building only one-fourth of

More information

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003 Engineering Analysis with COSMOSWorks SolidWorks 2003 / COSMOSWorks 2003 Paul M. Kurowski Ph.D., P.Eng. SDC PUBLICATIONS Design Generator, Inc. Schroff Development Corporation www.schroff.com www.schroff-europe.com

More information

VARIOUS APPROACHES USED IN THE SEISMIC QUALIFICATION OF THE PIPING SYSTEMS IN NUCLEAR FACILITIES. Introduction

VARIOUS APPROACHES USED IN THE SEISMIC QUALIFICATION OF THE PIPING SYSTEMS IN NUCLEAR FACILITIES. Introduction VARIOUS APPROACHES USED IN THE SEISMIC QUALIFICATION OF THE PIPING SYSTEMS IN NUCLEAR FACILITIES A. Musil, P. Markov Stevenson&Associates, Pilsen, Czech Republic Introduction In the firm Stevenson&Associates

More information

Chapter 3 Analysis of Original Steel Post

Chapter 3 Analysis of Original Steel Post Chapter 3. Analysis of original steel post 35 Chapter 3 Analysis of Original Steel Post This type of post is a real functioning structure. It is in service throughout the rail network of Spain as part

More information

TOLERANCE ALLOCATION IN FLEXIBLE ASSEMBLIES: A PRACTICAL CASE

TOLERANCE ALLOCATION IN FLEXIBLE ASSEMBLIES: A PRACTICAL CASE TOLERANCE ALLOCATION IN FLEXIBLE ASSEMBLIES: A PRACTICAL CASE Pezzuti E., Piscopo G., Ubertini A., Valentini P.P. 1, Department of Mechanical Engineering University of Rome Tor Vergata via del Politecnico

More information

Example 24 Spring-back

Example 24 Spring-back Example 24 Spring-back Summary The spring-back simulation of sheet metal bent into a hat-shape is studied. The problem is one of the famous tests from the Numisheet 93. As spring-back is generally a quasi-static

More information

Shell-to-Solid Element Connector(RSSCON)

Shell-to-Solid Element Connector(RSSCON) WORKSHOP 11 Shell-to-Solid Element Connector(RSSCON) Solid Shell MSC.Nastran 105 Exercise Workbook 11-1 11-2 MSC.Nastran 105 Exercise Workbook WORKSHOP 11 Shell-to-Solid Element Connector The introduction

More information

Efficient Shape Optimisation of an Aircraft Landing Gear Door Locking Mechanism by Coupling Abaqus to GENESIS

Efficient Shape Optimisation of an Aircraft Landing Gear Door Locking Mechanism by Coupling Abaqus to GENESIS Efficient Shape Optimisation of an Aircraft Landing Gear Door Locking Mechanism by Coupling Abaqus to GENESIS Mark Arnold and Martin Gambling Penso Consulting Ltd GRM Consulting Ltd Abstract: The objective

More information

Super Elastic Alloy Eyeglass Frame Design Using the ANSYS Workbench Environment

Super Elastic Alloy Eyeglass Frame Design Using the ANSYS Workbench Environment Super Elastic Alloy Eyeglass Frame Design Using the ANSYS Workbench Environment Peter R. Barrett, P.E. Computer Aided Engineering Associates Inc. Patrick Cunningham Computer Aided Engineering Associates

More information

Institute of Mechatronics and Information Systems

Institute of Mechatronics and Information Systems EXERCISE 4 Free vibrations of an electrical machine model Target Getting familiar with the fundamental issues of free vibrations analysis of a simplified model of an electrical machine, with the use of

More information

First Order Analysis for Automotive Body Structure Design Using Excel

First Order Analysis for Automotive Body Structure Design Using Excel Special Issue First Order Analysis 1 Research Report First Order Analysis for Automotive Body Structure Design Using Excel Hidekazu Nishigaki CAE numerically estimates the performance of automobiles and

More information

Learning Module 8 Shape Optimization

Learning Module 8 Shape Optimization Learning Module 8 Shape Optimization What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner with

