2%34 #5 +,,% ! # %& ()% #% +,,%. & /%0%)( 1 ! # %&# (&)# +, %& ./01 /1&2% # /&

Size: px
Start display at page:

Download "2%34 #5 +,,% ! # %& ()% #% +,,%. & /%0%)( 1 ! # %&# (&)# +, %& ./01 /1&2% # /&"

Transcription

1 ! # %& ()% #% +,,%. & /%0%)( 1 2%34 #5 +,,%! # %&# (&)# +, %&./01 /1&2% # /& & Many slides in this lecture are due to other authors; they are credited on the bottom right

2 &. 4. # 5 9% #:5 # #%,.7 ;

3 34%&( %# &15&#& #)4/ %&+4#+&)# &6%%&

4 2/ 6+&% )1, +% & 74#+&(1&81,&6%%&9&

5 2/ 6+&% )1, +% & : (& 1;&9&

6 2/ 6+&% )1, +% & <# /(&=/6,#>& %)1 /?1 &/6&/ 1 +# +& &

7 34%& 1#>&15&)1,+% &=/6/1 & 31&%Α+ #)+&Β %# / Χ&5 1 & /Α%>6& Humans are remarkably good at this Source: 80 million tiny images by Torralba et al.

8 74#+& / (&15&/ 51 #?1 &)# &Ε%& %Α+ #)+%(&5 1 &# &/ # %9& ΦΓ& %#6, % % +6& 6% #?)6&

9 ./6/1 &#6& %#6, % % +&(%=/)%& Real-time stereo Structure from motion Reconstruction from Internet photo collections NASA Mars Rover Pollefeys et al. Goesele et al.

10 Vision as a source of semantic information slide credit: Fei-Fei, Fergus & Torralba

11 Object categorization sky building flag banner bus face street lamp bus wall cars slide credit: Fei-Fei, Fergus & Torralba

12 Scene and context categorization outdoor city traffic slide credit: Fei-Fei, Fergus & Torralba

13 Qualitative spatial information slanted non-rigid moving object vertical rigid moving object horizontal rigid moving object slide credit: Fei-Fei, Fergus & Torralba

14 748&/6&)1,+% &=/6/1 &(/Η),>+9&

15 Challenges: viewpoint variation Michelangelo slide credit: Fei-Fei, Fergus & Torralba

16 Challenges: illumination image credit: J. Koenderink

17 Challenges: scale slide credit: Fei-Fei, Fergus & Torralba

18 Challenges: non-rigid deformation Xu, Beihong 1943 slide credit: Fei-Fei, Fergus & Torralba

19 Challenges: occlusion Magritte, 1957 slide credit: Fei-Fei, Fergus & Torralba

20 Challenges: background clutter

21 Challenges: object intra-class variation slide credit: Fei-Fei, Fergus & Torralba

22 ! 4% % +&# Ε/,/+8&15&+4%& 1Ε>% & Ι# 8&(/ϑ% % +&ΦΓ&6)% %6&)1,>(&4#=%& /=% & /6%&+1&#& #?),># & ΚΓ&/ # %& & & & & & & & Λ166/Ε>%&61>,?1 6& Μ / &/ & 1 %&)1 6+ #/ +6&Ν 1 %&/ # %6Ο& Π6%& /1 & 1;>%( %&#Ε1,+&+4%&6+,)+, %&15&+4%&;1 >(& Θ%%(&#&)1 Ε/ #?1 &15& %1 %+ /)&# (&6+#?6?)#>& %+41(6& slide credit: Lazebnik

23 Ρ1 %)?1 6&+1&1+4% &(/6)/ >/ %6& Artificial Intelligence Robotics Machine Learning Computer Vision Computer Graphics Cognitive science Neuroscience Image Processing slide credit: Lazebnik

24 A first concrete image processing program in Matlab: Distribution of pixel values Slide credit: Bob Fisher

25 Matlab for image read and display Can also use emacs on files in another window. Slide credit: Bob Fisher

26 Figure output Use File >Export to save *.eps files for printing and documents Slide credit: Bob Fisher

27 Matlab in command window bigf = myjpgload( partbigf,3); [H,W] = size(bigf) H = 384 W = 510 figure(3) % what the 3 above does colormap(gray) % " imagesc(bigf) % " Slide credit: Bob Fisher

28 thehist = zeros(256,1); [H,W] = size(bigf); bigf histogram for r = 1 : H for c = 1 : W value = round(bigf(r,c)); end if value < 0 % array goes 1:256 value = 0; % but image goes 0:255 elseif value > 255 value = 255; end thehist(value+1) = thehist(value+1) + 1; end Slide credit: Bob Fisher

29 figure(4) plot(thehist) axis([0, 255, 0, 1.1*max(thehist)]) Slide credit: Bob Fisher

30 histc histogram builtin % set up bin edges for histogram edges = zeros(256,1); for i = 1 : 256 edges(i) = i-1; end [R,C] = size(bigf); imagevec = reshape(bigf,1,r*c); % make long array thehist = histc(imagevec,edges) ; % do histog. figure(1) plot(thehist) axis([0, 255, 0, 1.1*max(thehist)]) Slide credit: Bob Fisher

