Structural Analysis of an Aluminum Spiral Staircase. EMCH 407 Final Project Presented by: Marcos Lopez and Dillan Nguyen

Size: px
Start display at page:

Download "Structural Analysis of an Aluminum Spiral Staircase. EMCH 407 Final Project Presented by: Marcos Lopez and Dillan Nguyen"

Transcription

1 Structural Analysis of an Aluminum Spiral Staircase EMCH 407 Final Project Presented by: Marcos Lopez and Dillan Nguyen

2 Abstract An old aluminum spiral staircase at Marcos home has been feeling really unstable lately; see Figure 1. This raises the question of how much weight one step can really hold. The focus of this design project is to model a single step in CATIA and Abaqus and inspect how structural loads are handled when loaded through finite element analysis, particularly examining stress concentrations. This project looks at loads applied in both programs and discerns any differences between the two results. We expect both programs to show more stresses at the end of the step attached to the center pole of the staircase with more displacement on the free end. Since the railing is not load bearing, we decided to not model it, as it was not relevant to the objective. It was found that, however, our predictions were generally correct, the visualization results of the programs showed slight differences. Figure 1: Actual staircase to be analyzed 1

3 Introduction The subject of our research is the aluminum step. An object that has to endure varying stresses daily, much testing and dedication in perfecting the final model has to be assured. As one step will need to hold the weight of one person, we will analyze the stress it will need to bear due to the load from the person. If the step does not hold the recommended weight, it could ruin the integrity of the entire staircase, holding the manufacturer liable for any injuries or even death, potentially costing the manufacturer millions of dollars. Determining in our research what loading capacity the step will support will answer what the manufacturer wants to set as the maximum weight limit. We figured our material would be made of aluminum, specifically Al6061, as it will be strong and lightweight and the most inexpensive for the manufacturer. We ll strive to have a single step support up to 650 lb, which we believe is sufficient to support most people while also carrying any extra loads. It could also support three people who each weigh about 180 lb for those special cases. The design of the steps of the staircase will be analyzed by using two different CAD software tools, CATIA and Abaqus. By performing a static finite element analysis on the step, the Von Mises stresses and deflection will be determined for a 650 lb load. Furthermore, the results of this study could lead to design modifications that can be implemented upon analysis to optimize the structure but still support the required loads. This sort of optimization would cut down on material, which would reduce production costs. 2

4 Approach We will be mainly testing for structural failure and improving from there. The 2D model features a 2.24 ft cantilever beam with a distributed load of at least 650 lb in the downward direction at the free end of the beam to ensure the step meets the load requirement. For the sake of thoroughness, we will create one finite element model for testing in both programs. The model will be created and analyzed in CATIA, and then it will be imported into Abaqus for another analysis. The max load the stair can support without deforming plastically will also be determined by applying the material s yield strength. The results obtained from the two software tools will be compared in order to determine the most accurate method. CATIA Modeling The exact dimensions of a single step from the staircase were measured using a ruler. These measurements were used to create a CAD model of the step using CATIA. The step has a length of 26.8 in, and a plate thickness of 0.1 in. Material properties of aluminum were applied to the entire solid model. These can be seen in Table 1 below. Aluminum Material Properties Young's Modulus 1.015e7 psi Poisson ratio Density Yield Strength lb*in^ psi Table 1: Material properties of aluminum applied to the solid model 3

5 The final CAD model of the step with the aluminum material applied can be seen in Figure 2. Using this model, a static finite element analysis was performed. Figure 2: CAD model of step in CATIA Abaqus Modeling Choosing to remain consistent across both models, we imported the model into Abaqus as an.stp file. The units for the dimensions of the model were in mm, so we had to adjust any values for the entered properties. We also created and assigned a material with aluminum properties as defined in Table 2. Figure 3 shows the assembled model in Abaqus. Aluminum Material Properties Young's Modulus MPa Poisson ratio Density Yield Strength 2.71e- 9 tonne/mm^ psi Table 2: Material properties of aluminum applied to the solid model 4

6 Figure 3: Model of step in Abaqus CATIA Finite Element Analysis A linear mesh was applied to the entire CAD model, having an element size of 0.5 in. This element size resulted in 13,348 finite elements for the model. A restraint was also applied to the model on the inner surface of the supporting cylinder. This metal ring is physically clamped to the main column of the spiral staircase, supporting the entire load placed on the step. This restraint can be seen in Figure 4. Figure 4: Applied restraint on the inside of the "metal ring" 5

7 A distributed load with a magnitude of 650 lbf was then applied to the top surface of the step. This load is almost equivalent to 3 persons with an average weight of 180 lbf, (540 lbf total) and a safety factor of about 1.2. The final element model, with all of the restraints, loads, and mesh can be seen in Figure 5 below. Figure 5: Linear mesh applied to the CAD model. An element size of 0.5 in was applied to the model. Abaqus Finite Element Analysis The software to perform and run these experiments was Abaqus version After importing the model, the entire step was considered as one part. Since our model will be made of one material, the part will be a solid homogenous section assigned with the material properties previously defined. We instanced the part as independent since it didn t depend on other parts to operate. Then we applied the load and boundary conditions. The cylindrical object connected at the end of the step is supposed to be connected to the pole at the center of the staircase, so we will encastre it, so it will not have any displacements 6

8 or rotation in any direction. To apply the load of a person stepping on the step, we applied a distributed load of N across the surface in the z- direction. Figure 6 shows these loads and boundary conditions. We then assigned global seeds with approximate global size of 12. Figure 6: Loads and boundary conditions We initially used the default size of 37 for the model, and after running different sizes, we found 12 demonstrated less than 5% difference in results than 24, so we decided 12 provided accurate enough values. The element type is tetrahedron as there are round elements for the meshing. There were 14,524 tetrahedral elements. Figure 7 displays the meshed model. 7