More information

CHAPTER 6 EXPERIMENTAL AND FINITE ELEMENT SIMULATION STUDIES OF SUPERPLASTIC BOX FORMING

CHAPTER 6 EXPERIMENTAL AND FINITE ELEMENT SIMULATION STUDIES OF SUPERPLASTIC BOX FORMING 113 CHAPTER 6 EXPERIMENTAL AND FINITE ELEMENT SIMULATION STUDIES OF SUPERPLASTIC BOX FORMING 6.1 INTRODUCTION Superplastic properties are exhibited only under a narrow range of strain rates. Hence, it

More information

Revised Sheet Metal Simulation, J.E. Akin, Rice University

Revised Sheet Metal Simulation, J.E. Akin, Rice University Revised Sheet Metal Simulation, J.E. Akin, Rice University A SolidWorks simulation tutorial is just intended to illustrate where to find various icons that you would need in a real engineering analysis.

More information

DESIGN & ANALYSIS OF CONNECTING ROD OF FORMING AND CUTTING DIE PILLAR STATION OF VACUUM FORMING MACHINE

DESIGN & ANALYSIS OF CONNECTING ROD OF FORMING AND CUTTING DIE PILLAR STATION OF VACUUM FORMING MACHINE Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 3, July, 2014 2014 IJMERR. All Rights Reserved DESIGN & ANALYSIS OF CONNECTING ROD OF FORMING AND CUTTING DIE PILLAR STATION OF VACUUM FORMING MACHINE

More information

Module 1.2: Moment of a 1D Cantilever Beam

Module 1.2: Moment of a 1D Cantilever Beam Module 1.: Moment of a 1D Cantilever Beam Table of Contents Page Number Problem Description Theory Geometry Preprocessor 6 Element Type 6 Real Constants and Material Properties 7 Meshing 9 Loads 10 Solution

More information

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering Introduction A SolidWorks simulation tutorial is just intended to illustrate where to

More information

Visit the following websites to learn more about this book:

Visit the following websites to learn more about this book: Visit the following websites to learn more about this book: 6 Introduction to Finite Element Simulation Historically, finite element modeling tools were only capable of solving the simplest engineering

More information

Exercise 1. 3-Point Bending Using the GUI and the Bottom-up-Method

Exercise 1. 3-Point Bending Using the GUI and the Bottom-up-Method Exercise 1 3-Point Bending Using the GUI and the Bottom-up-Method Contents Learn how to... 1 Given... 2 Questions... 2 Taking advantage of symmetries... 2 A. Preprocessor (Setting up the Model)... 3 A.1

More information

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Here SolidWorks stress simulation tutorials will be re-visited to show how they

More information

A05 Steel Catenary Riser Systems

A05 Steel Catenary Riser Systems A05 Steel Catenary Riser Systems Introduction This example contains three examples of steel catenary risers (SCRs). These are: Catenary with Spar Catenary with SemiSub Lazy Wave with FPSO The example also

More information

ME 442. Marc/Mentat-2011 Tutorial-1

ME 442. Marc/Mentat-2011 Tutorial-1 ME 442 Overview Marc/Mentat-2011 Tutorial-1 The purpose of this tutorial is to introduce the new user to the MSC/MARC/MENTAT finite element program. It should take about one hour to complete. The MARC/MENTAT

More information

Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact

Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact Eduardo Luís Gaertner Marcos Giovani Dropa de Bortoli EMBRACO S.A. Abstract A linear elastic model is often not appropriate

More information

Recent Advances on Higher Order 27-node Hexahedral Element in LS-DYNA

Recent Advances on Higher Order 27-node Hexahedral Element in LS-DYNA 14 th International LS-DYNA Users Conference Session: Simulation Recent Advances on Higher Order 27-node Hexahedral Element in LS-DYNA Hailong Teng Livermore Software Technology Corp. Abstract This paper

More information

Finite Element Course ANSYS Mechanical Tutorial Tutorial 4 Plate With a Hole

Finite Element Course ANSYS Mechanical Tutorial Tutorial 4 Plate With a Hole Problem Specification Finite Element Course ANSYS Mechanical Tutorial Tutorial 4 Plate With a Hole Consider the classic example of a circular hole in a rectangular plate of constant thickness. The plate

