SMOOTH POLYHEDRAL SURFACES

Size: px
Start display at page:

Download "SMOOTH POLYHEDRAL SURFACES"

Transcription

1 SMOOTH POLYHEDRAL SURFACES Felix Günther Université de Genève and Technische Universität Berlin Geometry Workshop in Obergurgl 2017

2 PRELUDE Złote Tarasy shopping mall in Warsaw

3 PRELUDE Złote Tarasy shopping mall in Warsaw

4 PRELUDE Smooth and non-smooth realization of a cone and their Gauss images

5 STORYBOARD Episode I The Phantom Lemma Episode II Attack of the Index Episode III Revenge of the Lemma

6 STORYBOARD Episode I The Phantom Lemma Episode II Attack of the Index Episode III Revenge of the Lemma Episode IV A New Normal Episode V The Gauss Image Strikes Back Episode VI Return of Projective Transformations

7 STORYBOARD Episode I The Phantom Lemma Episode II Attack of the Index Episode III Revenge of the Lemma Episode IV A New Normal Episode V The Gauss Image Strikes Back Episode VI Return of Projective Transformations Episode VII The Applications Awaken

8

9

10 GAUSSIAN CURVATURE

11 DISCRETE GAUSSIAN CURVATURE P N i+1 K(P ) Ni+1 α i N i N i K (P) := 2π i α i

12 DISCRETE GAUSSIAN CURVATURE P N i+1 K(P ) Ni+1 α i N i N i K (P) := 2π i α i

13 MORE COMPLICATED GAUSS IMAGE Self-intersecting Gauss image

14

15 INDEX OF A VERTEX OF A POLYHEDRAL SURFACE

16 INTEGRATED INDEX

17 INTEGRATED INDEX 1 i(v, ξ)dξ = S 2 2 S 2 2 m(v,, ξ) M = 2π M α (v) = K (v)

18 RELATION TO ALGEBRAIC AREA OF GAUSS IMAGE Positive discrete Gaussian curvature

19 RELATION TO ALGEBRAIC AREA OF GAUSS IMAGE Negative discrete Gaussian curvature

20 RELATION TO ALGEBRAIC AREA OF GAUSS IMAGE Gauss image contains pair of antipodal points

21 RELATION TO ALGEBRAIC AREA OF GAUSS IMAGE Index of v with respect to n equals -2

22 RELATION TO ALGEBRAIC AREA OF GAUSS IMAGE Index of v with respect to n equals -2 i(v, n) = w(g(v), n) + w(g(v), n)

23

24 SPHERICAL ANGLE f = f 2 is not an inflection face: ˆα f = α = π α f

25 SPHERICAL ANGLE f = f 2 is an inflection face: ˆα f = α = 2π α f

26 GAUSS IMAGE WITHOUT SELF-INTERSECTIONS: K>0 ˆα f (n 2)π = K (v) = 2π α f f v f v

27 GAUSS IMAGE WITHOUT SELF-INTERSECTIONS: K>0 ˆα f (n 2)π = K (v) = 2π α f f v f v = ˆα f = α f ) f v f v(π

28 GAUSS IMAGE WITHOUT SELF-INTERSECTIONS: K>0 Convex spherical polygon

29 GAUSS IMAGE WITHOUT SELF-INTERSECTIONS: K<0 f v ˆα f + (n 2)π = K (v) = 2π f v α f

30 GAUSS IMAGE WITHOUT SELF-INTERSECTIONS: K<0 f v ˆα f + (n 2)π = K (v) = 2π f v α f = f v ˆα f = f v(π + α f ) 4π

31 GAUSS IMAGE WITHOUT SELF-INTERSECTIONS: K<0 f v ˆα f + (n 2)π = K (v) = 2π f v α f = f v ˆα f = f v(π + α f ) 4π ˆα f = 2π (π α f ) = π + α f if f is not an inflection face ˆα f = 2π (2π α f ) = α f if f is an inflection face