31 Histogram Output x Slide credit: Bob Fisher

32 Midlecture Problem Why does the histogram have this shape? x Slide credit: Bob Fisher

33 xv entry screen Slide credit: Bob Fisher

34 xv control panel Slide credit: Bob Fisher

35 Basic xv actions Make control panel appear/disappear: right click on display Make image editor appear/disappear: type e in display Load/Save image: left click Load/Save button Grab from screen: left click Grab button Crop: left click and drag on display, left click on crop Shrink/Expand 10%: type,/. Shrink 1/2 / Double: type < / > Slide credit: Bob Fisher

36 Flat Part Recognition How to recognize these and similar parts Assumptions: Flat, viewed orthographically Good contrast everywhere No specularities Slide credit: Bob Fisher

37 Flat part recognition algorithm 1. Capture image 2. Extract object 3. Compute properties 4. Use properties to compute class 5. Learning model properties for the classes Lecture Plan: Covering each of the steps in more detail with theory, Matlab code and examples Slide credit: Bob Fisher

38 Top level Matlab Dim = 3; % number of feature properties modelfile = input( Model file name\n?, s ); eval([ load,modelfile, NumCls Means ICor ]) run=1; while ~(run == 0) currentimagergb = liveimagejpg currentimage = rgb2gray(currentimagergb); vec = extractprops(currentimage); class = classify(vec,numcls,means,icor,dim) run = input( Do another image (0,1)\n? ); end Slide credit: Bob Fisher

39 Image capture: elementary physics LIGHT SOURCE SCENE SENSOR Figure by Bob Fisher

40 Let s design a camera Idea 1: put a piece of film in front of an object Do we get a reasonable image? Slide by Steve Seitz

41 Pinhole camera Add a barrier to block off most of the rays This reduces blurring The opening is known as the aperture Slide by Steve Seitz

42 Pinhole camera model Pinhole model: Captures pencil of rays all rays through a single point The point is called Center of Projection (focal point) The image is formed on the Image Plane Slide by Steve Seitz

43 Dimensionality reduction: from 3D to 2D 3D world 2D image Point of observation What is preserved? Straight lines, incidence What have we lost? Angles, lengths Slide by A. Efros Figures Stephen E. Palmer, 2002

44 Projection properties Many-to-one: any points along same visual ray map to same point in image Points points But projection of points on focal plane is undefined Lines lines (collinearity is preserved) But lines through focal point (visual rays) project to a point Planes planes (or half-planes) But planes through focal point project to lines slide credit: Lazebnik

45 Vanishing points Each direction in space has its own vanishing point All lines going in that direction converge at that point Exception: directions parallel to the image plane slide credit: Lazebnik

46 Modeling projection f y z x The coordinate system The optical center (O) is at the origin The image plane is parallel to xy-plane (perpendicular to z axis) Source: J. Ponce, S. Seitz

47 Modeling projection f y z Projection equations Compute intersection with image plane of ray from P = (x,y,z) to O Derived using similar triangles x x y ( x, y, z) ( f, f, f z z We get the projection by throwing out the last coordinate: ( x, y, z) ( f x z, f y ) z ) Source: J. Ponce, S. Seitz

48 Homogeneous coordinates x y ( x, y, z) ( f, f ) z z Is this a linear transformation? no division by z is nonlinear Trick: add one more coordinate: homogeneous image coordinates homogeneous scene coordinates Converting from homogeneous coordinates Slide by Steve Seitz

49 Perspective Projection Matrix Projection is a matrix multiplication using homogeneous coordinates

50 divide by the third coordinate Perspective Projection Matrix Projection is a matrix multiplication using homogeneous coordinates = f z y x z y x f / 1 0 1/ ), ( z y f z x f

51 Perspective Projection Matrix Projection is a matrix multiplication using homogeneous coordinates x 0 0 x y 0 0 = y z 1/ f 0 z/ f 1 In practice: lots of coordinate transformations ( f x z, f y z ) divide by the third coordinate 2D point (3x1) = Camera to pixel coord. trans. matrix (3x3) Perspective projection matrix (3x4) World to camera coord. trans. matrix (4x4) 3D point (4x1)

52 Image Capture: Camera basics PHOTOSENSITIVE IMAGING SURFACE FOCUSSABLE LENS DIGITIZER PC Cameras: webcam (c pounds). Machine vision ( pounds). Digitizer: comes with webcam/interface. It handles interlace, video conventions. Various PC peripheral interfaces. Only consider details for serious vision work. Slide credit: Bob Fisher

53 Image Capture: Photon capture TYPICAL SOLID STATE SENSOR RELATIVE SENSITIVITY VISIBLE INFRARED B R WAVELENGTH 1100 Sensitivity varies by wavelength Sensitivity beyond (human) visible range Slide credit: Bob Fisher

54 Image Capture: Photon readout PIXEL PIXEL TIME 1a 1b + 1c 2a 2b + 2c t1 e e + + t2 e e t3 e e e... Photons converted to electrons Shift electrons along row for readout Three sets for 3 colours: red/green/blue Slide credit: Bob Fisher

55 Image Capture: Matlab % capture a 640x480 jpg color image and return it function Im = liveimagejpg(filename) unix( mplayer tv:// -tv... driver=v4l2:width=640:height=480:... device=/dev/video0... -frames 5 -vo jpeg ); unix([ mv jpg, filename,.jpg ]) Im=imread(filename,.jpg ], jpg ); See: man mplayer Slide credit: Bob Fisher

56 Color spaces: RGB space 3 primaries are monochromatic lights (for monitors, correspond to three types of phosphors) Linearly combined to produce other colors Unnatural to manipulate for humans, but good for computers to produce color RGB primaries