More information

CHAPTER-10 DYNAMIC SIMULATION USING LS-DYNA

CHAPTER-10 DYNAMIC SIMULATION USING LS-DYNA DYNAMIC SIMULATION USING LS-DYNA CHAPTER-10 10.1 Introduction In the past few decades, the Finite Element Method (FEM) has been developed into a key indispensable technology in the modeling and simulation

More information

Linear Elastic Fracture Mechanics (LEFM) Analysis of Flaws within Residual Stress Fields

Linear Elastic Fracture Mechanics (LEFM) Analysis of Flaws within Residual Stress Fields Linear Elastic Fracture Mechanics (LEFM) Analysis of Flaws within Residual Stress Fields David Woyak 1, Brian Baillargeon, Ramesh Marrey, and Randy Grishaber 2 1 Dassault Systemés SIMULIA Corporation &

More information

[Mittal*, 5(4): April, 2016] ISSN: (I2OR), Publication Impact Factor: 3.785

[Mittal*, 5(4): April, 2016] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY MATHEMATICAL MODELLING AND FINITE ELEMENT ANALYSIS OF SUSPENSION FORK FOR TWO WHEELERS Atishey Mittal*, Anshul Verma, Piyush Sethi

More information

Creo Simulate 3.0 Tutorial

Creo Simulate 3.0 Tutorial Creo Simulate 3.0 Tutorial Structure and Thermal Roger Toogood, Ph.D., P. Eng. SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following

More information

What s new in Femap 9.3

What s new in Femap 9.3 What s new in Femap 9.3 fact sheet www.ugs.com/femap Summary Femap version 9.3 is the latest release of UGS robust pre and post processor for engineering finite element analysis (FEA). Femap software is

More information

Aufgabe 1: Dreipunktbiegung mit ANSYS Workbench

Aufgabe 1: Dreipunktbiegung mit ANSYS Workbench Aufgabe 1: Dreipunktbiegung mit ANSYS Workbench Contents Beam under 3-Pt Bending [Balken unter 3-Pkt-Biegung]... 2 Taking advantage of symmetries... 3 Starting and Configuring ANSYS Workbench... 4 A. Pre-Processing:

More information

AUTOMATED METHODOLOGY FOR MODELING CRACK EXTENSION IN FINITE ELEMENT MODELS

AUTOMATED METHODOLOGY FOR MODELING CRACK EXTENSION IN FINITE ELEMENT MODELS AUTOMATED METHODOLOGY FOR MODELING CRACK THEME Structural Analysis - Durability, Fatigue & Fracture. James J. Kosloski Senior Engineering Manager - CAE Associates Dr. Michael Bak Senior Engineering Manager

More information

Offshore Platform Fluid Structure Interaction (FSI) Simulation

Offshore Platform Fluid Structure Interaction (FSI) Simulation Offshore Platform Fluid Structure Interaction (FSI) Simulation Ali Marzaban, CD-adapco Murthy Lakshmiraju, CD-adapco Nigel Richardson, CD-adapco Mike Henneke, CD-adapco Guangyu Wu, Chevron Pedro M. Vargas,

More information

Mixed Mode Fracture of Through Cracks In Nuclear Reactor Steam Generator Helical Coil Tube

Mixed Mode Fracture of Through Cracks In Nuclear Reactor Steam Generator Helical Coil Tube Journal of Materials Science & Surface Engineering Vol. 3 (4), 2015, pp 298-302 Contents lists available at http://www.jmsse.org/ Journal of Materials Science & Surface Engineering Mixed Mode Fracture

More information

The part to be analyzed is the bracket from the tutorial of Chapter 3.

The part to be analyzed is the bracket from the tutorial of Chapter 3. Introduction to Solid Modeling Using SolidWorks 2007 COSMOSWorks Tutorial Page 1 In this tutorial, we will use the COSMOSWorks finite element analysis (FEA) program to analyze the response of a component

More information

Stress Analysis of thick wall bellows using Finite Element Method

Stress Analysis of thick wall bellows using Finite Element Method Stress Analysis of thick wall bellows using Finite Element Method Digambar J. Pachpande Post Graduate Student Department of Mechanical Engineering V.J.T.I. Mumbai, India Prof. G. U. Tembhare Assistant

More information

Exercise 2: Mesh Resolution, Element Shapes, Basis Functions & Convergence Analyses