32 GAUSS IMAGE WITHOUT SELF-INTERSECTIONS: K<0 Spherical pseudo-quadrilateral

33 GAUSS IMAGE WITHOUT SELF-INTERSECTIONS: K<0 Spherical pseudo-triangle (four inflection faces)

34 GAUSS IMAGE WITHOUT SELF-INTERSECTIONS: K<0 Spherical pseudo-triangle (two inflection faces)

35 GAUSS IMAGE WITHOUT SELF-INTERSECTIONS: K<0 Spherical pseudo-digon

36

37 NORMAL VECTOR AND TRANSVERSAL PLANE One-to-one projection of vertex star onto transversal plane

38 DUPIN INDICATRIX Intersection with a plane parallel and close to the tangent plane

39 DISCRETE DUPIN INDICATRIX K>0 Discrete ellipse in convex case

40 DISCRETE DUPIN INDICATRIX K<0 Inflection edge in the discrete Dupin indicatrix

41 DISCRETE DUPIN INDICATRIX K<0 Discrete hyperbola if Gauss image is star-shaped

42 DISCRETE DUPIN INDICATRIX K<0 Discrete hyperbola (four inflection faces)

43 DISCRETE DUPIN INDICATRIX K<0 Discrete hyperbola (two inflection faces)

44

45 GAUSS IMAGES FOR POSITIVE CURVATURE Gauss images do not intersect

46 GAUSS IMAGES FOR NEGATIVE CURVATURE Gauss images do not intersect

47 GAUSS IMAGES FOR NEGATIVE CURVATURE Polyhedral monkey saddle

48 GAUSS IMAGES FOR NEGATIVE CURVATURE Deformation of a monkey saddle

49 SHAPES OF FACES IN NEGATIVELY CURVED AREAS ˆα v = α v + π if α v < π and f 1 is not an inflection face, ˆα v = α v if α v < π and f 1 is an inflection face, ˆα v = α v π if α v > π and f 1 is not an inflection face, ˆα v = α v if α v > π and f 1 is an inflection face.

50 SHAPES OF FACES IN NEGATIVELY CURVED AREAS ˆα v = α v + π if α v < π and f 1 is not an inflection face, ˆα v = α v if α v < π and f 1 is an inflection face, ˆα v = α v π if α v > π and f 1 is not an inflection face, ˆα v = α v if α v > π and f 1 is an inflection face. 2π = v f 1 ˆα v = v f 1 α v + c 1 π c 3 π = (n 2)π + c 1 π c 3 π

51 SHAPES OF FACES IN NEGATIVELY CURVED AREAS ˆα v = α v + π if α v < π and f 1 is not an inflection face, ˆα v = α v if α v < π and f 1 is an inflection face, ˆα v = α v π if α v > π and f 1 is not an inflection face, ˆα v = α v if α v > π and f 1 is an inflection face. 2π = v f 1 ˆα v = v f 1 α v + c 1 π c 3 π = (n 2)π + c 1 π c 3 π Thus, c 1 c 3 = 4 n. Using c 1 + c 2 + c 3 + c 4 = n, 2c 1 + c 2 + c 4 = 4.

52 SHAPES OF FACES IN NEGATIVELY CURVED AREAS ˆα v = α v + π if α v < π and f 1 is not an inflection face, ˆα v = α v if α v < π and f 1 is an inflection face, ˆα v = α v π if α v > π and f 1 is not an inflection face, ˆα v = α v if α v > π and f 1 is an inflection face. 2π = v f 1 ˆα v = v f 1 α v + c 1 π c 3 π = (n 2)π + c 1 π c 3 π Thus, c 1 c 3 = 4 n. Using c 1 + c 2 + c 3 + c 4 = n, 2c 1 + c 2 + c 4 = 4. f 1 planar: c 1 + c 2 3.

53 SHAPES OF FACES IN NEGATIVELY CURVED AREAS c 1 = 0, c 2 = 4, c 3 = n 4, c 4 = 0

54 SHAPES OF FACES IN NEGATIVELY CURVED AREAS c 1 = 0, c 2 = 3, c 3 = n 4, c 4 = 1

55 SHAPES OF FACES IN NEGATIVELY CURVED AREAS c 1 = 1, c 2 = 2, c 3 = n 3, c 4 = 0

56 GAUSS IMAGES FOR MIXED CURVATURE Overlap of Gauss images

57 GAUSS IMAGES FOR MIXED CURVATURE Basic shapes of faces in areas of mixed curvature

58 GAUSS IMAGES FOR MIXED CURVATURE Discrete parabolic curve

59 SMOOTH POLYHEDRAL SURFACE DEFINITION An orientable polyhedral surface P immersed into R 3 is smooth if:

60 SMOOTH POLYHEDRAL SURFACE DEFINITION An orientable polyhedral surface P immersed into R 3 is smooth if: 1 K (v) 0 for all v. For all faces f, the sign of discrete Gaussian curvature changes at either zero or two edges.