57 Color spaces: HSV space (nonlinear) Perceptually meaningful dimensions: Hue, Saturation, Value (Intensity) RGB cube on its vertex

58 Image Capture and Problems A reasonable capture Slide credit: Bob Fisher

59 Image Capture: Focus problems Focus set to one distance. Nearby distances in focus (depth of focus). Further not so well focused. Compare identical lines. Slide credit: Bob Fisher

60 Image Capture: Shadow problems False color to emphasize the shadow location. Often hard to separate from part. Slide credit: Bob Fisher

61 Image Capture: Saturation problems Pixels clip at 255. Slide credit: Bob Fisher

62 Image Capture: Specularities/highlights Saturated pixels set to red. Slide credit: Bob Fisher

63 Image Capture: Non-uniform illumination Contrast on background enhanced: may cause analysis problems. Slide credit: Bob Fisher

64 Image Capture: Radial lens distortion Note straight lines at image edge. May make accurate measurements hard. Slide credit: Bob Fisher

65 Image Capture: Overcoming Problems Shadows, specularities, non-uniform illumination: increase ambient lighting by using light diffusing panels or lots of point lights Depth of Focus: use smaller aperture and brighter light Motion Blur: use shorter capture time and brighter light Saturation: use smaller aperture, reduce gain and adjust gamma Slide credit: Bob Fisher

66 Lens Distortion: more expensive lenses, view from further away Aliasing: use incandescent lights Slide credit: Bob Fisher

67 Illumination control techniques Main cause of problem: point light sources Brightness = B / (surface distance from source) 2 Sharp shadows: Strong illumination variations Slide credit: Bob Fisher

68 Shadow Example Figure and shadow at bottom left emphasized Slide credit: Bob Fisher

69 Lighting control To reduce complications arising from illumination: Increase ambient (all direction) light with light diffuser panels Illumination by camera to move shadows to non-visible places Backlighting panel Slide credit: Bob Fisher

70 LIGHTS NEAR CAMERA DIFFUSER PANEL MUCH LESS SHADOW Slide credit: Bob Fisher

Computer Vision CS 776 Fall 2018

Computer Vision CS 776 Fall 2018 Computer Vision CS 776 Fall 2018 Cameras & Photogrammetry 1 Prof. Alex Berg (Slide credits to many folks on individual slides) Cameras & Photogrammetry 1 Albrecht Dürer early 1500s Brunelleschi, early

More information

Perspective projection. A. Mantegna, Martyrdom of St. Christopher, c. 1450

Perspective projection. A. Mantegna, Martyrdom of St. Christopher, c. 1450 Perspective projection A. Mantegna, Martyrdom of St. Christopher, c. 1450 Overview of next two lectures The pinhole projection model Qualitative properties Perspective projection matrix Cameras with lenses

More information

CMPSCI 670: Computer Vision! Image formation. University of Massachusetts, Amherst September 8, 2014 Instructor: Subhransu Maji

CMPSCI 670: Computer Vision! Image formation. University of Massachusetts, Amherst September 8, 2014 Instructor: Subhransu Maji CMPSCI 670: Computer Vision! Image formation University of Massachusetts, Amherst September 8, 2014 Instructor: Subhransu Maji MATLAB setup and tutorial Does everyone have access to MATLAB yet? EdLab accounts

More information

Image formation - About the course. Grading & Project. Tentative Schedule. Course Content. Students introduction

Image formation - About the course. Grading & Project. Tentative Schedule. Course Content. Students introduction About the course Instructors: Haibin Ling (hbling@temple, Wachman 305) Hours Lecture: Tuesda 5:30-8:00pm, TTLMAN 403B Office hour: Tuesda 3:00-5:00pm, or b appointment Tetbook Computer Vision: Models,

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 5: Projection Reading: Szeliski 2.1 Projection Reading: Szeliski 2.1 Projection Müller Lyer Illusion http://www.michaelbach.de/ot/sze_muelue/index.html Modeling

More information

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor COSC579: Scene Geometry Jeremy Bolton, PhD Assistant Teaching Professor Overview Linear Algebra Review Homogeneous vs non-homogeneous representations Projections and Transformations Scene Geometry The

More information

Projective Geometry and Camera Models

Projective Geometry and Camera Models Projective Geometry and Camera Models Computer Vision CS 43 Brown James Hays Slides from Derek Hoiem, Alexei Efros, Steve Seitz, and David Forsyth Administrative Stuff My Office hours, CIT 375 Monday and

More information

Projective Geometry and Camera Models

Projective Geometry and Camera Models /2/ Projective Geometry and Camera Models Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Note about HW Out before next Tues Prob: covered today, Tues Prob2: covered next Thurs Prob3:

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics 13.01.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar in the summer semester

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Announcements Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics Seminar in the summer semester Current Topics in Computer Vision and Machine Learning Block seminar, presentations in 1 st week

More information

Modeling Light. On Simulating the Visual Experience

Modeling Light. On Simulating the Visual Experience Modeling Light 15-463: Rendering and Image Processing Alexei Efros On Simulating the Visual Experience Just feed the eyes the right data No one will know the difference! Philosophy: Ancient question: Does

More information

Introduction to Computer Vision. Introduction CMPSCI 591A/691A CMPSCI 570/670. Image Formation

Introduction to Computer Vision. Introduction CMPSCI 591A/691A CMPSCI 570/670. Image Formation Introduction CMPSCI 591A/691A CMPSCI 570/670 Image Formation Lecture Outline Light and Optics Pinhole camera model Perspective projection Thin lens model Fundamental equation Distortion: spherical & chromatic