Exercise 2: Mesh Resolution, Element Shapes, Basis Functions & Convergence Analyses Exercise 2: Mesh Resolution, Element Shapes, Basis Functions & Convergence Analyses Goals In this exercise, we will explore the strengths and weaknesses of different element types (tetrahedrons vs. hexahedrons,

More information

DUCTILE TEARING ANALYSIS OF A CUSTOM PIPE TO FLANGE NOZZLE USING 3D CRACK MESHES

DUCTILE TEARING ANALYSIS OF A CUSTOM PIPE TO FLANGE NOZZLE USING 3D CRACK MESHES DUCTILE TEARING ANALYSIS OF A CUSTOM PIPE TO FLANGE Greg Thorwald, Ph.D. Principal Consulting Engineer, Quest Integrity Group, USA Michael Rock Engineering Project Manager, Mighty River Power Limited,

More information

Krzysztof Dabrowiecki, Probe2000 Inc Southwest Test Conference, San Diego, CA June 08, 2004

Krzysztof Dabrowiecki, Probe2000 Inc Southwest Test Conference, San Diego, CA June 08, 2004 Structural stability of shelf probe cards Krzysztof Dabrowiecki, Probe2000 Inc Southwest Test Conference, San Diego, CA June 08, 2004 Presentation Outline Introduction Objectives Multi die applications

More information

Elfini Solver Verification

Elfini Solver Verification Page 1 Elfini Solver Verification Preface Using this Guide Where to Find More Information Conventions What's new User Tasks Static Analysis Cylindrical Roof Under its Own Weight Morley's Problem Twisted

More information

Stress Concentration Factors

Stress Concentration Factors CONSEIL INTERNATIONAL DES MACHINES A COMBUSTION INTERNATIONAL COUNCIL ON COMBUSTION ENGINES CO-ORDINATING WORKING GROUP "CLASSIFICATION SOCIETIES DIESEL" (WG2) Proposal by CIMAC WG4 11th May 2012 IACS

More information

General Applications

General Applications Chapter General Applications The general analysis modules can be used to calculate section properties, wind pressures on buildings and evaluate drainage systems of building roofs. General Applications

More information

Linear Bifurcation Buckling Analysis of Thin Plate

Linear Bifurcation Buckling Analysis of Thin Plate LESSON 13a Linear Bifurcation Buckling Analysis of Thin Plate Objectives: Construct a quarter model of a simply supported plate. Place an edge load on the plate. Run an Advanced FEA bifurcation buckling

More information

Exercise 1. 3-Point Bending Using the Static Structural Module of. Ansys Workbench 14.0

Exercise 1. 3-Point Bending Using the Static Structural Module of. Ansys Workbench 14.0 Exercise 1 3-Point Bending Using the Static Structural Module of Contents Ansys Workbench 14.0 Learn how to...1 Given...2 Questions...2 Taking advantage of symmetries...2 A. Getting started...3 A.1 Choose

More information

Introduction to 2 nd -order Lagrangian Element in LS-DYNA

Introduction to 2 nd -order Lagrangian Element in LS-DYNA Introduction to 2 nd -order Lagrangian Element in LS-DYNA Hailong Teng Livermore Software Technology Corporation Nov, 2017 Motivation Users are requesting higher order elements for implicit. Replace shells.

More information

Structural Nonlinear Analysis of a Disconnector Pelikelo (a kind of hook) using ANSYS/Workbench

Structural Nonlinear Analysis of a Disconnector Pelikelo (a kind of hook) using ANSYS/Workbench Structural Nonlinear Analysis of a Disconnector Pelikelo (a kind of hook) using ANSYS/Workbench Mário Coutinho MCS Engineering LTDA. Fátima Souza, M.Sc., Gabriel Silva e Decio Paiva SOFTEC Software Technology

More information

Tutorial 1: Welded Frame - Problem Description

Tutorial 1: Welded Frame - Problem Description Tutorial 1: Welded Frame - Problem Description Introduction In this first tutorial, we will analyse a simple frame: firstly as a welded frame, and secondly as a pin jointed truss. In each case, we will

More information

SolidWorks. An Overview of SolidWorks and Its Associated Analysis Programs

SolidWorks. An Overview of SolidWorks and Its Associated Analysis Programs An Overview of SolidWorks and Its Associated Analysis Programs prepared by Prof. D. Xue University of Calgary SolidWorks - a solid modeling CAD tool. COSMOSWorks - a design analysis system fully integrated

More information

COMPUTER AIDED ENGINEERING. Part-1

COMPUTER AIDED ENGINEERING. Part-1 COMPUTER AIDED ENGINEERING Course no. 7962 Finite Element Modelling and Simulation Finite Element Modelling and Simulation Part-1 Modeling & Simulation System A system exists and operates in time and space.