61 SMOOTH POLYHEDRAL SURFACE DEFINITION An orientable polyhedral surface P immersed into R 3 is smooth if: 1 K (v) 0 for all v. For all faces f, the sign of discrete Gaussian curvature changes at either zero or two edges. 2 v n, n S 2 such that n, n f > 0 n f, f v, and such that the spherical polygon defined by n f is star-shaped with respect to n.

62 SMOOTH POLYHEDRAL SURFACE DEFINITION An orientable polyhedral surface P immersed into R 3 is smooth if: 1 K (v) 0 for all v. For all faces f, the sign of discrete Gaussian curvature changes at either zero or two edges. 2 v n, n S 2 such that n, n f > 0 n f, f v, and such that the spherical polygon defined by n f is star-shaped with respect to n. 3 f, v f ˆα v is ±2π or 0 depending on whether K (v) has the same sign for all v f or not. In the first case, we demand in addition that f is star-shaped; in the latter case, we require that the convex hull of vertices of positive discrete Gaussian curvature does not contain any vertex of negative curvature.

63

64

65

66

67 NOTION OF SMOOTHNESS IS PROJECTIVELY INVARIANT THEOREM Let P be a smooth polyhedral surface immersed into R 3 RP 3. Furthermore, let π be a projective transformation that does not map any point of P to infinity. Then, π(p) is a smooth polyhedral surface. Furthermore, discrete tangent planes, discrete asymptotic directions, discrete parabolic curves, and points of contact are mapped to the corresponding objects of π(p).

68 PROJECTIVE DUAL SURFACE Projective dual surfaces of smooth polyhedral surfaces are smooth

69

70 RESULTS OF OUR ALGORITHM Optimization started from (a) non-smooth; (b) weakly smooth surface

71 RESULTS OF OUR ALGORITHM Department of Islamic Art within the Musée du Louvre

72 RESULTS OF OUR ALGORITHM Broken images in the reflections

73 RESULTS OF OUR ALGORITHM Optimization of Louvre surface

74

Freeform Architecture and Discrete Differential Geometry. Helmut Pottmann, KAUST

Freeform Architecture and Discrete Differential Geometry. Helmut Pottmann, KAUST Freeform Architecture and Discrete Differential Geometry Helmut Pottmann, KAUST Freeform Architecture Motivation: Large scale architectural projects, involving complex freeform geometry Realization challenging

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

Designing Cylinders with Constant Negative Curvature

Designing Cylinders with Constant Negative Curvature Designing Cylinders with Constant Negative Curvature Ulrich Pinkall Abstract. We describe algorithms that can be used to interactively construct ( design ) surfaces with constant negative curvature, in

More information

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F:

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: CS 177 Homework 1 Julian Panetta October, 009 1 Euler Characteristic 1.1 Polyhedral Formula We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: V E + F = 1 First,

More information

Lectures 19: The Gauss-Bonnet Theorem I. Table of contents

Lectures 19: The Gauss-Bonnet Theorem I. Table of contents Math 348 Fall 07 Lectures 9: The Gauss-Bonnet Theorem I Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams. In

More information

Optimal (local) Triangulation of Hyperbolic Paraboloids

Optimal (local) Triangulation of Hyperbolic Paraboloids Optimal (local) Triangulation of Hyperbolic Paraboloids Dror Atariah Günter Rote Freie Universität Berlin December 14 th 2012 Outline Introduction Taylor Expansion Quadratic Surfaces Vertical Distance

More information

Discrete Minimal Surfaces using P-Hex Meshes

Discrete Minimal Surfaces using P-Hex Meshes Discrete Minimal Surfaces using P-Hex Meshes Diplomarbeit zur Erlangung des akademischen Grades Diplom-Mathematikerin vorgelegt von: Jill Bucher Matrikel-Nr.: 4182388 Email: Fachbereich: Betreuer: jill.bucher@math.fu-berlin.de

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

Two Connections between Combinatorial and Differential Geometry

Two Connections between Combinatorial and Differential Geometry Two Connections between Combinatorial and Differential Geometry John M. Sullivan Institut für Mathematik, Technische Universität Berlin Berlin Mathematical School DFG Research Group Polyhedral Surfaces

