Shape optimization under convexity constraint

Size: px
Start display at page:

Download "Shape optimization under convexity constraint"

Transcription

1 Shape optimization under convexity constraint Jimmy LAMBOLEY Université Paris-Dauphine ANR GAOS Work with D. Bucur, I. Fragalà, E. Harrell, A. Henrot, M. Pierre, A. Novruzi 03/04/2012, PICOF J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 1 / 20

2 Examples Isoperimetric problems : min P(Ω). Ω R d, Ω =V 0 Spectral problems : min λ 1 (Ω). Ω R d, Ω =V 0 J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 2 / 20

3 Newton s problem, of the body of minimal resitance Let D = D(0, 1) in R 2. { 1 min, f : D [0, M], f concave 1 + f 2 D Numerical computations : T. Lachand-Robert, E. Oudet, 2004 : M =3/2 M =1 J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 3 / 20

4 Mahler conjecture Conjecture : Is the cube Q d := [ 1, 1] d solution of { min M(K ) := K K, K convex of R d, K = K? K := { ξ R d, ξ, x 1, x K. J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 4 / 20

5 Pólya-Szegö conjecture The electrostatic capacity of a bounded set Ω R 3 is defined by Cap(Ω) := R 3 \Ω u Ω 2 u Ω = 0 in R 3 \ Ω where u Ω = 1 on Ω lim u Ω = 0 x + Is the disk D R 3 solution of : min Cap(K )? K convex of R 3, P(K )=P 0 J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 5 / 20

6 Pólya-Szegö conjecture The electrostatic capacity of a bounded set Ω R 3 is defined by Cap(Ω) := R 3 \Ω u Ω 2 u Ω = 0 in R 3 \ Ω where u Ω = 1 on Ω lim u Ω = 0 x + Is the disk D R 3 solution of : min Cap(K )? K convex of R 3, P(K )=P 0 J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 5 / 20

7 Examples Reverse Isoperimetric problems : max P(Ω). Ω D, Ω =V 0 Reverse Spectral problems : max λ 1 (Ω). Ω D, Ω =V 0 J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 6 / 20

8 We want to analyze problem such as min J(K ), K convex of R d where J is a shape functional which satisfies a concavity property. Existence is usually easy, Geometric informations on the minimizers? Find the minimizer. Difficulty : If K is convex, the neighbors of K are mostly not convex. How can we write and use optimality conditions? J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 7 / 20

9 We want to analyze problem such as min J(K ), K convex of R d where J is a shape functional which satisfies a concavity property. Existence is usually easy, Geometric informations on the minimizers? Find the minimizer. Difficulty : If K is convex, the neighbors of K are mostly not convex. How can we write and use optimality conditions? J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 7 / 20

10 2-dimensional case Outline 1 2-dimensional case A calculus of variations formulation Polygons as optimal shapes 2 Higher dimensional case J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 8 / 20

11 2-dimensional case A calculus of variations formulation Outline 1 2-dimensional case A calculus of variations formulation Polygons as optimal shapes 2 Higher dimensional case J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 9 / 20

12 2-dimensional case A calculus of variations formulation Linear Parametrization of the convexity To a periodic function u : T R +, we associate K u = { (r, θ) ; 0 r < 1/u(θ). 1 u(θ) K u O θ Parametrization of a starshaped set. Then K u convex u + u 0. J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 10 / 20

13 2-dimensional case A calculus of variations formulation Linear Parametrization of the convexity To a periodic function u : T R +, we associate K u = { (r, θ) ; 0 r < 1/u(θ). 1 u(θ) K u O θ Parametrization of a starshaped set. Then K u convex u + u 0. J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 10 / 20

14 2-dimensional case A calculus of variations formulation Linear Parametrization of the convexity Therefore we get a one-to-one correspondance {2d convex sets {v > 0 H 1 (T) such that v + v 0 K u u J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 11 / 20

15 2-dimensional case A calculus of variations formulation New setting of the problem min J(K ) K F ad K convex { min j(u) := J(K u ) u S ad u +u 0 where S ad is a functional space taking into account the other constraints. Examples : S ad = {u : T R / u 2 u u 1 K 1 K 2 K S ad = { u : T R / K u = 1 T 2u 2 (θ) dθ = V 0 J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 12 / 20

16 2-dimensional case A calculus of variations formulation New setting of the problem min J(K ) K F ad K convex { min j(u) := J(K u ) u S ad u +u 0 where S ad is a functional space taking into account the other constraints. Examples : S ad = {u : T R / u 2 u u 1 K 1 K 2 K S ad = { u : T R / K u = 1 T 2u 2 (θ) dθ = V 0 J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 12 / 20