More information

Pinhole Camera Model 10/05/17. Computational Photography Derek Hoiem, University of Illinois

Pinhole Camera Model 10/05/17. Computational Photography Derek Hoiem, University of Illinois Pinhole Camera Model /5/7 Computational Photography Derek Hoiem, University of Illinois Next classes: Single-view Geometry How tall is this woman? How high is the camera? What is the camera rotation? What

More information

Computer Vision Course Lecture 02. Image Formation Light and Color. Ceyhun Burak Akgül, PhD cba-research.com. Spring 2015 Last updated 04/03/2015

Computer Vision Course Lecture 02. Image Formation Light and Color. Ceyhun Burak Akgül, PhD cba-research.com. Spring 2015 Last updated 04/03/2015 Computer Vision Course Lecture 02 Image Formation Light and Color Ceyhun Burak Akgül, PhD cba-research.com Spring 2015 Last updated 04/03/2015 Photo credit: Olivier Teboul vision.mas.ecp.fr/personnel/teboul

More information

12/3/2009. What is Computer Vision? Applications. Application: Assisted driving Pedestrian and car detection. Application: Improving online search

12/3/2009. What is Computer Vision? Applications. Application: Assisted driving Pedestrian and car detection. Application: Improving online search Introduction to Artificial Intelligence V22.0472-001 Fall 2009 Lecture 26: Computer Vision Rob Fergus Dept of Computer Science, Courant Institute, NYU Slides from Andrew Zisserman What is Computer Vision?

More information

Lecture 8: Camera Models

Lecture 8: Camera Models Lecture 8: Camera Models Dr. Juan Carlos Niebles Stanford AI Lab Professor Fei- Fei Li Stanford Vision Lab 1 14- Oct- 15 What we will learn today? Pinhole cameras Cameras & lenses The geometry of pinhole

More information

Understanding Variability

Understanding Variability Understanding Variability Why so different? Light and Optics Pinhole camera model Perspective projection Thin lens model Fundamental equation Distortion: spherical & chromatic aberration, radial distortion

More information

Vision Review: Image Formation. Course web page:

Vision Review: Image Formation. Course web page: Vision Review: Image Formation Course web page: www.cis.udel.edu/~cer/arv September 10, 2002 Announcements Lecture on Thursday will be about Matlab; next Tuesday will be Image Processing The dates some

More information

Capturing light. Source: A. Efros

Capturing light. Source: A. Efros Capturing light Source: A. Efros Review Pinhole projection models What are vanishing points and vanishing lines? What is orthographic projection? How can we approximate orthographic projection? Lenses

More information

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482 Rigid Body Motion and Image Formation Jana Kosecka, CS 482 A free vector is defined by a pair of points : Coordinates of the vector : 1 3D Rotation of Points Euler angles Rotation Matrices in 3D 3 by 3

More information

DD2423 Image Analysis and Computer Vision IMAGE FORMATION. Computational Vision and Active Perception School of Computer Science and Communication

DD2423 Image Analysis and Computer Vision IMAGE FORMATION. Computational Vision and Active Perception School of Computer Science and Communication DD2423 Image Analysis and Computer Vision IMAGE FORMATION Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 8, 2013 1 Image formation Goal:

More information

Recap: Features and filters. Recap: Grouping & fitting. Now: Multiple views 10/29/2008. Epipolar geometry & stereo vision. Why multiple views?

Recap: Features and filters. Recap: Grouping & fitting. Now: Multiple views 10/29/2008. Epipolar geometry & stereo vision. Why multiple views? Recap: Features and filters Epipolar geometry & stereo vision Tuesday, Oct 21 Kristen Grauman UT-Austin Transforming and describing images; textures, colors, edges Recap: Grouping & fitting Now: Multiple

More information

Cameras and Stereo CSE 455. Linda Shapiro

Cameras and Stereo CSE 455. Linda Shapiro Cameras and Stereo CSE 455 Linda Shapiro 1 Müller-Lyer Illusion http://www.michaelbach.de/ot/sze_muelue/index.html What do you know about perspective projection? Vertical lines? Other lines? 2 Image formation

More information

Image Formation. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania

Image Formation. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania Image Formation Antonino Furnari Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania furnari@dmi.unict.it 18/03/2014 Outline Introduction; Geometric Primitives

More information

CS 563 Advanced Topics in Computer Graphics Camera Models. by Kevin Kardian

CS 563 Advanced Topics in Computer Graphics Camera Models. by Kevin Kardian CS 563 Advanced Topics in Computer Graphics Camera Models by Kevin Kardian Introduction Pinhole camera is insufficient Everything in perfect focus Less realistic Different camera models are possible Create

More information

Representing the World

Representing the World Table of Contents Representing the World...1 Sensory Transducers...1 The Lateral Geniculate Nucleus (LGN)... 2 Areas V1 to V5 the Visual Cortex... 2 Computer Vision... 3 Intensity Images... 3 Image Focusing...