More information

TUTORIAL 7: Stress Concentrations and Elastic-Plastic (Yielding) Material Behavior Initial Project Space Setup Static Structural ANSYS ZX Plane

TUTORIAL 7: Stress Concentrations and Elastic-Plastic (Yielding) Material Behavior Initial Project Space Setup Static Structural ANSYS ZX Plane TUTORIAL 7: Stress Concentrations and Elastic-Plastic (Yielding) Material Behavior In this tutorial you will learn how to recognize and deal with a common modeling issues involving stress concentrations

More information

DESIGN AND OPTIMIZATION OF ROTARY TURRET PLATE OF POUCHER MACHINE

DESIGN AND OPTIMIZATION OF ROTARY TURRET PLATE OF POUCHER MACHINE DESIGN AND OPTIMIZATION OF ROTARY TURRET PLATE OF POUCHER MACHINE Jigar G. Patel Institute of Technology, Nirma University, Ahmedabad 382481, India Email:14mmcc17@nirmuni.ac.in Mitesh B. Panchal Mechanical

More information

Finite Element Analysis of Ellipsoidal Head Pressure Vessel

Finite Element Analysis of Ellipsoidal Head Pressure Vessel Finite Element Analysis of Ellipsoidal Head Pressure Vessel Vikram V. Mane*, Vinayak H.Khatawate.**Ashok Patole*** * (Faculty; Mechanical Engineering Department, Vidyavardhini s college of Engineering.

More information

A plate with a hole is subjected to tension as shown: z p = 25.0 N/mm 2

A plate with a hole is subjected to tension as shown: z p = 25.0 N/mm 2 Problem description A plate with a hole is subjected to tension as shown: z p = 25.0 N/mm 2 56 y All lengths in mm. Thickness =1mm E = 7.0 10 4 N/mm = 0.25 10 20 This is the same problem as problem 2.

More information

Simplified modelling of steel frame connections under cyclic loading

Simplified modelling of steel frame connections under cyclic loading Simplified modelling of steel frame connections under cyclic loading Saher El-Khoriby 1), *Mohammed A. Sakr 2), Tarek M. Khalifa 3) and Mohammed Eladly 4) 1), 2), 3), 4) Department of Structural Engineering,

More information

Analysis of Detroit Seismic Joint System

Analysis of Detroit Seismic Joint System Analysis of Detroit Seismic Joint System for EMSEAL Corporation Prepared by Haig Saadetian, P.Eng. Senior Consultant ROI Engineering Inc. 50 Ronson Drive, Suite 120 Toronto ON M9W 1B3 26-April-2009 1 Contents

More information

Introduction to ANSYS DesignModeler

Introduction to ANSYS DesignModeler Lecture 9 Beams and Shells 14. 5 Release Introduction to ANSYS DesignModeler 2012 ANSYS, Inc. November 20, 2012 1 Release 14.5 Beams & Shells The features in the Concept menu are used to create and modify

More information

Impact of 3D Laser Data Resolution and Accuracy on Pipeline Dents Strain Analysis

Impact of 3D Laser Data Resolution and Accuracy on Pipeline Dents Strain Analysis More Info at Open Access Database www.ndt.net/?id=15137 Impact of 3D Laser Data Resolution and Accuracy on Pipeline Dents Strain Analysis Jean-Simon Fraser, Pierre-Hugues Allard Creaform, 5825 rue St-Georges,

More information

5. Finite Element Analysis of Bellows

5. Finite Element Analysis of Bellows 5. Finite Element Analysis of Bellows 5.1 Introduction: Traditional design process and stress analysis techniques are very specific for each individual case based on fundamental principles. It can only