17 2-dimensional case Polygons as optimal shapes Outline 1 2-dimensional case A calculus of variations formulation Polygons as optimal shapes 2 Higher dimensional case J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 13 / 20

18 2-dimensional case Polygons as optimal shapes Case of geometric functionals min j(u) := G(θ, u(θ), u (θ))dθ u +u 0 T Theorem (L., Novruzi, 2008) If G is strictly concave in the third variable, then solutions are polygons. Application to Reverse isoperimetry : min {µ K P(K ), K convex, D 1 K D 2 Application to Mahler in R 2 (with E. Harrell, A. Henrot) : [ 1, 1] 2. J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 14 / 20

19 2-dimensional case Polygons as optimal shapes Case of geometric functionals min j(u) := G(θ, u(θ), u (θ))dθ u +u 0 T Theorem (L., Novruzi, 2008) If G is strictly concave in the third variable, then solutions are polygons. Application to Reverse isoperimetry : min {µ K P(K ), K convex, D 1 K D 2 Application to Mahler in R 2 (with E. Harrell, A. Henrot) : [ 1, 1] 2. J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 14 / 20

20 2-dimensional case Polygons as optimal shapes Case of non geometric functionnals min j(u) := J(K u) u +u 0 Theorem (L., Novruzi, Pierre, 2011) We assume j smooth and j (u)(v, v) α v 2 H 1 a (T) β v 2, for some β > 0 and 0 < a 1. H 1 (T) Then solutions are polygons. Application to min {λ 1 (K ) P(K ), K convex D, K = V 0 J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 15 / 20

21 2-dimensional case Polygons as optimal shapes Reverse Faber-Krahn We look at max {λ 1 (K ), K convex D, K = V 0 j(u) := λ 1 (K u ) + µ K u Lemma (L., Novruzi, Pierre, 2011) If K u is convex and v supported where K u is smooth, then d 2 du 2 λ 1(K u ) (v, v) C v 2 L 2 (T) β v 2 H 1 2 (T). Conclusion : any solution is nowhere smooth and strictly convex. J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 16 / 20

22 2-dimensional case Polygons as optimal shapes Reverse Faber-Krahn We look at max {λ 1 (K ), K convex D, K = V 0 j(u) := λ 1 (K u ) + µ K u Lemma (L., Novruzi, Pierre, 2011) If K u is convex and v supported where K u is smooth, then d 2 du 2 λ 1(K u ) (v, v) C v 2 L 2 (T) β v 2 H 1 2 (T). Conclusion : any solution is nowhere smooth and strictly convex. J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 16 / 20

23 Higher dimensional case Outline 1 2-dimensional case A calculus of variations formulation Polygons as optimal shapes 2 Higher dimensional case J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 17 / 20

24 Higher dimensional case About Pólya-Szegö conjecture min {J(K ) := f ( K, λ 1 (K ), Cap(K )), K convex R d, P (K ) = P 0 Theorem (Bucur, Fragalà, L. 2010) Assume J is positive, (1-)homogeneous and smooth, and K 0 is a solution. Then, if K 0 contains a relatively open set ω of class C 2, then the Gauss curvature vanishes on ω. Pólya-Szegö conjecture : J(K ) = Cap(K ). J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 18 / 20

25 Higher dimensional case About Mahler conjecture { min J(K ) := K K, K convex R d, K = K, Theorem (Harrell, Henrot, L. 2011) Let K 0 be a minimizer. If K 0 contains a relatively open set ω of class C 2, then the Gauss curvature vanishes on ω. Improvement using Monge-Ampere equation and Transport Theory (work in Progress with Carlier and Gangbo). J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 19 / 20

26 Higher dimensional case Open questions max{λ 1 (K ) / K convex D, K = V 0 in R 2? Nowhere strictly convex in higher dimension? Polyhedral solutions in higher dimension? J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 20 / 20

APPROXIMATING PDE s IN L 1

APPROXIMATING PDE s IN L 1 APPROXIMATING PDE s IN L 1 Veselin Dobrev Jean-Luc Guermond Bojan Popov Department of Mathematics Texas A&M University NONLINEAR APPROXIMATION TECHNIQUES USING L 1 Texas A&M May 16-18, 2008 Outline 1 Outline

More information

Numerical Methods on the Image Processing Problems

Numerical Methods on the Image Processing Problems Numerical Methods on the Image Processing Problems Department of Mathematics and Statistics Mississippi State University December 13, 2006 Objective Develop efficient PDE (partial differential equations)