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2009 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2009 3/4/2009 Recap Differential Geometry of Curves Andrew Nealen, Rutgers, 2009 3/4/2009

More information

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Fall, 2012

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Fall, 2012 UMass Lowell Computer Science 91.504 Advanced Algorithms Computational Geometry Prof. Karen Daniels Fall, 2012 Voronoi Diagrams & Delaunay Triangulations O Rourke: Chapter 5 de Berg et al.: Chapters 7,

More information

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2011 2/22/2011 Differential Geometry of Surfaces Continuous and Discrete Motivation Smoothness

More information

Lectures in Discrete Differential Geometry 3 Discrete Surfaces

Lectures in Discrete Differential Geometry 3 Discrete Surfaces Lectures in Discrete Differential Geometry 3 Discrete Surfaces Etienne Vouga March 19, 2014 1 Triangle Meshes We will now study discrete surfaces and build up a parallel theory of curvature that mimics

More information

Hyplane Polyhedral Models of Hyperbolic Plane

Hyplane Polyhedral Models of Hyperbolic Plane Original Paper Forma, 21, 5 18, 2006 Hyplane Polyhedral Models of Hyperbolic Plane Kazushi AHARA Department of Mathematics School of Science and Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku,

More information

Planar quad meshes from relative principal curvature lines

Planar quad meshes from relative principal curvature lines Planar quad meshes from relative principal curvature lines Alexander Schiftner Institute of Discrete Mathematics and Geometry Vienna University of Technology 15.09.2007 Alexander Schiftner (TU Vienna)

More information

Discrete minimal surfaces of Koebe type

Discrete minimal surfaces of Koebe type Discrete minimal surfaces of Koebe type Alexander I. Bobenko, Ulrike Bücking, Stefan Sechelmann March 5, 2018 1 Introduction Minimal surfaces have been studied for a long time, but still contain unsolved

More information

The Contribution of Discrete Differential Geometry to Contemporary Architecture

The Contribution of Discrete Differential Geometry to Contemporary Architecture The Contribution of Discrete Differential Geometry to Contemporary Architecture Helmut Pottmann Vienna University of Technology, Austria 1 Project in Seoul, Hadid Architects 2 Lilium Tower Warsaw, Hadid

More information

A GEOMETRIC APPROACH TO CURVATURE ESTIMATION ON TRIANGULATED 3D SHAPES

A GEOMETRIC APPROACH TO CURVATURE ESTIMATION ON TRIANGULATED 3D SHAPES A GEOMETRIC APPROACH TO CURVATURE ESTIMATION ON TRIANGULATED 3D SHAPES Mohammed Mostefa Mesmoudi, Leila De Floriani, Paola Magillo Department of Computer Science and Information Science (DISI), University

More information

Surfaces: notes on Geometry & Topology

Surfaces: notes on Geometry & Topology Surfaces: notes on Geometry & Topology 1 Surfaces A 2-dimensional region of 3D space A portion of space having length and breadth but no thickness 2 Defining Surfaces Analytically... Parametric surfaces

More information

Conic Sections. College Algebra

Conic Sections. College Algebra Conic Sections College Algebra Conic Sections A conic section, or conic, is a shape resulting from intersecting a right circular cone with a plane. The angle at which the plane intersects the cone determines

More information

Curvature Berkeley Math Circle January 08, 2013

Curvature Berkeley Math Circle January 08, 2013 Curvature Berkeley Math Circle January 08, 2013 Linda Green linda@marinmathcircle.org Parts of this handout are taken from Geometry and the Imagination by John Conway, Peter Doyle, Jane Gilman, and Bill

More information

Rational Bezier Curves

Rational Bezier Curves Rational Bezier Curves Use of homogeneous coordinates Rational spline curve: define a curve in one higher dimension space, project it down on the homogenizing variable Mathematical formulation: n P(u)

More information

ALGEBRA II UNIT X: Conic Sections Unit Notes Packet

ALGEBRA II UNIT X: Conic Sections Unit Notes Packet Name: Period: ALGEBRA II UNIT X: Conic Sections Unit Notes Packet Algebra II Unit 10 Plan: This plan is subject to change at the teacher s discretion. Section Topic Formative Work Due Date 10.3 Circles