More information

Image formation. Thanks to Peter Corke and Chuck Dyer for the use of some slides

Image formation. Thanks to Peter Corke and Chuck Dyer for the use of some slides Image formation Thanks to Peter Corke and Chuck Dyer for the use of some slides Image Formation Vision infers world properties form images. How do images depend on these properties? Two key elements Geometry

More information

How to achieve this goal? (1) Cameras

How to achieve this goal? (1) Cameras How to achieve this goal? (1) Cameras History, progression and comparisons of different Cameras and optics. Geometry, Linear Algebra Images Image from Chris Jaynes, U. Kentucky Discrete vs. Continuous

More information

MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration

MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration Image formation How are objects in the world captured in an image? Phsical parameters of image formation Geometric Tpe of projection Camera

More information

ECE-161C Cameras. Nuno Vasconcelos ECE Department, UCSD

ECE-161C Cameras. Nuno Vasconcelos ECE Department, UCSD ECE-161C Cameras Nuno Vasconcelos ECE Department, UCSD Image formation all image understanding starts with understanding of image formation: projection of a scene from 3D world into image on 2D plane 2

More information

Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Image Formation I Chapter 1 (Forsyth&Ponce) Cameras Image Formation I Chapter 1 (Forsyth&Ponce) Cameras Guido Gerig CS 632 Spring 213 cknowledgements: Slides used from Prof. Trevor Darrell, (http://www.eecs.berkeley.edu/~trevor/cs28.html) Some slides modified

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2013 TTh 17:30-18:45 FDH 204 Lecture 18 130404 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Object Recognition Intro (Chapter 14) Slides from

More information

Object and Class Recognition I:

Object and Class Recognition I: Object and Class Recognition I: Object Recognition Lectures 10 Sources ICCV 2005 short courses Li Fei-Fei (UIUC), Rob Fergus (Oxford-MIT), Antonio Torralba (MIT) http://people.csail.mit.edu/torralba/iccv2005

More information

Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Image Formation I Chapter 1 (Forsyth&Ponce) Cameras Image Formation I Chapter 1 (Forsyth&Ponce) Cameras Guido Gerig CS 632 Spring 215 cknowledgements: Slides used from Prof. Trevor Darrell, (http://www.eecs.berkeley.edu/~trevor/cs28.html) Some slides modified

More information

What do we mean by recognition?

What do we mean by recognition? Announcements Recognition Project 3 due today Project 4 out today (help session + photos end-of-class) The Margaret Thatcher Illusion, by Peter Thompson Readings Szeliski, Chapter 14 1 Recognition What

More information

Topics and things to know about them:

Topics and things to know about them: Practice Final CMSC 427 Distributed Tuesday, December 11, 2007 Review Session, Monday, December 17, 5:00pm, 4424 AV Williams Final: 10:30 AM Wednesday, December 19, 2007 General Guidelines: The final will

More information

Local cues and global constraints in image understanding

Local cues and global constraints in image understanding Local cues and global constraints in image understanding Olga Barinova Lomonosov Moscow State University *Many slides adopted from the courses of Anton Konushin Image understanding «To see means to know

More information

CS 130 Final. Fall 2015

CS 130 Final. Fall 2015 CS 130 Final Fall 2015 Name Student ID Signature You may not ask any questions during the test. If you believe that there is something wrong with a question, write down what you think the question is trying

More information

Lecture 1 Image Formation.

Lecture 1 Image Formation. Lecture 1 Image Formation peimt@bit.edu.cn 1 Part 3 Color 2 Color v The light coming out of sources or reflected from surfaces has more or less energy at different wavelengths v The visual system responds

More information

Verification: is that a lamp? What do we mean by recognition? Recognition. Recognition

Verification: is that a lamp? What do we mean by recognition? Recognition. Recognition Recognition Recognition The Margaret Thatcher Illusion, by Peter Thompson The Margaret Thatcher Illusion, by Peter Thompson Readings C. Bishop, Neural Networks for Pattern Recognition, Oxford University

More information

Why is computer vision difficult?

Why is computer vision difficult? Why is computer vision difficult? Viewpoint variation Illumination Scale Why is computer vision difficult? Intra-class variation Motion (Source: S. Lazebnik) Background clutter Occlusion Challenges: local

More information

Capturing Light: Geometry of Image Formation

Capturing Light: Geometry of Image Formation Capturing Light: Geometry of Image Formation Computer Vision James Hays Slides from Derek Hoiem, Alexei Efros, Steve Seitz, and David Forsyth Administrative Stuff My Office hours, CoC building 35 Monday

More information

Distributed Ray Tracing

Distributed Ray Tracing CT5510: Computer Graphics Distributed Ray Tracing BOCHANG MOON Distributed Ray Tracing Motivation The classical ray tracing produces very clean images (look fake) Perfect focus Perfect reflections Sharp

More information

Colour Reading: Chapter 6. Black body radiators

Colour Reading: Chapter 6. Black body radiators Colour Reading: Chapter 6 Light is produced in different amounts at different wavelengths by each light source Light is differentially reflected at each wavelength, which gives objects their natural colours

More information

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision.

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision. Announcements HW1 has been posted See links on web page for readings on color. Introduction to Computer Vision CSE 152 Lecture 6 Deviations from the lens model Deviations from this ideal are aberrations

More information

Minimizing Noise and Bias in 3D DIC. Correlated Solutions, Inc.