More information

THE DNA INEQUALITY POWER ROUND

THE DNA INEQUALITY POWER ROUND THE DNA INEQUALITY POWER ROUND Instructions Write/draw all solutions neatly, with at most one question per page, clearly numbered. Turn in the solutions in numerical order, with your team name at the upper

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

SMOOTH POLYHEDRAL SURFACES

SMOOTH POLYHEDRAL SURFACES SMOOTH POLYHEDRAL SURFACES Felix Günther Université de Genève and Technische Universität Berlin Geometry Workshop in Obergurgl 2017 PRELUDE Złote Tarasy shopping mall in Warsaw PRELUDE Złote Tarasy shopping

More information

A PARAMETRIC SIMPLEX METHOD FOR OPTIMIZING A LINEAR FUNCTION OVER THE EFFICIENT SET OF A BICRITERIA LINEAR PROBLEM. 1.

A PARAMETRIC SIMPLEX METHOD FOR OPTIMIZING A LINEAR FUNCTION OVER THE EFFICIENT SET OF A BICRITERIA LINEAR PROBLEM. 1. ACTA MATHEMATICA VIETNAMICA Volume 21, Number 1, 1996, pp. 59 67 59 A PARAMETRIC SIMPLEX METHOD FOR OPTIMIZING A LINEAR FUNCTION OVER THE EFFICIENT SET OF A BICRITERIA LINEAR PROBLEM NGUYEN DINH DAN AND

More information

Minicourse II Symplectic Monte Carlo Methods for Random Equilateral Polygons

Minicourse II Symplectic Monte Carlo Methods for Random Equilateral Polygons Minicourse II Symplectic Monte Carlo Methods for Random Equilateral Polygons Jason Cantarella and Clayton Shonkwiler University of Georgia Georgia Topology Conference July 9, 2013 Basic Definitions Symplectic

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

MATH115. Polar Coordinate System and Polar Graphs. Paolo Lorenzo Bautista. June 14, De La Salle University

MATH115. Polar Coordinate System and Polar Graphs. Paolo Lorenzo Bautista. June 14, De La Salle University MATH115 Polar Coordinate System and Paolo Lorenzo Bautista De La Salle University June 14, 2014 PLBautista (DLSU) MATH115 June 14, 2014 1 / 30 Polar Coordinates and PLBautista (DLSU) MATH115 June 14, 2014

More information

GAUSS-BONNET FOR DISCRETE SURFACES

GAUSS-BONNET FOR DISCRETE SURFACES GAUSS-BONNET FOR DISCRETE SURFACES SOHINI UPADHYAY Abstract. Gauss-Bonnet is a deep result in differential geometry that illustrates a fundamental relationship between the curvature of a surface and its

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46 Polar Coordinates Polar Coordinates: Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ)

More information

Optimal transport and redistricting: numerical experiments and a few questions. Nestor Guillen University of Massachusetts

Optimal transport and redistricting: numerical experiments and a few questions. Nestor Guillen University of Massachusetts Optimal transport and redistricting: numerical experiments and a few questions Nestor Guillen University of Massachusetts From Rebecca Solnit s Hope in the dark (apropos of nothing in particular) To hope

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

EC422 Mathematical Economics 2

EC422 Mathematical Economics 2 EC422 Mathematical Economics 2 Chaiyuth Punyasavatsut Chaiyuth Punyasavatust 1 Course materials and evaluation Texts: Dixit, A.K ; Sydsaeter et al. Grading: 40,30,30. OK or not. Resources: ftp://econ.tu.ac.th/class/archan/c

More information

INTRODUCTION TO FINITE ELEMENT METHODS

INTRODUCTION TO FINITE ELEMENT METHODS INTRODUCTION TO FINITE ELEMENT METHODS LONG CHEN Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function.

More information

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm Instructor: Shaddin Dughmi Algorithms for Convex Optimization We will look at 2 algorithms in detail: Simplex and Ellipsoid.