More information

Discrete differential geometry: Surfaces made from Circles

Discrete differential geometry: Surfaces made from Circles Discrete differential geometry: Alexander Bobenko (TU Berlin) with help of Tim Hoffmann, Boris Springborn, Ulrich Pinkall, Ulrike Scheerer, Daniel Matthes, Yuri Suris, Kevin Bauer Papers A.I. Bobenko,

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Curvatures of Smooth and Discrete Surfaces

Curvatures of Smooth and Discrete Surfaces Curvatures of Smooth and iscrete Surfaces John M. Sullivan The curvatures of a smooth curve or surface are local measures of its shape. Here we consider analogous quantities for discrete curves and surfaces,

More information

Convex Hulls (3D) O Rourke, Chapter 4

Convex Hulls (3D) O Rourke, Chapter 4 Convex Hulls (3D) O Rourke, Chapter 4 Outline Polyhedra Polytopes Euler Characteristic (Oriented) Mesh Representation Polyhedra Definition: A polyhedron is a solid region in 3D space whose boundary is

More information

Impulse Gauss Curvatures 2002 SSHE-MA Conference. Howard Iseri Mansfield University

Impulse Gauss Curvatures 2002 SSHE-MA Conference. Howard Iseri Mansfield University Impulse Gauss Curvatures 2002 SSHE-MA Conference Howard Iseri Mansfield University Abstract: In Riemannian (differential) geometry, the differences between Euclidean geometry, elliptic geometry, and hyperbolic

More information

1/25 Warm Up Find the value of the indicated measure

1/25 Warm Up Find the value of the indicated measure 1/25 Warm Up Find the value of the indicated measure. 1. 2. 3. 4. Lesson 7.1(2 Days) Angles of Polygons Essential Question: What is the sum of the measures of the interior angles of a polygon? What you

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass University of California, Davis, USA http://www.cs.ucdavis.edu/~koehl/ims2017/ What is a shape? A shape is a 2-manifold with a Riemannian

More information

Counting Double Tangents of Closed Curves Without Inflection Points

Counting Double Tangents of Closed Curves Without Inflection Points Counting Double Tangents of Closed Curves Without Inflection Points EMILY SUSAN MACWAY UNDERGRADUATE HONORS THESIS FACULTY ADVISOR: ABIGAIL THOMPSON JUNE 2014 UNIVERSITY OF CALIFORNIA, DAVIS COLLEGE OF

More information

3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

More information

Tightness for Smooth and Polyhedral Immersions of the Projective Plane with One Handle

Tightness for Smooth and Polyhedral Immersions of the Projective Plane with One Handle Tight and Taut Submanifolds MSRI Publications Volume 32, 1997 Tightness for Smooth and Polyhedral Immersions of the Projective Plane with One Handle DAVIDE P. CERVONE Abstract. The recent discovery that

More information

Unit 12 Topics in Analytic Geometry - Classwork

Unit 12 Topics in Analytic Geometry - Classwork Unit 1 Topics in Analytic Geometry - Classwork Back in Unit 7, we delved into the algebra and geometry of lines. We showed that lines can be written in several forms: a) the general form: Ax + By + C =

More information

A Polyhedral Model in Euclidean 3-Space of the Six-Pentagon Map of the Projective Plane

A Polyhedral Model in Euclidean 3-Space of the Six-Pentagon Map of the Projective Plane Discrete Comput Geom (2008) 40: 395 400 DOI 10.1007/s00454-007-9033-y A Polyhedral Model in Euclidean 3-Space of the Six-Pentagon Map of the Projective Plane Lajos Szilassi Received: 14 February 2007 /

More information

Generalized barycentric coordinates

Generalized barycentric coordinates Generalized barycentric coordinates Michael S. Floater August 20, 2012 In this lecture, we review the definitions and properties of barycentric coordinates on triangles, and study generalizations to convex,

More information

How to Project Spherical Conics into the Plane

How to Project Spherical Conics into the Plane How to Project pherical Conics into the Plane Yoichi Maeda maeda@keyakiccu-tokaiacjp Department of Mathematics Tokai University Japan Abstract: In this paper, we will introduce a method how to draw the

More information

CURVES AND SURFACES, S.L. Rueda SUPERFACES. 2.3 Ruled Surfaces

CURVES AND SURFACES, S.L. Rueda SUPERFACES. 2.3 Ruled Surfaces SUPERFACES. 2.3 Ruled Surfaces Definition A ruled surface S, is a surface that contains at least one uniparametric family of lines. That is, it admits a parametrization of the next kind α : D R 2 R 3 α(u,