9 Figure 7: Meshed model We then ran the simulations using automatic time stepping. The CPU was an Intel Core i GHz using only one processor. The runtime for analysis for the model varied between seconds. Limitations include not taking into account outside elements like creep. 8

10 Results and Discussion CATIA In order for the simulation to run, CATIA had to use 0.6 sec of CPU, 2.96 e3 kilobytes of memory, and 9.88 e3 kilobytes of disk. The simulation ran in a computer with an Intel Core i The simulation outputs a maximum Von Mises Stress of psi, located on the sides of the stair. Because bending occurs on the step, compressive stresses are created on the sides of the steps that are connected to the clamped metal ring. Given that the maximum stress is lower than the material s yield strength ( psi), no plastic deformation will occur on the part with this applied load. Figure 8: Von Mises stress distribution on the step CAD model An elastic deformation does occur to the step, having a maximum value of in. The location of this maximum deformation is located on the outer edge of the step, as expected. This is due to the longer moment arm relative to the clamped 9

11 metal ring. The longer the moment arm, the larger the actual moment experienced at that point, and thus a greater deformation occurs. A representation of the deformation that occurs on the step can be seen in Figure 9. Figure 9: Elastic deformation distribution on the step CAD model The maximum load that the step could support was also determined by using CATIA s yield strength for aluminum (13, psi), which is different from our reference (34, psi). [3] The load was increased from 650 lbf incrementally by 50 lbf until this yield strength was surpassed. Using CATIA s value for the yield strength, it was determined that the maximum load the step could sustain was 730 lbf, creating a maximum Von Mises stress of 13, psi. Our actual step could sustain a much higher stress since it has a higher yield strength than CATIA s, but we figured 730 lbf was safe enough to list as the manufacturer s recommended limit, rather than pushing it past the lower bounds of the yield strength range in case a different type of aluminum is used. 10

12 Abaqus Figure 10: Abaqus results We found the average stress to range between MPa. The maximum relative stress can be found at the bottom of the step that ranges between MPa. We can see the stress concentration points occur where the wall of the step meets the cylindrical base. This makes sense because these are the areas where the step is connected to a fixed point, and the downward force causes stresses at the top and bottom, with most of it in the bottom region. 11

13 Figure 11: Displacement results in Abaqus When examining the displacement of the model, we can see the largest displacements occurred at the free end where there is no support from the center column. We observed in Abaqus that the model produced a maximum displacement of around cm. This displacement occurred in the free end of the step as illustrated in Figure 11. The deformation is exaggerated to magnify the displaced elements. This was to be expected since there is no load bearing support in this area. The end of the step that is connected to the vertical column of the staircase experienced minimal to no displacement at all, which is also expected since the column keeps the step fixed in this position. Figure 12: Before & after displacement results 12

14 Conclusions The results from the finite element models prove our hypothesis that our biggest concern will occur at the points where the step connects to the metal column, specifically towards the bottom. According to the Nanovea document, the yield strength of aluminum is around 34, psi. [3] The CATIA analysis says our step can sustain up to 750 lb before yielding. Our stress results from Abaqus show that 650 lb will not cause any plastic deformation in the structure, and it will definitely not fracture. Using the found maximum stress values and the actual yield strength, the factor of safety was found to be approximately This conclusion is what we expected. Visually, there are only slight differences for the stress concentration points. CATIA shows a larger maximum stress area near the lower joint where the step actually connects to the metal ring. The Abaqus model has a smaller maximum stress area, but this area is closer to the joint. Our results in CATIA and Abaqus show a difference in stress values by about 2000 psi. The initial difference value was much higher. We were unsure what might have caused this difference until we realized that when we imported the model into Abaqus, the dimensions were in mm. With the help of an online reference, we fixed then fixed the material properties from SI to SI (mm) to reflect this change in units. [4] We were able to lower the difference after the conversion. We were satisfied that these stress values were in the same range and of the same order of magnitude. 13

15 Improvements One of the concerns we encountered was that we also tested our model using a different material from aluminum. We tested the model in Abaqus using steel for the material properties. We expected a vast difference in the stress magnitudes from aluminum to steel as steel has three times the elastic modulus of aluminum s. This was not the case as the stresses were nearly similar. For future results, we will use more of our resources by determining what could be the issue with the course s TA. We also could ve looked at the max principal stresses for the model for more accurate readings in determining if there is structural failure. As for the differences in values from both programs, we could ve also looked into exactly why that occurred. We hypothesize that each program has different methods/formulas in calculating the stresses, which may also be on our end in our decision of element shapes, the number of elements, and whether or not we used quadratic geometric order for the meshing. 14

16 References Finite element model analysis using computer software: [1] 3DS s CATIA V5 [2] 3DS s Abaqus/CAE Online references: [3] [4] tips.com/viewthread.cfm?qid=

ME Optimization of a Frame

ME Optimization of a Frame ME 475 - Optimization of a Frame Analysis Problem Statement: The following problem will be analyzed using Abaqus. 4 7 7 5,000 N 5,000 N 0,000 N 6 6 4 3 5 5 4 4 3 3 Figure. Full frame geometry and loading

More information

Abaqus/CAE Axisymmetric Tutorial (Version 2016)

Abaqus/CAE Axisymmetric Tutorial (Version 2016) Abaqus/CAE Axisymmetric Tutorial (Version 2016) Problem Description A round bar with tapered diameter has a total load of 1000 N applied to its top face. The bottom of the bar is completely fixed. Determine