More information

ON CONCAVITY OF THE PRINCIPAL S PROFIT MAXIMIZATION FACING AGENTS WHO RESPOND NONLINEARLY TO PRICES

ON CONCAVITY OF THE PRINCIPAL S PROFIT MAXIMIZATION FACING AGENTS WHO RESPOND NONLINEARLY TO PRICES ON CONCAVITY OF THE PRINCIPAL S PROFIT MAXIMIZATION FACING AGENTS WHO RESPOND NONLINEARLY TO PRICES Shuangjian Zhang This is joint work with my supervisor Robert J. McCann University of Toronto April 11,

More information

Detecting Infeasibility in Infeasible-Interior-Point. Methods for Optimization

Detecting Infeasibility in Infeasible-Interior-Point. Methods for Optimization FOCM 02 Infeasible Interior Point Methods 1 Detecting Infeasibility in Infeasible-Interior-Point Methods for Optimization Slide 1 Michael J. Todd, School of Operations Research and Industrial Engineering,

More information

Constrained Willmore Tori in the 4 Sphere

Constrained Willmore Tori in the 4 Sphere (Technische Universität Berlin) 16 August 2006 London Mathematical Society Durham Symposium Methods of Integrable Systems in Geometry Constrained Willmore Surfaces The Main Result Strategy of Proof Constrained

More information

Polytopes, Polynomials, and String Theory

Polytopes, Polynomials, and String Theory Polytopes, Polynomials, and String Theory Ursula Whitcher ursula@math.hmc.edu Harvey Mudd College August 2010 Outline The Group String Theory and Mathematics Polytopes, Fans, and Toric Varieties The Group

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

Let s review the four equations we now call Maxwell s equations. (Gauss s law for magnetism) (Faraday s law)

Let s review the four equations we now call Maxwell s equations. (Gauss s law for magnetism) (Faraday s law) Electromagnetic Waves Let s review the four equations we now call Maxwell s equations. E da= B d A= Q encl ε E B d l = ( ic + ε ) encl (Gauss s law) (Gauss s law for magnetism) dφ µ (Ampere s law) dt dφ

More information

Linear programming and the efficiency of the simplex algorithm for transportation polytopes

Linear programming and the efficiency of the simplex algorithm for transportation polytopes Linear programming and the efficiency of the simplex algorithm for transportation polytopes Edward D. Kim University of Wisconsin-La Crosse February 20, 2015 Loras College Department of Mathematics Colloquium

More information

MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU

MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU School of Mathematics, KSU Theorem The rectangular coordinates (x, y, z) and the cylindrical coordinates (r, θ, z) of a point P are related as follows: x = r cos θ, y = r sin θ, tan θ = y x, r 2 = x 2

More information

Polytopes With Large Signature

Polytopes With Large Signature Polytopes With Large Signature Joint work with Michael Joswig Nikolaus Witte TU-Berlin / TU-Darmstadt witte@math.tu-berlin.de Algebraic and Geometric Combinatorics, Anogia 2005 Outline 1 Introduction Motivation

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Math 136 Exam 1 Practice Problems

Math 136 Exam 1 Practice Problems Math Exam Practice Problems. Find the surface area of the surface of revolution generated by revolving the curve given by around the x-axis? To solve this we use the equation: In this case this translates

More information

Numerical Optimization

Numerical Optimization Convex Sets Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Let x 1, x 2 R n, x 1 x 2. Line and line segment Line passing through x 1 and x 2 : {y

More information

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let Calculus Lia Vas Polar Coordinates If P = (x, y) is a point in the xy-plane and O denotes the origin, let r denote the distance from the origin O to the point P = (x, y). Thus, x + y = r ; θ be the angle

More information

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008 A small review, Second Midterm, Calculus, Prof. Montero 45:-4, Fall 8 Maxima and minima Let us recall first, that for a function f(x, y), the gradient is the vector ( f)(x, y) = ( ) f f (x, y); (x, y).

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

Variations on Regression Models. Prof. Bennett Math Models of Data Science 2/02/06

Variations on Regression Models. Prof. Bennett Math Models of Data Science 2/02/06 Variations on Regression Models Prof. Bennett Math Models of Data Science 2/02/06 Outline Steps in modeling Review of Least Squares model Model in E & K pg 24-29 Aqualsol version of E&K Other loss functions

More information

A barrier on convex cones with parameter equal to the dimension

A barrier on convex cones with parameter equal to the dimension A barrier on convex cones with parameter equal to the dimension Université Grenoble 1 / CNRS August 23 / ISMP 2012, Berlin Outline 1 Universal barrier 2 Projective images of barriers Pseudo-metric on the

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

Linear Programming in Small Dimensions

Linear Programming in Small Dimensions Linear Programming in Small Dimensions Lekcija 7 sergio.cabello@fmf.uni-lj.si FMF Univerza v Ljubljani Edited from slides by Antoine Vigneron Outline linear programming, motivation and definition one dimensional

More information

IMAGE FUSION WITH SIMULTANEOUS CARTOON AND TEXTURE DECOMPOSITION MAHDI DODANGEH, ISABEL NARRA FIGUEIREDO AND GIL GONÇALVES