Minimizing Noise and Bias in 3D DIC. Correlated Solutions, Inc. Minimizing Noise and Bias in 3D DIC Correlated Solutions, Inc. Overview Overview of Noise and Bias Digital Image Correlation Background/Tracking Function Minimizing Noise Focus Contrast/Lighting Glare

More information

Computer Vision Project-1

Computer Vision Project-1 University of Utah, School Of Computing Computer Vision Project- Singla, Sumedha sumedha.singla@utah.edu (00877456 February, 205 Theoretical Problems. Pinhole Camera (a A straight line in the world space

More information

CS201 Computer Vision Lect 4 - Image Formation

CS201 Computer Vision Lect 4 - Image Formation CS201 Computer Vision Lect 4 - Image Formation John Magee 9 September, 2014 Slides courtesy of Diane H. Theriault Question of the Day: Why is Computer Vision hard? Something to think about from our view

More information

Local features: detection and description. Local invariant features

Local features: detection and description. Local invariant features Local features: detection and description Local invariant features Detection of interest points Harris corner detection Scale invariant blob detection: LoG Description of local patches SIFT : Histograms

More information

Perception II: Pinhole camera and Stereo Vision

Perception II: Pinhole camera and Stereo Vision Perception II: Pinhole camera and Stereo Vision Davide Scaramuzza Margarita Chli, Paul Furgale, Marco Hutter, Roland Siegwart 1 Mobile Robot Control Scheme knowledge, data base mission commands Localization

More information

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration Camera Calibration Jesus J Caban Schedule! Today:! Camera calibration! Wednesday:! Lecture: Motion & Optical Flow! Monday:! Lecture: Medical Imaging! Final presentations:! Nov 29 th : W. Griffin! Dec 1

More information

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision What Happened Last Time? Human 3D perception (3D cinema) Computational stereo Intuitive explanation of what is meant by disparity Stereo matching

More information

Models and The Viewing Pipeline. Jian Huang CS456

Models and The Viewing Pipeline. Jian Huang CS456 Models and The Viewing Pipeline Jian Huang CS456 Vertex coordinates list, polygon table and (maybe) edge table Auxiliary: Per vertex normal Neighborhood information, arranged with regard to vertices and

More information

Image Formation I Chapter 2 (R. Szelisky)

Image Formation I Chapter 2 (R. Szelisky) Image Formation I Chapter 2 (R. Selisky) Guido Gerig CS 632 Spring 22 cknowledgements: Slides used from Prof. Trevor Darrell, (http://www.eecs.berkeley.edu/~trevor/cs28.html) Some slides modified from

More information

CHAPTER 3. Single-view Geometry. 1. Consequences of Projection

CHAPTER 3. Single-view Geometry. 1. Consequences of Projection CHAPTER 3 Single-view Geometry When we open an eye or take a photograph, we see only a flattened, two-dimensional projection of the physical underlying scene. The consequences are numerous and startling.

More information

COS429: COMPUTER VISON CAMERAS AND PROJECTIONS (2 lectures)

COS429: COMPUTER VISON CAMERAS AND PROJECTIONS (2 lectures) COS429: COMPUTER VISON CMERS ND PROJECTIONS (2 lectures) Pinhole cameras Camera with lenses Sensing nalytical Euclidean geometry The intrinsic parameters of a camera The extrinsic parameters of a camera

More information

Depth. Common Classification Tasks. Example: AlexNet. Another Example: Inception. Another Example: Inception. Depth

Depth. Common Classification Tasks. Example: AlexNet. Another Example: Inception. Another Example: Inception. Depth Common Classification Tasks Recognition of individual objects/faces Analyze object-specific features (e.g., key points) Train with images from different viewing angles Recognition of object classes Analyze

More information

Instance-level recognition I. - Camera geometry and image alignment

Instance-level recognition I. - Camera geometry and image alignment Reconnaissance d objets et vision artificielle 2011 Instance-level recognition I. - Camera geometry and image alignment Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire

More information

An introduction to 3D image reconstruction and understanding concepts and ideas

An introduction to 3D image reconstruction and understanding concepts and ideas Introduction to 3D image reconstruction An introduction to 3D image reconstruction and understanding concepts and ideas Samuele Carli Martin Hellmich 5 febbraio 2013 1 icsc2013 Carli S. Hellmich M. (CERN)

More information

CS4670: Computer Vision

CS4670: Computer Vision CS467: Computer Vision Noah Snavely Lecture 13: Projection, Part 2 Perspective study of a vase by Paolo Uccello Szeliski 2.1.3-2.1.6 Reading Announcements Project 2a due Friday, 8:59pm Project 2b out Friday

More information

Camera Calibration. COS 429 Princeton University

Camera Calibration. COS 429 Princeton University Camera Calibration COS 429 Princeton University Point Correspondences What can you figure out from point correspondences? Noah Snavely Point Correspondences X 1 X 4 X 3 X 2 X 5 X 6 X 7 p 1,1 p 1,2 p 1,3

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Lecture 11 MRF s (conbnued), cameras and lenses.

Lecture 11 MRF s (conbnued), cameras and lenses. 6.869 Advances in Computer Vision Bill Freeman and Antonio Torralba Spring 2011 Lecture 11 MRF s (conbnued), cameras and lenses. remember correction on Gibbs sampling Motion application image patches image

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 WRI C225 Lecture 02 130124 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Basics Image Formation Image Processing 3 Intelligent

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 17 130402 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Background Subtraction Stauffer and Grimson

More information

Stereo imaging ideal geometry

Stereo imaging ideal geometry Stereo imaging ideal geometry (X,Y,Z) Z f (x L,y L ) f (x R,y R ) Optical axes are parallel Optical axes separated by baseline, b. Line connecting lens centers is perpendicular to the optical axis, and