More information

Exercise 1: 3-Pt Bending using ANSYS Workbench

Exercise 1: 3-Pt Bending using ANSYS Workbench Exercise 1: 3-Pt Bending using ANSYS Workbench Contents Starting and Configuring ANSYS Workbench... 2 1. Starting Windows on the MAC... 2 2. Login into Windows... 2 3. Start ANSYS Workbench... 2 4. Configuring

More information

CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 15 - FINITE ELEMENT ANALYSIS - PART 1

CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 15 - FINITE ELEMENT ANALYSIS - PART 1 Outcome 1 The learner can: CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 15 - FINITE ELEMENT ANALYSIS - PART 1 Calculate stresses, strain and deflections in a range of components under

More information

The CAESAR II Piping Model. How Good Is It?

The CAESAR II Piping Model. How Good Is It? The CAESAR II Piping Model How Good Is It? Quick Agenda Introduction The digital model What s missing in our CAESAR II model? Model precision and construction tolerances Engineering Sensitivity Boundary

More information

Module 1.5: Moment Loading of a 2D Cantilever Beam

Module 1.5: Moment Loading of a 2D Cantilever Beam Module 1.5: Moment Loading of a D Cantilever Beam Table of Contents Page Number Problem Description Theory Geometry 4 Preprocessor 7 Element Type 7 Real Constants and Material Properties 8 Meshing 9 Loads

More information

3DEXPERIENCE 2017x FINITE ELEMENT ESSENTIALS IN SDC USING SIMULIA/CATIA APPLICATIONS. Nader G. Zamani

3DEXPERIENCE 2017x FINITE ELEMENT ESSENTIALS IN SDC USING SIMULIA/CATIA APPLICATIONS. Nader G. Zamani Nader G. Zamani FINITE ELEMENT ESSENTIALS IN 3DEXPERIENCE 2017x USING SIMULIA/CATIA APPLICATIONS SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org)

More information

TABLE OF CONTENTS SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 SECTION 3 WAVE REFLECTION AND TRANSMISSION IN RODS Introduction...

TABLE OF CONTENTS SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 SECTION 3 WAVE REFLECTION AND TRANSMISSION IN RODS Introduction... TABLE OF CONTENTS SECTION 1 INTRODUCTION... 1 1.1 Introduction... 1 1.2 Objectives... 1 1.3 Report organization... 2 SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 2.1 Introduction... 3 2.2 Wave propagation

More information

VALIDATE SIMULATION TECHNIQUES OF A MOBILE EXPLOSIVE CONTAINMENT VESSEL

VALIDATE SIMULATION TECHNIQUES OF A MOBILE EXPLOSIVE CONTAINMENT VESSEL VALIDATE SIMULATION TECHNIQUES OF A MOBILE EXPLOSIVE CONTAINMENT VESSEL David Karlsson DYNAmore Nordic AB, Sweden KEYWORDS Hexa, Map, Explosive, LS-DYNA ABSTRACT A Mobile Explosive Containment Vessel (MECV)

More information

THE COMPUTATIONAL MODEL INFLUENCE ON THE NUMERICAL SIMULATION ACCURACY FOR FORMING ALLOY EN AW 5754

THE COMPUTATIONAL MODEL INFLUENCE ON THE NUMERICAL SIMULATION ACCURACY FOR FORMING ALLOY EN AW 5754 THE COMPUTATIONAL MODEL INFLUENCE ON THE NUMERICAL SIMULATION ACCURACY FOR FORMING ALLOY EN AW 5754 Pavel SOLFRONK a, Jiří SOBOTKA a, Pavel DOUBEK a, Lukáš ZUZÁNEK a a TECHNICAL UNIVERSITY OF LIBEREC,

More information

Institute of Mechatronics and Information Systems

Institute of Mechatronics and Information Systems EXERCISE 2 Free vibrations of a beam arget Getting familiar with the fundamental issues of free vibrations analysis of elastic medium, with the use of a finite element computation system ANSYS. Program

More information

IJMH - International Journal of Management and Humanities ISSN:

IJMH - International Journal of Management and Humanities ISSN: EXPERIMENTAL STRESS ANALYSIS SPUR GEAR USING ANSYS SOFTWARE T.VADIVELU 1 (Department of Mechanical Engineering, JNTU KAKINADA, Kodad, India, vadimay28@gmail.com) Abstract Spur Gear is one of the most important