IMAGE FUSION WITH SIMULTANEOUS CARTOON AND TEXTURE DECOMPOSITION MAHDI DODANGEH, ISABEL NARRA FIGUEIREDO AND GIL GONÇALVES Pré-Publicações do Departamento de Matemática Universidade de Coimbra Preprint Number 15 14 IMAGE FUSION WITH SIMULTANEOUS CARTOON AND TEXTURE DECOMPOSITION MAHDI DODANGEH, ISABEL NARRA FIGUEIREDO AND

More information

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER MÜNSTER Adaptive Discretization of Liftings for Curvature Regularization SIAM Conference on Imaging Science 2016, Albuquerque, NM Ulrich Hartleif, Prof. Dr. Benedikt Wirth May 23, 2016 Outline MÜNSTER

More information

Tiling with Penalties and Isoperimetry with Density

Tiling with Penalties and Isoperimetry with Density Rose-Hulman Undergraduate Mathematics Journal Volume 1 Issue 1 Article 6 Tiling with Penalties and Isoperimetry with Density Yifei Li Berea College, yifei114@gmail.com Michael Mara Williams College, michael.t.mara@williams.edu

More information

On the perimeter of k pairwise disjoint convex bodies contained in a convex set in the plane

On the perimeter of k pairwise disjoint convex bodies contained in a convex set in the plane On the perimeter of k pairwise disjoint convex bodies contained in a convex set in the plane Rom Pinchasi August 2, 214 Abstract We prove the following isoperimetric inequality in R 2, conjectured by Glazyrin

More information

On a first-order primal-dual algorithm

On a first-order primal-dual algorithm On a first-order primal-dual algorithm Thomas Pock 1 and Antonin Chambolle 2 1 Institute for Computer Graphics and Vision, Graz University of Technology, 8010 Graz, Austria 2 Centre de Mathématiques Appliquées,

More information

Lecture 25 Nonlinear Programming. November 9, 2009

Lecture 25 Nonlinear Programming. November 9, 2009 Nonlinear Programming November 9, 2009 Outline Nonlinear Programming Another example of NLP problem What makes these problems complex Scalar Function Unconstrained Problem Local and global optima: definition,

More information

arxiv: v1 [math.na] 20 Sep 2016

arxiv: v1 [math.na] 20 Sep 2016 arxiv:1609.06236v1 [math.na] 20 Sep 2016 A Local Mesh Modification Strategy for Interface Problems with Application to Shape and Topology Optimization P. Gangl 1,2 and U. Langer 3 1 Doctoral Program Comp.

More information

Deformation II. Disney/Pixar

Deformation II. Disney/Pixar Deformation II Disney/Pixar 1 Space Deformation Deformation function on ambient space f : n n Shape S deformed by applying f to points of S S = f (S) f (x,y)=(2x,y) S S 2 Motivation Can be applied to any

More information

Algorithmic Semi-algebraic Geometry and its applications. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology.

Algorithmic Semi-algebraic Geometry and its applications. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 1 Algorithmic Semi-algebraic Geometry and its applications Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 2 Introduction: Three problems 1. Plan the motion of

More information

Greedy Routing with Guaranteed Delivery Using Ricci Flow

Greedy Routing with Guaranteed Delivery Using Ricci Flow Greedy Routing with Guaranteed Delivery Using Ricci Flow Jie Gao Stony Brook University Joint work with Rik Sarkar, Xiaotian Yin, Wei Zeng, Feng Luo, Xianfeng David Gu Greedy Routing Assign coordinatesto

More information

Geodesic and curvature of piecewise flat Finsler surfaces

Geodesic and curvature of piecewise flat Finsler surfaces Geodesic and curvature of piecewise flat Finsler surfaces Ming Xu Capital Normal University (based on a joint work with S. Deng) in Southwest Jiaotong University, Emei, July 2018 Outline 1 Background Definition

More information

Reflection & Mirrors

Reflection & Mirrors Reflection & Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media A ray of light is

More information

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION Dan Englesson danen344@student.liu.se Sunday 12th April, 2011 Abstract In this lab assignment which was done in the course TNM079, Modeling and animation,

More information

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension Antoine Vigneron King Abdullah University of Science and Technology November 7, 2012 Antoine Vigneron (KAUST) CS 372 Lecture

More information

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Hausdorff Institute for Mathematics (HIM) Trimester: Mathematics of Signal Processing

More information

CURVES OF CONSTANT WIDTH AND THEIR SHADOWS. Have you ever wondered why a manhole cover is in the shape of a circle? This

CURVES OF CONSTANT WIDTH AND THEIR SHADOWS. Have you ever wondered why a manhole cover is in the shape of a circle? This CURVES OF CONSTANT WIDTH AND THEIR SHADOWS LUCIE PACIOTTI Abstract. In this paper we will investigate curves of constant width and the shadows that they cast. We will compute shadow functions for the circle,

More information

MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE

MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE REGULARIZATION METHODS FOR HIGH DIMENSIONAL LEARNING Francesca Odone and Lorenzo Rosasco odone@disi.unige.it - lrosasco@mit.edu June 6, 2011 ABOUT THIS

More information

Math 241, Final Exam. 12/11/12.