More information

Geometry of Flat Surfaces

Geometry of Flat Surfaces Geometry of Flat Surfaces Marcelo iana IMPA - Rio de Janeiro Xi an Jiaotong University 2005 Geometry of Flat Surfaces p.1/43 Some (non-flat) surfaces Sphere (g = 0) Torus (g = 1) Bitorus (g = 2) Geometry

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

An Introduction to Geometrical Probability

An Introduction to Geometrical Probability An Introduction to Geometrical Probability Distributional Aspects with Applications A. M. Mathai McGill University Montreal, Canada Gordon and Breach Science Publishers Australia Canada China Prance Germany

More information

Lesson 7.1. Angles of Polygons

Lesson 7.1. Angles of Polygons Lesson 7.1 Angles of Polygons Essential Question: How can I find the sum of the measures of the interior angles of a polygon? Polygon A plane figure made of three or more segments (sides). Each side intersects

More information

Multivariable Calculus

Multivariable Calculus Multivariable Calculus Chapter 10 Topics in Analytic Geometry (Optional) 1. Inclination of a line p. 5. Circles p. 4 9. Determining Conic Type p. 13. Angle between lines p. 6. Parabolas p. 5 10. Rotation

More information

Euler s Theorem. Brett Chenoweth. February 26, 2013

Euler s Theorem. Brett Chenoweth. February 26, 2013 Euler s Theorem Brett Chenoweth February 26, 2013 1 Introduction This summer I have spent six weeks of my holidays working on a research project funded by the AMSI. The title of my project was Euler s

More information

THE DNA INEQUALITY POWER ROUND

THE DNA INEQUALITY POWER ROUND THE DNA INEQUALITY POWER ROUND Instructions Write/draw all solutions neatly, with at most one question per page, clearly numbered. Turn in the solutions in numerical order, with your team name at the upper

More information

Tripod Configurations

Tripod Configurations Tripod Configurations Eric Chen, Nick Lourie, Nakul Luthra Summer@ICERM 2013 August 8, 2013 Eric Chen, Nick Lourie, Nakul Luthra (S@I) Tripod Configurations August 8, 2013 1 / 33 Overview 1 Introduction

More information

EM225 Projective Geometry Part 2

EM225 Projective Geometry Part 2 EM225 Projective Geometry Part 2 eview In projective geometry, we regard figures as being the same if they can be made to appear the same as in the diagram below. In projective geometry: a projective point

More information

William P. Thurston. The Geometry and Topology of Three-Manifolds

William P. Thurston. The Geometry and Topology of Three-Manifolds William P. Thurston The Geometry and Topology of Three-Manifolds Electronic version 1.1 - March 2002 http://www.msri.org/publications/books/gt3m/ This is an electronic edition of the 1980 notes distributed

More information

Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts

Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts interpreting a schematic drawing, estimating the amount of

More information

Other Voronoi/Delaunay Structures

Other Voronoi/Delaunay Structures Other Voronoi/Delaunay Structures Overview Alpha hulls (a subset of Delaunay graph) Extension of Voronoi Diagrams Convex Hull What is it good for? The bounding region of a point set Not so good for describing

More information

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University Greedy Routing in Wireless Networks Jie Gao Stony Brook University A generic sensor node CPU. On-board flash memory or external memory Sensors: thermometer, camera, motion, light sensor, etc. Wireless

More information

Chapter 10. Exploring Conic Sections

Chapter 10. Exploring Conic Sections Chapter 10 Exploring Conic Sections Conics A conic section is a curve formed by the intersection of a plane and a hollow cone. Each of these shapes are made by slicing the cone and observing the shape

More information

Geometry. Cluster: Experiment with transformations in the plane. G.CO.1 G.CO.2. Common Core Institute

Geometry. Cluster: Experiment with transformations in the plane. G.CO.1 G.CO.2. Common Core Institute Geometry Cluster: Experiment with transformations in the plane. G.CO.1: Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of

More information

EXPERIENCING GEOMETRY

EXPERIENCING GEOMETRY EXPERIENCING GEOMETRY EUCLIDEAN AND NON-EUCLIDEAN WITH HISTORY THIRD EDITION David W. Henderson Daina Taimina Cornell University, Ithaca, New York PEARSON Prentice Hall Upper Saddle River, New Jersey 07458