More information

Recent Advances on Higher Order 27-node Hexahedral Element in LS-DYNA

Recent Advances on Higher Order 27-node Hexahedral Element in LS-DYNA 14 th International LS-DYNA Users Conference Session: Simulation Recent Advances on Higher Order 27-node Hexahedral Element in LS-DYNA Hailong Teng Livermore Software Technology Corp. Abstract This paper

More information

Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE

Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE Getting Started with Abaqus: Interactive Edition Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE The following section is a basic tutorial for the experienced Abaqus user. It leads you

More information

Installation Guide. Beginners guide to structural analysis

Installation Guide. Beginners guide to structural analysis Installation Guide To install Abaqus, students at the School of Civil Engineering, Sohngaardsholmsvej 57, should log on to \\studserver, whereas the staff at the Department of Civil Engineering should

More information

EN1740 Computer Aided Visualization and Design Spring /26/2012 Brian C. P. Burke

EN1740 Computer Aided Visualization and Design Spring /26/2012 Brian C. P. Burke EN1740 Computer Aided Visualization and Design Spring 2012 4/26/2012 Brian C. P. Burke Last time: More motion analysis with Pro/E Tonight: Introduction to external analysis products ABAQUS External Analysis

More information

Multi-Step Analysis of a Cantilever Beam

Multi-Step Analysis of a Cantilever Beam LESSON 4 Multi-Step Analysis of a Cantilever Beam LEGEND 75000. 50000. 25000. 0. -25000. -50000. -75000. 0. 3.50 7.00 10.5 14.0 17.5 21.0 Objectives: Demonstrate multi-step analysis set up in MSC/Advanced_FEA.

More information

CHAPTER 8 FINITE ELEMENT ANALYSIS

CHAPTER 8 FINITE ELEMENT ANALYSIS If you have any questions about this tutorial, feel free to contact Wenjin Tao (w.tao@mst.edu). CHAPTER 8 FINITE ELEMENT ANALYSIS Finite Element Analysis (FEA) is a practical application of the Finite

More information

CATIA V5 FEA Tutorials Release 14

CATIA V5 FEA Tutorials Release 14 CATIA V5 FEA Tutorials Release 14 Nader G. Zamani University of Windsor SDC PUBLICATIONS Schroff Development Corporation www.schroff.com www.schroff-europe.com CATIA V5 FEA Tutorials 2-1 Chapter 2 Analysis

More information

DESIGN & ANALYSIS OF CONNECTING ROD OF FORMING AND CUTTING DIE PILLAR STATION OF VACUUM FORMING MACHINE

DESIGN & ANALYSIS OF CONNECTING ROD OF FORMING AND CUTTING DIE PILLAR STATION OF VACUUM FORMING MACHINE Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 3, July, 2014 2014 IJMERR. All Rights Reserved DESIGN & ANALYSIS OF CONNECTING ROD OF FORMING AND CUTTING DIE PILLAR STATION OF VACUUM FORMING MACHINE

More information

Analysis of Detroit Seismic Joint System

Analysis of Detroit Seismic Joint System Analysis of Detroit Seismic Joint System for EMSEAL Corporation Prepared by Haig Saadetian, P.Eng. Senior Consultant ROI Engineering Inc. 50 Ronson Drive, Suite 120 Toronto ON M9W 1B3 26-April-2009 1 Contents

More information

Quarter Symmetry Tank Stress (Draft 4 Oct 24 06)

Quarter Symmetry Tank Stress (Draft 4 Oct 24 06) Quarter Symmetry Tank Stress (Draft 4 Oct 24 06) Introduction You need to carry out the stress analysis of an outdoor water tank. Since it has quarter symmetry you start by building only one-fourth of

More information

FEA BENDING, TORSION, TENSION, and SHEAR TUTORIAL in CATIA

FEA BENDING, TORSION, TENSION, and SHEAR TUTORIAL in CATIA 1 FEA BENDING, TORSION, TENSION, and SHEAR TUTORIAL in CATIA This tutorial shows the basics of a solid bending, torsional, tension, and shear FEA (Finite Elemental Analysis) model in CATIA. Torsion - page

More information

Exercise 1. 3-Point Bending Using the Static Structural Module of. Ansys Workbench 14.0

Exercise 1. 3-Point Bending Using the Static Structural Module of. Ansys Workbench 14.0 Exercise 1 3-Point Bending Using the Static Structural Module of Contents Ansys Workbench 14.0 Learn how to...1 Given...2 Questions...2 Taking advantage of symmetries...2 A. Getting started...3 A.1 Choose

More information

Creating and Analyzing a Simple Model in Abaqus/CAE

Creating and Analyzing a Simple Model in Abaqus/CAE Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE The following section is a basic tutorial for the experienced Abaqus user. It leads you through the Abaqus/CAE modeling process by visiting

More information

Analysis Steps 1. Start Abaqus and choose to create a new model database

Analysis Steps 1. Start Abaqus and choose to create a new model database Source: Online tutorials for ABAQUS Problem Description The two dimensional bridge structure, which consists of steel T sections (b=0.25, h=0.25, I=0.125, t f =t w =0.05), is simply supported at its lower

More information

3-D Numerical Simulation of Direct Aluminum Extrusion and Die Deformation

3-D Numerical Simulation of Direct Aluminum Extrusion and Die Deformation 3-D Numerical Simulation of Direct Aluminum Extrusion and Die Deformation ABSTRACT W.A.Assaad, University of Twente Enschede, The Netherlands H.J.M. Geijselaers, University of Twente Enschede, The Netherlands

More information

Torsional-lateral buckling large displacement analysis with a simple beam using Abaqus 6.10