Math 241, Final Exam. 12/11/12. Math, Final Exam. //. No notes, calculator, or text. There are points total. Partial credit may be given. ircle or otherwise clearly identify your final answer. Name:. (5 points): Equation of a line. Find

More information

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 High-Dimensional Computational Geometry Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 Outline 3-D vector geometry High-D hyperplane intersections Convex hull & its extension to 3

More information

Lecture 2. Topology of Sets in R n. August 27, 2008

Lecture 2. Topology of Sets in R n. August 27, 2008 Lecture 2 Topology of Sets in R n August 27, 2008 Outline Vectors, Matrices, Norms, Convergence Open and Closed Sets Special Sets: Subspace, Affine Set, Cone, Convex Set Special Convex Sets: Hyperplane,

More information

Convexization in Markov Chain Monte Carlo

Convexization in Markov Chain Monte Carlo in Markov Chain Monte Carlo 1 IBM T. J. Watson Yorktown Heights, NY 2 Department of Aerospace Engineering Technion, Israel August 23, 2011 Problem Statement MCMC processes in general are governed by non

More information

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

MA 323 Geometric Modelling Course Notes: Day 21 Three Dimensional Bezier Curves, Projections and Rational Bezier Curves

MA 323 Geometric Modelling Course Notes: Day 21 Three Dimensional Bezier Curves, Projections and Rational Bezier Curves MA 323 Geometric Modelling Course Notes: Day 21 Three Dimensional Bezier Curves, Projections and Rational Bezier Curves David L. Finn Over the next few days, we will be looking at extensions of Bezier

More information

Bilevel Sparse Coding

Bilevel Sparse Coding Adobe Research 345 Park Ave, San Jose, CA Mar 15, 2013 Outline 1 2 The learning model The learning algorithm 3 4 Sparse Modeling Many types of sensory data, e.g., images and audio, are in high-dimensional

More information

An introduction to mesh generation Part IV : elliptic meshing

An introduction to mesh generation Part IV : elliptic meshing Elliptic An introduction to mesh generation Part IV : elliptic meshing Department of Civil Engineering, Université catholique de Louvain, Belgium Elliptic Curvilinear Meshes Basic concept A curvilinear

More information

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

Impulse Gauss Curvatures 2002 SSHE-MA Conference. Howard Iseri Mansfield University

Impulse Gauss Curvatures 2002 SSHE-MA Conference. Howard Iseri Mansfield University Impulse Gauss Curvatures 2002 SSHE-MA Conference Howard Iseri Mansfield University Abstract: In Riemannian (differential) geometry, the differences between Euclidean geometry, elliptic geometry, and hyperbolic

More information

Bernstein-Bezier Splines on the Unit Sphere. Victoria Baramidze. Department of Mathematics. Western Illinois University

Bernstein-Bezier Splines on the Unit Sphere. Victoria Baramidze. Department of Mathematics. Western Illinois University Bernstein-Bezier Splines on the Unit Sphere Victoria Baramidze Department of Mathematics Western Illinois University ABSTRACT I will introduce scattered data fitting problems on the sphere and discuss

More information

LECTURE 7 LECTURE OUTLINE. Review of hyperplane separation Nonvertical hyperplanes Convex conjugate functions Conjugacy theorem Examples

LECTURE 7 LECTURE OUTLINE. Review of hyperplane separation Nonvertical hyperplanes Convex conjugate functions Conjugacy theorem Examples LECTURE 7 LECTURE OUTLINE Review of hyperplane separation Nonvertical hyperplanes Convex conjugate functions Conjugacy theorem Examples Reading: Section 1.5, 1.6 All figures are courtesy of Athena Scientific,

More information

Geometric Modeling Mortenson Chapter 11. Complex Model Construction

Geometric Modeling Mortenson Chapter 11. Complex Model Construction Geometric Modeling 91.580.201 Mortenson Chapter 11 Complex Model Construction Topics Topology of Models Connectivity and other intrinsic properties Graph-Based Models Emphasize topological structure Boolean