More information

PART A Three-Dimensional Measurement with iwitness

PART A Three-Dimensional Measurement with iwitness PART A Three-Dimensional Measurement with iwitness A1. The Basic Process The iwitness software system enables a user to convert two-dimensional (2D) coordinate (x,y) information of feature points on an

More information

3D graphics, raster and colors CS312 Fall 2010

3D graphics, raster and colors CS312 Fall 2010 Computer Graphics 3D graphics, raster and colors CS312 Fall 2010 Shift in CG Application Markets 1989-2000 2000 1989 3D Graphics Object description 3D graphics model Visualization 2D projection that simulates

More information

BIL Computer Vision Apr 16, 2014

BIL Computer Vision Apr 16, 2014 BIL 719 - Computer Vision Apr 16, 2014 Binocular Stereo (cont d.), Structure from Motion Aykut Erdem Dept. of Computer Engineering Hacettepe University Slide credit: S. Lazebnik Basic stereo matching algorithm

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Today: dense 3D reconstruction The matching problem

More information

3D Sensing. 3D Shape from X. Perspective Geometry. Camera Model. Camera Calibration. General Stereo Triangulation.

3D Sensing. 3D Shape from X. Perspective Geometry. Camera Model. Camera Calibration. General Stereo Triangulation. 3D Sensing 3D Shape from X Perspective Geometry Camera Model Camera Calibration General Stereo Triangulation 3D Reconstruction 3D Shape from X shading silhouette texture stereo light striping motion mainly

More information

CS 464 Review. Review of Computer Graphics for Final Exam

CS 464 Review. Review of Computer Graphics for Final Exam CS 464 Review Review of Computer Graphics for Final Exam Goal: Draw 3D Scenes on Display Device 3D Scene Abstract Model Framebuffer Matrix of Screen Pixels In Computer Graphics: If it looks right then

More information

Cameras and Radiometry. Last lecture in a nutshell. Conversion Euclidean -> Homogenous -> Euclidean. Affine Camera Model. Simplified Camera Models

Cameras and Radiometry. Last lecture in a nutshell. Conversion Euclidean -> Homogenous -> Euclidean. Affine Camera Model. Simplified Camera Models Cameras and Radiometry Last lecture in a nutshell CSE 252A Lecture 5 Conversion Euclidean -> Homogenous -> Euclidean In 2-D Euclidean -> Homogenous: (x, y) -> k (x,y,1) Homogenous -> Euclidean: (x, y,

More information

Binocular Stereo Vision. System 6 Introduction Is there a Wedge in this 3D scene?

Binocular Stereo Vision. System 6 Introduction Is there a Wedge in this 3D scene? System 6 Introduction Is there a Wedge in this 3D scene? Binocular Stereo Vision Data a stereo pair of images! Given two 2D images of an object, how can we reconstruct 3D awareness of it? AV: 3D recognition

More information

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009 Model s Lecture 3 Sections 2.2, 4.4 World s Eye s Clip s s s Window s Hampden-Sydney College Mon, Aug 31, 2009 Outline Model s World s Eye s Clip s s s Window s 1 2 3 Model s World s Eye s Clip s s s Window

More information

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation Obviously, this is a very slow process and not suitable for dynamic scenes. To speed things up, we can use a laser that projects a vertical line of light onto the scene. This laser rotates around its vertical

More information

6.819 / 6.869: Advances in Computer Vision Antonio Torralba and Bill Freeman. Lecture 11 Geometry, Camera Calibration, and Stereo.

6.819 / 6.869: Advances in Computer Vision Antonio Torralba and Bill Freeman. Lecture 11 Geometry, Camera Calibration, and Stereo. 6.819 / 6.869: Advances in Computer Vision Antonio Torralba and Bill Freeman Lecture 11 Geometry, Camera Calibration, and Stereo. 2d from 3d; 3d from multiple 2d measurements? 2d 3d? Perspective projection

More information

Feature descriptors and matching

Feature descriptors and matching Feature descriptors and matching Detections at multiple scales Invariance of MOPS Intensity Scale Rotation Color and Lighting Out-of-plane rotation Out-of-plane rotation Better representation than color:

More information

L16. Scan Matching and Image Formation

L16. Scan Matching and Image Formation EECS568 Mobile Robotics: Methods and Principles Prof. Edwin Olson L16. Scan Matching and Image Formation Scan Matching Before After 2 Scan Matching Before After 2 Map matching has to be fast 14 robots

More information

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Shading Models. Welcome!

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Shading Models. Welcome! INFOGR Computer Graphics J. Bikker - April-July 2016 - Lecture 10: Shading Models Welcome! Today s Agenda: Introduction Light Transport Materials Sensors Shading INFOGR Lecture 10 Shading Models 3 Introduction

More information

Non-axially-symmetric Lens with extended depth of focus for Machine Vision applications

Non-axially-symmetric Lens with extended depth of focus for Machine Vision applications Non-axially-symmetric Lens with extended depth of focus for Machine Vision applications Category: Sensors & Measuring Techniques Reference: TDI0040 Broker Company Name: D Appolonia Broker Name: Tanya Scalia

More information

Robotics - Projective Geometry and Camera model. Marcello Restelli

Robotics - Projective Geometry and Camera model. Marcello Restelli Robotics - Projective Geometr and Camera model Marcello Restelli marcello.restelli@polimi.it Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano Ma 2013 Inspired from Matteo