Torsional-lateral buckling large displacement analysis with a simple beam using Abaqus 6.10 Torsional-lateral buckling large displacement analysis with a simple beam using Abaqus 6.10 This document contains an Abaqus tutorial for performing a buckling analysis using the finite element program

More information

Learning Module 8 Shape Optimization

Learning Module 8 Shape Optimization Learning Module 8 Shape Optimization What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner with

More information

Abaqus/CAE (ver. 6.10) Stringer Tutorial

Abaqus/CAE (ver. 6.10) Stringer Tutorial Abaqus/CAE (ver. 6.10) Stringer Tutorial Problem Description A table made of steel tubing with a solid steel top and shelf is loaded with an oblique impulse load. Determine the transient response of the

More information

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force CHAPTER 4 Numerical Models This chapter presents the development of numerical models for sandwich beams/plates subjected to four-point bending and the hydromat test system. Detailed descriptions of the

More information

The part to be analyzed is the bracket from the tutorial of Chapter 3.

The part to be analyzed is the bracket from the tutorial of Chapter 3. Introduction to Solid Modeling Using SolidWorks 2007 COSMOSWorks Tutorial Page 1 In this tutorial, we will use the COSMOSWorks finite element analysis (FEA) program to analyze the response of a component

More information

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Here SolidWorks stress simulation tutorials will be re-visited to show how they

More information

Nerf Blaster Redesign

Nerf Blaster Redesign Nerf Blaster Redesign ME4041 Computer Graphics and CAD April 0, 010 Submitted By: Michael Schulman Greg Mann Table of Contents Introduction. Objectives Modeling. 4 External Components 4 Internal Components.

More information

Abaqus CAE Tutorial 6: Contact Problem

Abaqus CAE Tutorial 6: Contact Problem ENGI 7706/7934: Finite Element Analysis Abaqus CAE Tutorial 6: Contact Problem Problem Description In this problem, a segment of an electrical contact switch (steel) is modeled by displacing the upper

More information

ME 442. Marc/Mentat-2011 Tutorial-1

ME 442. Marc/Mentat-2011 Tutorial-1 ME 442 Overview Marc/Mentat-2011 Tutorial-1 The purpose of this tutorial is to introduce the new user to the MSC/MARC/MENTAT finite element program. It should take about one hour to complete. The MARC/MENTAT

More information

CE366/ME380 Finite Elements in Applied Mechanics I Fall 2007

CE366/ME380 Finite Elements in Applied Mechanics I Fall 2007 CE366/ME380 Finite Elements in Applied Mechanics I Fall 2007 FE Project 1: 2D Plane Stress Analysis of acantilever Beam (Due date =TBD) Figure 1 shows a cantilever beam that is subjected to a concentrated

More information

Abstract. Introduction:

Abstract. Introduction: Abstract This project analyzed a lifecycle test fixture for stress under generic test loading. The maximum stress is expected to occur near the shrink fit pin on the lever arm. The model was constructed

More information

3DEXPERIENCE 2017x FINITE ELEMENT ESSENTIALS IN SDC USING SIMULIA/CATIA APPLICATIONS. Nader G. Zamani

3DEXPERIENCE 2017x FINITE ELEMENT ESSENTIALS IN SDC USING SIMULIA/CATIA APPLICATIONS. Nader G. Zamani Nader G. Zamani FINITE ELEMENT ESSENTIALS IN 3DEXPERIENCE 2017x USING SIMULIA/CATIA APPLICATIONS SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org)

More information

2: Static analysis of a plate

2: Static analysis of a plate 2: Static analysis of a plate Topics covered Project description Using SolidWorks Simulation interface Linear static analysis with solid elements Finding reaction forces Controlling discretization errors

More information

Exercise 2: Mesh Resolution, Element Shapes, Basis Functions & Convergence Analyses

Exercise 2: Mesh Resolution, Element Shapes, Basis Functions & Convergence Analyses Exercise 2: Mesh Resolution, Element Shapes, Basis Functions & Convergence Analyses Goals In this exercise, we will explore the strengths and weaknesses of different element types (tetrahedrons vs. hexahedrons,

More information

Modelling Flat Spring Performance Using FEA

Modelling Flat Spring Performance Using FEA Modelling Flat Spring Performance Using FEA Blessing O Fatola, Patrick Keogh and Ben Hicks Department of Mechanical Engineering, University of Corresponding author bf223@bath.ac.uk Abstract. This paper

More information

Set No. 1 IV B.Tech. I Semester Regular Examinations, November 2010 FINITE ELEMENT METHODS (Mechanical Engineering) Time: 3 Hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks

More information

ES 128: Computer Assignment #4. Due in class on Monday, 12 April 2010

ES 128: Computer Assignment #4. Due in class on Monday, 12 April 2010 ES 128: Computer Assignment #4 Due in class on Monday, 12 April 2010 Task 1. Study an elastic-plastic indentation problem. This problem combines plasticity with contact mechanics and has many rich aspects.