More information

Introduction to Constrained Optimization

Introduction to Constrained Optimization Introduction to Constrained Optimization Duality and KKT Conditions Pratik Shah {pratik.shah [at] lnmiit.ac.in} The LNM Institute of Information Technology www.lnmiit.ac.in February 13, 2013 LNMIIT MLPR

More information

On the Longest Path and The Diameter in Random Apollonian Networks

On the Longest Path and The Diameter in Random Apollonian Networks On the Longest Path and The Diameter in Random Apollonian Networks Abbas Mehrabian amehrabi@uwaterloo.ca University of Waterloo Frontiers in Mathematical Sciences Honouring Siavash Shahshahani Sharif University

More information

Visualizing level lines and curvature in images

Visualizing level lines and curvature in images Visualizing level lines and curvature in images Pascal Monasse 1 (joint work with Adina Ciomaga 2 and Jean-Michel Morel 2 ) 1 IMAGINE/LIGM, École des Ponts ParisTech/Univ. Paris Est, France 2 CMLA, ENS

More information

NAME: Section # SSN: X X X X

NAME: Section # SSN: X X X X Math 155 FINAL EXAM A May 5, 2003 NAME: Section # SSN: X X X X Question Grade 1 5 (out of 25) 6 10 (out of 25) 11 (out of 20) 12 (out of 20) 13 (out of 10) 14 (out of 10) 15 (out of 16) 16 (out of 24)

More information

Local Limit Theorem in negative curvature. François Ledrappier. IM-URFJ, 26th May, 2014

Local Limit Theorem in negative curvature. François Ledrappier. IM-URFJ, 26th May, 2014 Local Limit Theorem in negative curvature François Ledrappier University of Notre Dame/ Université Paris 6 Joint work with Seonhee Lim, Seoul Nat. Univ. IM-URFJ, 26th May, 2014 1 (M, g) is a closed Riemannian

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

COMS 4771 Support Vector Machines. Nakul Verma

COMS 4771 Support Vector Machines. Nakul Verma COMS 4771 Support Vector Machines Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake bound for the perceptron

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

Lower bounds on the barrier parameter of convex cones

Lower bounds on the barrier parameter of convex cones of convex cones Université Grenoble 1 / CNRS June 20, 2012 / High Performance Optimization 2012, Delft Outline Logarithmically homogeneous barriers 1 Logarithmically homogeneous barriers Conic optimization

More information

Monotone Paths in Geometric Triangulations

Monotone Paths in Geometric Triangulations Monotone Paths in Geometric Triangulations Adrian Dumitrescu Ritankar Mandal Csaba D. Tóth November 19, 2017 Abstract (I) We prove that the (maximum) number of monotone paths in a geometric triangulation

More information

Rational Bezier Curves

Rational Bezier Curves Rational Bezier Curves Use of homogeneous coordinates Rational spline curve: define a curve in one higher dimension space, project it down on the homogenizing variable Mathematical formulation: n P(u)

More information

Three Dimensional Geometry. Linear Programming

Three Dimensional Geometry. Linear Programming Three Dimensional Geometry Linear Programming A plane is determined uniquely if any one of the following is known: The normal to the plane and its distance from the origin is given, i.e. equation of a

More information

CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets Instructor: Shaddin Dughmi Outline 1 Convex sets, Affine sets, and Cones 2 Examples of Convex Sets 3 Convexity-Preserving Operations

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

Geometric Modeling of Curves

Geometric Modeling of Curves Curves Locus of a point moving with one degree of freedom Locus of a one-dimensional parameter family of point Mathematically defined using: Explicit equations Implicit equations Parametric equations (Hermite,

More information

Convex Optimization and Machine Learning

Convex Optimization and Machine Learning Convex Optimization and Machine Learning Mengliu Zhao Machine Learning Reading Group School of Computing Science Simon Fraser University March 12, 2014 Mengliu Zhao SFU-MLRG March 12, 2014 1 / 25 Introduction

More information

DDFV Schemes for the Euler Equations

DDFV Schemes for the Euler Equations DDFV Schemes for the Euler Equations Christophe Berthon, Yves Coudière, Vivien Desveaux Journées du GDR Calcul, 5 juillet 2011 Introduction Hyperbolic system of conservation laws in 2D t W + x f(w)+ y

More information

CAT(0)-spaces. Münster, June 22, 2004

CAT(0)-spaces. Münster, June 22, 2004 CAT(0)-spaces Münster, June 22, 2004 CAT(0)-space is a term invented by Gromov. Also, called Hadamard space. Roughly, a space which is nonpositively curved and simply connected. C = Comparison or Cartan