More information

Make geometric constructions. (Formalize and explain processes)

Make geometric constructions. (Formalize and explain processes) Standard 5: Geometry Pre-Algebra Plus Algebra Geometry Algebra II Fourth Course Benchmark 1 - Benchmark 1 - Benchmark 1 - Part 3 Draw construct, and describe geometrical figures and describe the relationships

More information

Henneberg construction

Henneberg construction Henneberg construction Seminar über Algorithmen FU-Berlin, WS 2007/08 Andrei Haralevich Abstract: In this work will be explained two different types of steps of Henneberg construction. And how Henneberg

More information

1 Descartes' Analogy

1 Descartes' Analogy Ellipse Line Paraboloid Parabola Descartes' Analogy www.magicmathworks.org/geomlab Hyperbola Hyperboloid Hyperbolic paraboloid Sphere Cone Cylinder Circle The total angle defect for a polygon is 360 ;

More information

CAT(0)-spaces. Münster, June 22, 2004

CAT(0)-spaces. Münster, June 22, 2004 CAT(0)-spaces Münster, June 22, 2004 CAT(0)-space is a term invented by Gromov. Also, called Hadamard space. Roughly, a space which is nonpositively curved and simply connected. C = Comparison or Cartan

More information

#97 Curvature Evaluation of Faceted Models for Optimal Milling Direction

#97 Curvature Evaluation of Faceted Models for Optimal Milling Direction #97 Curvature Evaluation of Faceted Models for Optimal Milling Direction Gandjar Kiswanto, Priadhana Edi Kreshna Department of Mechanical Engineering University of Indonesia Kampus Baru UI Depok 644 Phone

More information

A Conformal Energy for Simplicial Surfaces

A Conformal Energy for Simplicial Surfaces Combinatorial and Computational Geometry MSRI Publications Volume 52, 2005 A Conformal Energy for Simplicial Surfaces ALEXANDER I. BOBENKO Abstract. A new functional for simplicial surfaces is suggested.

More information

Mathematics High School Geometry

Mathematics High School Geometry Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts interpreting a schematic drawing, estimating the amount of

More information

= secant lines of the n+1 unit circle divisions (d)

= secant lines of the n+1 unit circle divisions (d) The logarithm of is a complex number such that. In my theory, I represent as the complex number, which is the same as Euler s, where Taking it a step further with, you get a complex number and its conjugate

More information

A barrier on convex cones with parameter equal to the dimension

A barrier on convex cones with parameter equal to the dimension A barrier on convex cones with parameter equal to the dimension Université Grenoble 1 / CNRS August 23 / ISMP 2012, Berlin Outline 1 Universal barrier 2 Projective images of barriers Pseudo-metric on the

More information

Geodesic and curvature of piecewise flat Finsler surfaces

Geodesic and curvature of piecewise flat Finsler surfaces Geodesic and curvature of piecewise flat Finsler surfaces Ming Xu Capital Normal University (based on a joint work with S. Deng) in Southwest Jiaotong University, Emei, July 2018 Outline 1 Background Definition

More information

Preliminary Mathematics of Geometric Modeling (3)

Preliminary Mathematics of Geometric Modeling (3) Preliminary Mathematics of Geometric Modeling (3) Hongxin Zhang and Jieqing Feng 2006-11-27 State Key Lab of CAD&CG, Zhejiang University Differential Geometry of Surfaces Tangent plane and surface normal

More information

Click the mouse button or press the Space Bar to display the answers.

Click the mouse button or press the Space Bar to display the answers. Click the mouse button or press the Space Bar to display the answers. 9-4 Objectives You will learn to: Identify regular tessellations. Vocabulary Tessellation Regular Tessellation Uniform Semi-Regular

More information

66 III Complexes. R p (r) }.

66 III Complexes. R p (r) }. 66 III Complexes III.4 Alpha Complexes In this section, we use a radius constraint to introduce a family of subcomplexes of the Delaunay complex. These complexes are similar to the Čech complexes but differ

More information

Lecture 0: Reivew of some basic material

Lecture 0: Reivew of some basic material Lecture 0: Reivew of some basic material September 12, 2018 1 Background material on the homotopy category We begin with the topological category TOP, whose objects are topological spaces and whose morphisms