More information

ME Optimization of a Truss

ME Optimization of a Truss ME 475 - Optimization of a Truss Analysis Problem Statement: The following problem will be analyzed using Abaqus and optimized using HEEDS. 4 5 8 2 11 3 10 6 9 1 7 12 6 m 300 kn 300 kn 22 m 35 m Figure

More information

16 SW Simulation design resources

16 SW Simulation design resources 16 SW Simulation design resources 16.1 Introduction This is simply a restatement of the SW Simulation online design scenarios tutorial with a little more visual detail supplied on the various menu picks

More information

Separation Connector. Analysis of Final Design Concepts Document

Separation Connector. Analysis of Final Design Concepts Document Separation Connector By Koll Christianson, Amelia Fuller, Luis Herrera, Zheng Lian, and Shaun Shultz Team 19 Analysis of Final Design Concepts Document Submitted towards partial fulfillment of the requirements

More information

Analysis of ANSI W W 6x9-118,

Analysis of ANSI W W 6x9-118, Page 1 of 8 Analysis of ANSI W W 6x9-118,110236220472 Author: Analysis Created: Analysis Last Modified: Report Created: Introduction Administrator, 08:29:09, 08:29:09 09:26:02 Database: Z:\ENGENHARIA\ESTUDOS

More information

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003 Engineering Analysis with COSMOSWorks SolidWorks 2003 / COSMOSWorks 2003 Paul M. Kurowski Ph.D., P.Eng. SDC PUBLICATIONS Design Generator, Inc. Schroff Development Corporation www.schroff.com www.schroff-europe.com

More information

Workshop 15. Single Pass Rolling of a Thick Plate

Workshop 15. Single Pass Rolling of a Thick Plate Introduction Workshop 15 Single Pass Rolling of a Thick Plate Rolling is a basic manufacturing technique used to transform preformed shapes into a form suitable for further processing. The rolling process

More information

ABAQUS for CATIA V5 Tutorials

ABAQUS for CATIA V5 Tutorials ABAQUS for CATIA V5 Tutorials AFC V2.5 Nader G. Zamani University of Windsor Shuvra Das University of Detroit Mercy SDC PUBLICATIONS Schroff Development Corporation www.schroff.com ABAQUS for CATIA V5,

More information

Case Study- Importing As-Molded Plastic Part Conditions into CAE tools

Case Study- Importing As-Molded Plastic Part Conditions into CAE tools 1 IEI Innova Engineering 1 Park Plaza Suite 980 Irvine, California 92614 Case Study- Importing As-Molded Plastic Part Conditions into CAE tools 2 CONTENTS CONTENTS... 2 EXECUTIVE SUMMARY... 3 APPROACH...

More information

Computer Life (CPL) ISSN: Finite Element Analysis of Bearing Box on SolidWorks

Computer Life (CPL) ISSN: Finite Element Analysis of Bearing Box on SolidWorks Computer Life (CPL) ISSN: 1819-4818 Delivering Quality Science to the World Finite Element Analysis of Bearing Box on SolidWorks Chenling Zheng 1, a, Hang Li 1, b and Jianyong Li 1, c 1 Shandong University

More information

Chapter 3 Analysis of Original Steel Post

Chapter 3 Analysis of Original Steel Post Chapter 3. Analysis of original steel post 35 Chapter 3 Analysis of Original Steel Post This type of post is a real functioning structure. It is in service throughout the rail network of Spain as part

More information

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering Introduction A SolidWorks simulation tutorial is just intended to illustrate where to

More information

Exercise 1. 3-Point Bending Using the GUI and the Bottom-up-Method

Exercise 1. 3-Point Bending Using the GUI and the Bottom-up-Method Exercise 1 3-Point Bending Using the GUI and the Bottom-up-Method Contents Learn how to... 1 Given... 2 Questions... 2 Taking advantage of symmetries... 2 A. Preprocessor (Setting up the Model)... 3 A.1

More information

Validation Report: Additional Data Mapping to Structural Analysis Packages

Validation Report: Additional Data Mapping to Structural Analysis Packages Autodesk Moldflow Structural Alliance 2012 Validation Report: Additional Data Mapping to Structural Analysis Packages Mapping process-induced stress data from Autodesk Moldflow Insight Dual Domain and

More information

Post-Buckling Analysis of a Thin Plate

Post-Buckling Analysis of a Thin Plate LESSON 13b Post-Buckling Analysis of a Thin Plate Objectives: Construct a thin plate (with slight imperfection) Place an axial load on the plate. Run an Advanced FEA nonlinear static analysis in order

More information

ABAQUS/CAE Tutorial: Large Deformation Analysis of Beam-Plate in Bending

ABAQUS/CAE Tutorial: Large Deformation Analysis of Beam-Plate in Bending H. Kim 2004 1 ABAQUS/CAE Tutorial: Large Deformation Analysis of Beam-Plate in Bending Hyonny Kim September 28, 2004 In this tutorial, you ll learn how to: Create a 3D model using shell elements. Conduct

More information

OPTIMIZATION OF ENERGY DISSIPATION PROPERTY OF ECCENTRICALLY BRACED STEEL FRAMES

OPTIMIZATION OF ENERGY DISSIPATION PROPERTY OF ECCENTRICALLY BRACED STEEL FRAMES OPTIMIZATION OF ENERGY DISSIPATION PROPERTY OF ECCENTRICALLY BRACED STEEL FRAMES M. Ohsaki (Hiroshima Univ.) T. Nakajima (Kyoto Univ. (currently Ohbayashi Corp.)) Background Difficulty in optimization

More information

Abaqus CAE Tutorial 1: 2D Plane Truss

Abaqus CAE Tutorial 1: 2D Plane Truss ENGI 7706/7934: Finite Element Analysis Abaqus CAE Tutorial 1: 2D Plane Truss Lab TA: Xiaotong Huo EN 3029B xh0381@mun.ca Download link for Abaqus student edition: http://academy.3ds.com/software/simulia/abaqus-student-edition/

More information

Computational Simulation of Cylindrical Pressure Loading

Computational Simulation of Cylindrical Pressure Loading Computational Simulation of Cylindrical Pressure Loading MEG 795 Special Topics: Energy Methods II Presented By: Nallani Gopi Nov 20, 2003 Department of Mechanical Engineering University of Nevada,Las

More information

Principal Roll Structure Design Using Non-Linear Implicit Optimisation in Radioss