More information

Digital shape analysis with maximal segments

Digital shape analysis with maximal segments Digital shape analysis with maximal segments Asymptotic linear digital geometry Jacques-Olivier Lachaud Laboratory of Mathematics (LAMA - UMR CNRS 5127) University of Savoie, France Sept. 24, 2010 DGCV

More information

Surface Reconstruction with MLS

Surface Reconstruction with MLS Surface Reconstruction with MLS Tobias Martin CS7960, Spring 2006, Feb 23 Literature An Adaptive MLS Surface for Reconstruction with Guarantees, T. K. Dey and J. Sun A Sampling Theorem for MLS Surfaces,

More information

Lectures in Discrete Differential Geometry 3 Discrete Surfaces

Lectures in Discrete Differential Geometry 3 Discrete Surfaces Lectures in Discrete Differential Geometry 3 Discrete Surfaces Etienne Vouga March 19, 2014 1 Triangle Meshes We will now study discrete surfaces and build up a parallel theory of curvature that mimics

More information

The Capacity of Wireless Networks

The Capacity of Wireless Networks The Capacity of Wireless Networks Piyush Gupta & P.R. Kumar Rahul Tandra --- EE228 Presentation Introduction We consider wireless networks without any centralized control. Try to analyze the capacity of

More information

On possibilistic mean value and variance of fuzzy numbers

On possibilistic mean value and variance of fuzzy numbers On possibilistic mean value and variance of fuzzy numbers Supported by the E-MS Bullwhip project TEKES 4965/98 Christer Carlsson Institute for Advanced Management Systems Research, e-mail:christer.carlsson@abo.fi

More information

Math Exam III Review

Math Exam III Review Math 213 - Exam III Review Peter A. Perry University of Kentucky April 10, 2019 Homework Exam III is tonight at 5 PM Exam III will cover 15.1 15.3, 15.6 15.9, 16.1 16.2, and identifying conservative vector

More information

MATH 2400, Analytic Geometry and Calculus 3

MATH 2400, Analytic Geometry and Calculus 3 MATH 2400, Analytic Geometry and Calculus 3 List of important Definitions and Theorems 1 Foundations Definition 1. By a function f one understands a mathematical object consisting of (i) a set X, called

More information

Mesh segmentation. Florent Lafarge Inria Sophia Antipolis - Mediterranee

Mesh segmentation. Florent Lafarge Inria Sophia Antipolis - Mediterranee Mesh segmentation Florent Lafarge Inria Sophia Antipolis - Mediterranee Outline What is mesh segmentation? M = {V,E,F} is a mesh S is either V, E or F (usually F) A Segmentation is a set of sub-meshes

More information

GEOMETRICAL CONSTRAINTS IN THE LEVEL SET METHOD FOR SHAPE AND TOPOLOGY OPTIMIZATION

GEOMETRICAL CONSTRAINTS IN THE LEVEL SET METHOD FOR SHAPE AND TOPOLOGY OPTIMIZATION 1 GEOMETRICAL CONSTRAINTS IN THE LEVEL SET METHOD FOR SHAPE AND TOPOLOGY OPTIMIZATION Grégoire ALLAIRE CMAP, Ecole Polytechnique Results obtained in collaboration with F. Jouve (LJLL, Paris 7), G. Michailidis

More information

Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem

Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem Jan Lellmann, Frank Lenzen, Christoph Schnörr Image and Pattern Analysis Group Universität Heidelberg EMMCVPR 2011 St. Petersburg,

More information

Graph Connectivity in Sparse Subspace Clustering

Graph Connectivity in Sparse Subspace Clustering www.nicta.com.au From imagination to impact Graph Connectivity in Sparse Subspace Clustering Behrooz Nasihatkon 24 March 2011 Outline 1 Subspace Clustering 2 Sparse Subspace Clustering 3 Graph Connectivity

More information

Edexcel Core Mathematics 4 Integration

Edexcel Core Mathematics 4 Integration Edecel Core Mathematics 4 Integration Edited by: K V Kumaran kumarmaths.weebly.com Integration It might appear to be a bit obvious but you must remember all of your C work on differentiation if you are

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Dual Interpolants for Finite Element Methods

Dual Interpolants for Finite Element Methods Dual Interpolants for Finite Element Methods Andrew Gillette joint work with Chandrajit Bajaj and Alexander Rand Department of Mathematics Institute of Computational Engineering and Sciences University

More information