More information

(0, 1, 1) (0, 1, 1) (0, 1, 0) What is light? What is color? Terminology

(0, 1, 1) (0, 1, 1) (0, 1, 0) What is light? What is color? Terminology lecture 23 (0, 1, 1) (0, 0, 0) (0, 0, 1) (0, 1, 1) (1, 1, 1) (1, 1, 0) (0, 1, 0) hue - which ''? saturation - how pure? luminance (value) - intensity What is light? What is? Light consists of electromagnetic

More information

Other approaches to obtaining 3D structure

Other approaches to obtaining 3D structure Other approaches to obtaining 3D structure Active stereo with structured light Project structured light patterns onto the object simplifies the correspondence problem Allows us to use only one camera camera

More information

Agenda. Rotations. Camera models. Camera calibration. Homographies

Agenda. Rotations. Camera models. Camera calibration. Homographies Agenda Rotations Camera models Camera calibration Homographies D Rotations R Y = Z r r r r r r r r r Y Z Think of as change of basis where ri = r(i,:) are orthonormal basis vectors r rotated coordinate

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who 1 in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline Computergrafik Today Rendering pipeline s View volumes, clipping Viewport Matthias Zwicker Universität Bern Herbst 2008 Rendering pipeline Rendering pipeline Hardware & software that draws 3D scenes on

More information

521466S Machine Vision Exercise #1 Camera models

521466S Machine Vision Exercise #1 Camera models 52466S Machine Vision Exercise # Camera models. Pinhole camera. The perspective projection equations or a pinhole camera are x n = x c, = y c, where x n = [x n, ] are the normalized image coordinates,

More information

Pipeline Operations. CS 4620 Lecture 10

Pipeline Operations. CS 4620 Lecture 10 Pipeline Operations CS 4620 Lecture 10 2008 Steve Marschner 1 Hidden surface elimination Goal is to figure out which color to make the pixels based on what s in front of what. Hidden surface elimination

More information

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Orthogonal Projection Matrices 1 Objectives Derive the projection matrices used for standard orthogonal projections Introduce oblique projections Introduce projection normalization 2 Normalization Rather

More information

ECE Digital Image Processing and Introduction to Computer Vision. Outline

ECE Digital Image Processing and Introduction to Computer Vision. Outline ECE592-064 Digital Image Processing and Introduction to Computer Vision Depart. of ECE, NC State University Instructor: Tianfu (Matt) Wu Spring 2017 1. Recap Outline 2. Modeling Projection and Projection

More information

Perspective Projection [2 pts]

Perspective Projection [2 pts] Instructions: CSE252a Computer Vision Assignment 1 Instructor: Ben Ochoa Due: Thursday, October 23, 11:59 PM Submit your assignment electronically by email to iskwak+252a@cs.ucsd.edu with the subject line

More information

ECE 470: Homework 5. Due Tuesday, October 27 in Seth Hutchinson. Luke A. Wendt

ECE 470: Homework 5. Due Tuesday, October 27 in Seth Hutchinson. Luke A. Wendt ECE 47: Homework 5 Due Tuesday, October 7 in class @:3pm Seth Hutchinson Luke A Wendt ECE 47 : Homework 5 Consider a camera with focal length λ = Suppose the optical axis of the camera is aligned with

More information

Color. making some recognition problems easy. is 400nm (blue) to 700 nm (red) more; ex. X-rays, infrared, radio waves. n Used heavily in human vision

Color. making some recognition problems easy. is 400nm (blue) to 700 nm (red) more; ex. X-rays, infrared, radio waves. n Used heavily in human vision Color n Used heavily in human vision n Color is a pixel property, making some recognition problems easy n Visible spectrum for humans is 400nm (blue) to 700 nm (red) n Machines can see much more; ex. X-rays,

More information

Low-level Vision Processing Algorithms Speaker: Ito, Dang Supporter: Ishii, Toyama and Y. Murakami

Low-level Vision Processing Algorithms Speaker: Ito, Dang Supporter: Ishii, Toyama and Y. Murakami Low-level Vision Processing Algorithms Speaker: Ito, Dang Supporter: Ishii, Toyama and Y. Murakami Adaptive Systems Lab The University of Aizu Overview Introduction What is Vision Processing? Basic Knowledge

More information

Discriminant Functions for the Normal Density

Discriminant Functions for the Normal Density Announcements Project Meetings CSE Rm. 4120 HW1: Not yet posted Pattern classification & Image Formation CSE 190 Lecture 5 CSE190d, Winter 2011 CSE190d, Winter 2011 Discriminant Functions for the Normal

More information

Recap from Previous Lecture

Recap from Previous Lecture Recap from Previous Lecture Tone Mapping Preserve local contrast or detail at the expense of large scale contrast. Changing the brightness within objects or surfaces unequally leads to halos. We are now

More information

Snakes, level sets and graphcuts. (Deformable models)

Snakes, level sets and graphcuts. (Deformable models) INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGIES BULGARIAN ACADEMY OF SCIENCE Snakes, level sets and graphcuts (Deformable models) Centro de Visión por Computador, Departament de Matemàtica Aplicada

More information

Color to Binary Vision. The assignment Irfanview: A good utility Two parts: More challenging (Extra Credit) Lighting.

Color to Binary Vision. The assignment Irfanview: A good utility Two parts: More challenging (Extra Credit) Lighting. Announcements Color to Binary Vision CSE 90-B Lecture 5 First assignment was available last Thursday Use whatever language you want. Link to matlab resources from web page Always check web page for updates

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Wide baseline matching (SIFT) Today: dense 3D reconstruction

More information