Principal Roll Structure Design Using Non-Linear Implicit Optimisation in Radioss Principal Roll Structure Design Using Non-Linear Implicit Optimisation in Radioss David Mylett, Dr. Simon Gardner Force India Formula One Team Ltd. Dadford Road, Silverstone, Northamptonshire, NN12 8TJ,

More information

ME 475 FEA of a Composite Panel

ME 475 FEA of a Composite Panel ME 475 FEA of a Composite Panel Objectives: To determine the deflection and stress state of a composite panel subjected to asymmetric loading. Introduction: Composite laminates are composed of thin layers

More information

Introduction to 2 nd -order Lagrangian Element in LS-DYNA

Introduction to 2 nd -order Lagrangian Element in LS-DYNA Introduction to 2 nd -order Lagrangian Element in LS-DYNA Hailong Teng Livermore Software Technology Corporation Nov, 2017 Motivation Users are requesting higher order elements for implicit. Replace shells.

More information

Abaqus/CAE (ver. 6.12) Vibrations Tutorial

Abaqus/CAE (ver. 6.12) Vibrations Tutorial Abaqus/CAE (ver. 6.12) Vibrations Tutorial Problem Description The two dimensional bridge structure, which consists of steel T sections, is simply supported at its lower corners. Determine the first 10

More information

LIGO Scissors Table Static Test and Analysis Results

LIGO Scissors Table Static Test and Analysis Results LIGO-T980125-00-D HYTEC-TN-LIGO-31 LIGO Scissors Table Static Test and Analysis Results Eric Swensen and Franz Biehl August 30, 1998 Abstract Static structural tests were conducted on the LIGO scissors

More information

Shell-to-Solid Element Connector(RSSCON)

Shell-to-Solid Element Connector(RSSCON) WORKSHOP 11 Shell-to-Solid Element Connector(RSSCON) Solid Shell MSC.Nastran 105 Exercise Workbook 11-1 11-2 MSC.Nastran 105 Exercise Workbook WORKSHOP 11 Shell-to-Solid Element Connector The introduction

More information

NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN

NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN Vol 4 No 3 NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN Ass Lecturer Mahmoud A Hassan Al-Qadisiyah University College of Engineering hasaaneng@yahoocom ABSTRACT This paper provides some lighting

More information

Tutorial 1: Welded Frame - Problem Description

Tutorial 1: Welded Frame - Problem Description Tutorial 1: Welded Frame - Problem Description Introduction In this first tutorial, we will analyse a simple frame: firstly as a welded frame, and secondly as a pin jointed truss. In each case, we will

More information

WORKSHOP 6.3 WELD FATIGUE USING NOMINAL STRESS METHOD. For ANSYS release 14

WORKSHOP 6.3 WELD FATIGUE USING NOMINAL STRESS METHOD. For ANSYS release 14 WORKSHOP 6.3 WELD FATIGUE USING NOMINAL STRESS METHOD For ANSYS release 14 Objective: In this workshop, a weld fatigue analysis on a VKR-beam with a plate on top using the nominal stress method is demonstrated.

More information

DESIGN AND OPTIMIZATION OF ROTARY TURRET PLATE OF POUCHER MACHINE

DESIGN AND OPTIMIZATION OF ROTARY TURRET PLATE OF POUCHER MACHINE DESIGN AND OPTIMIZATION OF ROTARY TURRET PLATE OF POUCHER MACHINE Jigar G. Patel Institute of Technology, Nirma University, Ahmedabad 382481, India Email:14mmcc17@nirmuni.ac.in Mitesh B. Panchal Mechanical

More information

CE Advanced Structural Analysis. Lab 4 SAP2000 Plane Elasticity

CE Advanced Structural Analysis. Lab 4 SAP2000 Plane Elasticity Department of Civil & Geological Engineering COLLEGE OF ENGINEERING CE 463.3 Advanced Structural Analysis Lab 4 SAP2000 Plane Elasticity February 27 th, 2013 T.A: Ouafi Saha Professor: M. Boulfiza 1. Rectangular

More information

Visit the following websites to learn more about this book:

Visit the following websites to learn more about this book: Visit the following websites to learn more about this book: 6 Introduction to Finite Element Simulation Historically, finite element modeling tools were only capable of solving the simplest engineering

More information

Abaqus/CAE (ver. 6.11) Nonlinear Buckling Tutorial

Abaqus/CAE (ver. 6.11) Nonlinear Buckling Tutorial Abaqus/CAE (ver. 6.11) Nonlinear Buckling Tutorial Problem Description This is the NAFEMS 1 proposed benchmark (Lee s frame buckling) problem. The applied load is based on the normalized (EI/L 2 ) value

More information

ANALYSIS AND OPTIMIZATION OF FLYWHEEL

ANALYSIS AND OPTIMIZATION OF FLYWHEEL Int. J. Mech. Eng. & Rob. Res. 2012 Sushama G Bawane et al., 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 2, July 2012 2012 IJMERR. All Rights Reserved ANALYSIS AND OPTIMIZATION OF FLYWHEEL

More information

Introduction to Abaqus. About this Course

Introduction to Abaqus. About this Course Introduction to Abaqus R 6.12 About this Course Course objectives Upon completion of this course you will be able to: Use Abaqus/CAE to create complete finite element models. Use Abaqus/CAE to submit and

More information

FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS

FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS Problem Description: FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS Instructor: Professor James Sherwood Revised: Dimitri Soteropoulos Programs Utilized: Abaqus/CAE 6.11-2 This tutorial explains how to build

More information

ABAQUS/CAE Workshops

ABAQUS/CAE Workshops ABAQUS/CAE Workshops University of Birmingham ABAQUS Training 27 th / 28 th October 2009 Workshop 1a: Create 3D Part Type: abaqus cae at the command prompt or select abaqus V6.9-1 from the start menu.