More information

Abstract. Introduction:

Abstract. Introduction: Abstract This project analyzed a lifecycle test fixture for stress under generic test loading. The maximum stress is expected to occur near the shrink fit pin on the lever arm. The model was constructed

More information

Case Study - Vierendeel Frame Part of Chapter 12 from: MacLeod I A (2005) Modern Structural Analysis, ICE Publishing

Case Study - Vierendeel Frame Part of Chapter 12 from: MacLeod I A (2005) Modern Structural Analysis, ICE Publishing Case Study - Vierendeel Frame Part of Chapter 1 from: MacLeod I A (005) Modern Structural Analysis, ICE Publishing Iain A MacLeod Contents Contents... 1 1.1 Vierendeel frame... 1 1.1.1 General... 1 1.1.

More information

Section 8 Linear Applications

Section 8 Linear Applications Index Section 8 187 Slide Blocks Slide Blocks is stationary, or a profile slides in the Profile Blocks Stationary Block Profile Stationary 188 Slide Blocks UHMW-PE Design Information ASTM Typical General

More information

FEA BENDING, TORSION, TENSION, and SHEAR TUTORIAL in CATIA

FEA BENDING, TORSION, TENSION, and SHEAR TUTORIAL in CATIA 1 FEA BENDING, TORSION, TENSION, and SHEAR TUTORIAL in CATIA This tutorial shows the basics of a solid bending, torsional, tension, and shear FEA (Finite Elemental Analysis) model in CATIA. Torsion - page

More information

Structural Analysis of an Aluminum Spiral Staircase. EMCH 407 Final Project Presented by: Marcos Lopez and Dillan Nguyen

Structural Analysis of an Aluminum Spiral Staircase. EMCH 407 Final Project Presented by: Marcos Lopez and Dillan Nguyen Structural Analysis of an Aluminum Spiral Staircase EMCH 407 Final Project Presented by: Marcos Lopez and Dillan Nguyen Abstract An old aluminum spiral staircase at Marcos home has been feeling really

More information

A pipe bend is subjected to a concentrated force as shown: y All dimensions in inches. Material is stainless steel.

A pipe bend is subjected to a concentrated force as shown: y All dimensions in inches. Material is stainless steel. Problem description A pipe bend is subjected to a concentrated force as shown: y 15 12 P 9 Displacement gauge Cross-section: 0.432 18 x 6.625 All dimensions in inches. Material is stainless steel. E =

More information

An Overview of Computer Aided Design and Finite Element Analysis

An Overview of Computer Aided Design and Finite Element Analysis An Overview of Computer Aided Design and Finite Element Analysis by James Doane, PhD, PE Contents 1.0 Course Overview... 4 2.0 General Concepts... 4 2.1 What is Computer Aided Design... 4 2.1.1 2D verses

More information

Computer Life (CPL) ISSN: Finite Element Analysis of Bearing Box on SolidWorks

Computer Life (CPL) ISSN: Finite Element Analysis of Bearing Box on SolidWorks Computer Life (CPL) ISSN: 1819-4818 Delivering Quality Science to the World Finite Element Analysis of Bearing Box on SolidWorks Chenling Zheng 1, a, Hang Li 1, b and Jianyong Li 1, c 1 Shandong University

More information

User Manual TEMES Version 7.xx Advanced Services GmbH Hoher Steg Lauffen/N.

User Manual TEMES Version 7.xx Advanced Services GmbH Hoher Steg Lauffen/N. TEMES Version 7.xx Advanced Services GmbH Hoher Steg 13 74348 Lauffen/N. www.amtec.eu January 2014 table of contents Page 2 1 Introduction... 4 2 Installing the software TEMES fl.cal... 4 2.1 Software

More information

ES 230 Strengths Intro to Finite Element Modeling & Analysis Homework Assignment 2

ES 230 Strengths Intro to Finite Element Modeling & Analysis Homework Assignment 2 ES 230 Strengths Intro to Finite Element Modeling & Analysis Homework Assignment 2 In this homework assignment you will use your rapidly developing ANSYS skill set to model and analyze three different

More information