More information

Linear and Nonlinear Analysis of a Cantilever Beam

Linear and Nonlinear Analysis of a Cantilever Beam LESSON 1 Linear and Nonlinear Analysis of a Cantilever Beam P L Objectives: Create a beam database to be used for the specified subsequent exercises. Compare small vs. large displacement analysis. Linear

More information

THREE DIMENSIONAL DYNAMIC STRESS ANALYSES FOR A GEAR TEETH USING FINITE ELEMENT METHOD

THREE DIMENSIONAL DYNAMIC STRESS ANALYSES FOR A GEAR TEETH USING FINITE ELEMENT METHOD THREE DIMENSIONAL DYNAMIC STRESS ANALYSES FOR A GEAR TEETH USING FINITE ELEMENT METHOD Haval Kamal Asker Department of Mechanical Engineering, Faculty of Agriculture and Forestry, Duhok University, Duhok,

More information

Introduction. Figure 1 Figure 2 2-D 3-D

Introduction. Figure 1 Figure 2 2-D 3-D Introduction While I for one really enjoy the aspects of amateur radio operating, radios, and antennas associated with our hobby, I also enjoy other aspects, such as the mechanical and structural elements

More information

Static Analysis of Bajaj Pulsar 150 CC Crankshaft Using ANSYS

Static Analysis of Bajaj Pulsar 150 CC Crankshaft Using ANSYS Static Analysis of Bajaj Pulsar 150 CC Crankshaft Using ANSYS Surekha S. Shelke 1, Dr. C. L. Dhamejani 2, A. S. Gadhave 3 1 P.G. Student, Department of Mechanical Engineering, JCOE Kuran 2 Principal, Department

More information

Impact and Postbuckling Analyses

Impact and Postbuckling Analyses ABAQUS/Explicit: Advanced Topics Lecture 8 Impact and Postbuckling Analyses ABAQUS/Explicit: Advanced Topics L8.2 Overview Geometric Imperfections for Postbuckling Analyses ABAQUS/Explicit: Advanced Topics

More information

TUTORIAL 7: Stress Concentrations and Elastic-Plastic (Yielding) Material Behavior Initial Project Space Setup Static Structural ANSYS ZX Plane

TUTORIAL 7: Stress Concentrations and Elastic-Plastic (Yielding) Material Behavior Initial Project Space Setup Static Structural ANSYS ZX Plane TUTORIAL 7: Stress Concentrations and Elastic-Plastic (Yielding) Material Behavior In this tutorial you will learn how to recognize and deal with a common modeling issues involving stress concentrations

More information

Non-Linear Analysis of Bolted Flush End-Plate Steel Beam-to-Column Connection Nur Ashikin Latip, Redzuan Abdulla

Non-Linear Analysis of Bolted Flush End-Plate Steel Beam-to-Column Connection Nur Ashikin Latip, Redzuan Abdulla Non-Linear Analysis of Bolted Flush End-Plate Steel Beam-to-Column Connection Nur Ashikin Latip, Redzuan Abdulla 1 Faculty of Civil Engineering, Universiti Teknologi Malaysia, Malaysia redzuan@utm.my Keywords:

More information

Abaqus/CAE (ver. 6.9) Vibrations Tutorial

Abaqus/CAE (ver. 6.9) Vibrations Tutorial Abaqus/CAE (ver. 6.9) Vibrations Tutorial Problem Description The two dimensional bridge structure, which consists of steel T sections, is simply supported at its lower corners. Determine the first 10

More information

= 21

= 21 CE 331, Spring 2011 Guide for Using RISA3D to Model a Balsa Structure 1 / 9 0. Example Bridge. An example structure is shown below. Typical results for the RISA model of this structure are shown throughout

More information

ME Week 12 Piston Mechanical Event Simulation

ME Week 12 Piston Mechanical Event Simulation Introduction to Mechanical Event Simulation The purpose of this introduction to Mechanical Event Simulation (MES) project is to explorer the dynamic simulation environment of Autodesk Simulation. This

More information

Engineering Analysis with

Engineering Analysis with Engineering Analysis with SolidWorks Simulation 2013 Paul M. Kurowski SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites

More information

Using three-dimensional CURVIC contact models to predict stress concentration effects in an axisymmetric model

Using three-dimensional CURVIC contact models to predict stress concentration effects in an axisymmetric model Boundary Elements XXVII 245 Using three-dimensional CURVIC contact models to predict stress concentration effects in an axisymmetric model J. J. Rencis & S. R. Pisani Department of Mechanical Engineering,

More information

Engineering Analysis with SolidWorks Simulation 2012

Engineering Analysis with SolidWorks Simulation 2012 Engineering Analysis with SolidWorks Simulation 2012 Paul M. Kurowski SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites

More information

Important Note - Please Read:

Important Note - Please Read: Important Note - Please Read: This tutorial requires version 6.01 or later of SAFE to run successfully. You can determine what version of SAFE you have by starting the program and then clicking the Help

More information

Simulation of AJWSP10033_FOLDED _ST_FR

Simulation of AJWSP10033_FOLDED _ST_FR Phone: 01922 453038 www.hyperon-simulation-and-cad-services.co.uk Simulation of AJWSP10033_FOLDED _ST_FR Date: 06 May 2017 Designer: Study name: AJWSP10033_FOLDED_STATIC Analysis type: Static Description

More information

FEA and Topology Optimization of an Engine Mounting Bracket

FEA and Topology Optimization of an Engine Mounting Bracket International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Sanket

More information

Topology Optimization and Analysis of Crane Hook Model

Topology Optimization and Analysis of Crane Hook Model RESEARCH ARTICLE Topology Optimization and Analysis of Crane Hook Model Thejomurthy M.C 1, D.S Ramakrishn 2 1 Dept. of Mechanical engineering, CIT, Gubbi, 572216, India 2 Dept. of Mechanical engineering,

More information

COMPUTER AIDED ENGINEERING. Part-1

COMPUTER AIDED ENGINEERING. Part-1 COMPUTER AIDED ENGINEERING Course no. 7962 Finite Element Modelling and Simulation Finite Element Modelling and Simulation Part-1 Modeling & Simulation System A system exists and operates in time and space.

More information

Finite Element Course ANSYS Mechanical Tutorial Tutorial 3 Cantilever Beam

Finite Element Course ANSYS Mechanical Tutorial Tutorial 3 Cantilever Beam Problem Specification Finite Element Course ANSYS Mechanical Tutorial Tutorial 3 Cantilever Beam Consider the beam in the figure below. It is clamped on the left side and has a point force of 8kN acting

More information

3D SolidWorks Tutorial

3D SolidWorks Tutorial ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING 3D SolidWorks Tutorial Dr. Lynn Fuller webpage: http://people.rit.edu/lffeee Electrical and Microelectronic Engineering Rochester Institute

More information

CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 15 - FINITE ELEMENT ANALYSIS - PART 1

CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 15 - FINITE ELEMENT ANALYSIS - PART 1 Outcome 1 The learner can: CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 15 - FINITE ELEMENT ANALYSIS - PART 1 Calculate stresses, strain and deflections in a range of components under

More information

Design Verification Procedure (DVP) Load Case Analysis of Car Bonnet

Design Verification Procedure (DVP) Load Case Analysis of Car Bonnet Design Verification Procedure (DVP) Load Case Analysis of Car Bonnet Mahesha J 1, Prashanth A S 2 M.Tech Student, Machine Design, Dr. A.I.T, Bangalore, India 1 Asst. Professor, Department of Mechanical

More information

FEA Simulation Approach for Braking Linkage: A Comparison through Cross-section Modification

FEA Simulation Approach for Braking Linkage: A Comparison through Cross-section Modification International Journal of Mechanics and Solids. ISSN 0973-1881 Volume 12, Number 1 (2017), pp. 1-13 Research India Publications http://www.ripublication.com/ijms.htm FEA Simulation Approach for Braking

More information

COLLAPSE LOAD OF PIPE BENDS WITH ASSUMED AND ACTUAL CROSS SECTIONS UNDER IN-PLANE AND OUT-OF-PLANE MOMENTS

COLLAPSE LOAD OF PIPE BENDS WITH ASSUMED AND ACTUAL CROSS SECTIONS UNDER IN-PLANE AND OUT-OF-PLANE MOMENTS VOL., NO., NOVEMBER 6 ISSN 8968 6-6 Asian Research Publishing Network (ARPN). All rights reserved. COLLAPSE LOAD OF PIPE BENDS WITH ASSUMED AND ACTUAL CROSS SECTIONS UNDER IN-PLANE AND OUT-OF-PLANE MOMENTS

More information

Introduction to Nastran SOL 200 Design Sensitivity and Optimization

Introduction to Nastran SOL 200 Design Sensitivity and Optimization Introduction to Nastran SOL 200 Design Sensitivity and Optimization PRESENTED BY: CHRISTIAN APARICIO The Nastran Engineering SOL 200 questions? Lab Email me: christian@ the-engineering-lab.com Motivation

More information

Stress analysis of toroidal shell

Stress analysis of toroidal shell Stress analysis of toroidal shell Cristian PURDEL*, Marcel STERE** *Corresponding author Department of Aerospace Structures INCAS - National Institute for Aerospace Research Elie Carafoli Bdul Iuliu Maniu

More information

Coupled Analysis of FSI

Coupled Analysis of FSI Coupled Analysis of FSI Qin Yin Fan Oct. 11, 2008 Important Key Words Fluid Structure Interface = FSI Computational Fluid Dynamics = CFD Pressure Displacement Analysis = PDA Thermal Stress Analysis = TSA

More information

Enhanced Performance of a Slider Mechanism Through Improved Design Using ADAMS

Enhanced Performance of a Slider Mechanism Through Improved Design Using ADAMS Enhanced Performance of a Slider Mechanism Through Improved Design Using ADAMS (Nazeer Shareef, Sr. R&D Engr., BAYER CORP., Elkhart, IN) Introduction Understanding of the influence of critical parameters

More information

An Efficient Sequential Approach for Simulation of Thermal Stresses in Disc Brakes

An Efficient Sequential Approach for Simulation of Thermal Stresses in Disc Brakes An Efficient Sequential Approach for Simulation of Thermal Stresses in Disc Brakes Asim Rashid 1, Niclas Strömberg 1 1 Jönköping University, SE-55111 Jönköping, Sweden Abstract In this paper an efficient

More information

Crane Hook Design and Analysis

Crane Hook Design and Analysis Crane Hook Design and Analysis G Bhagyaraj 1, K Suryaprakash 2, K Subba Rao 3 1M.Tech. CAD/CAM, Godavari Institute of Engineering and Technology, Rajahmundry 2Associate Professor, Godavari Institute of

More information

Similar Pulley Wheel Description J.E. Akin, Rice University

Similar Pulley Wheel Description J.E. Akin, Rice University Similar Pulley Wheel Description J.E. Akin, Rice University The SolidWorks simulation tutorial on the analysis of an assembly suggested noting another type of boundary condition that is not illustrated

More information