More information

From isothermic triangulated surfaces to discrete holomorphicity

From isothermic triangulated surfaces to discrete holomorphicity From isothermic triangulated surfaces to discrete holomorphicity Wai Yeung Lam TU Berlin Oberwolfach, 2 March 2015 Joint work with Ulrich Pinkall Wai Yeung Lam (TU Berlin) isothermic triangulated surfaces

More information

Shape Control of Cubic H-Bézier Curve by Moving Control Point

Shape Control of Cubic H-Bézier Curve by Moving Control Point Journal of Information & Computational Science 4: 2 (2007) 871 878 Available at http://www.joics.com Shape Control of Cubic H-Bézier Curve by Moving Control Point Hongyan Zhao a,b, Guojin Wang a,b, a Department

More information

Research in Computational Differential Geomet

Research in Computational Differential Geomet Research in Computational Differential Geometry November 5, 2014 Approximations Often we have a series of approximations which we think are getting close to looking like some shape. Approximations Often

More information

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the

More information

L-CONVEX-CONCAVE SETS IN REAL PROJECTIVE SPACE AND L-DUALITY

L-CONVEX-CONCAVE SETS IN REAL PROJECTIVE SPACE AND L-DUALITY MOSCOW MATHEMATICAL JOURNAL Volume 3, Number 3, July September 2003, Pages 1013 1037 L-CONVEX-CONCAVE SETS IN REAL PROJECTIVE SPACE AND L-DUALITY A. KHOVANSKII AND D. NOVIKOV Dedicated to Vladimir Igorevich

More information

Put your initials on the top of every page, in case the pages become separated.

Put your initials on the top of every page, in case the pages become separated. Math 1201, Fall 2016 Name (print): Dr. Jo Nelson s Calculus III Practice for 1/2 of Final, Midterm 1 Material Time Limit: 90 minutes DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED TO DO SO. This exam contains

More information

6-1 Properties and Attributes of Polygons

6-1 Properties and Attributes of Polygons 6-1 Properties and Attributes of Polygons Warm Up Lesson Presentation Lesson Quiz Geometry Warm Up 1. A? is a three-sided polygon. triangle 2. A? is a four-sided polygon. quadrilateral Evaluate each expression

More information

CS3621 Midterm Solution (Fall 2005) 150 points

CS3621 Midterm Solution (Fall 2005) 150 points CS362 Midterm Solution Fall 25. Geometric Transformation CS362 Midterm Solution (Fall 25) 5 points (a) [5 points] Find the 2D transformation matrix for the reflection about the y-axis transformation (i.e.,

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

Polygon Angle-Sum Theorem:

Polygon Angle-Sum Theorem: Name Must pass Mastery Check by: [PACKET 5.1: POLYGON -SUM THEOREM] 1 Write your questions here! We all know that the sum of the angles of a triangle equal 180. What about a quadrilateral? A pentagon?

More information

Bezier Curves. An Introduction. Detlef Reimers

Bezier Curves. An Introduction. Detlef Reimers Bezier Curves An Introduction Detlef Reimers detlefreimers@gmx.de http://detlefreimers.de September 1, 2011 Chapter 1 Bezier Curve Basics 1.1 Linear Interpolation This section will give you a basic introduction

More information

Triangulations of hyperbolic 3-manifolds admitting strict angle structures

Triangulations of hyperbolic 3-manifolds admitting strict angle structures Triangulations of hyperbolic 3-manifolds admitting strict angle structures Craig D. Hodgson, J. Hyam Rubinstein and Henry Segerman segerman@unimelb.edu.au University of Melbourne January 4 th 2012 Ideal

More information

Common Core Specifications for Geometry

Common Core Specifications for Geometry 1 Common Core Specifications for Geometry Examples of how to read the red references: Congruence (G-Co) 2-03 indicates this spec is implemented in Unit 3, Lesson 2. IDT_C indicates that this spec is implemented

More information

Basic tool: orientation tests

Basic tool: orientation tests Basic tool: orientation tests Vera Sacristán Computational Geometry Facultat d Informàtica de Barcelona Universitat Politècnica de Catalunya Orientation test in R 2 Given 3 points p,, r in the plane, efficiently

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS

SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS JOEL HASS AND PETER SCOTT Abstract. We introduce a combinatorial energy for maps of triangulated surfaces with simplicial metrics and analyze the existence

More information

Ma/CS 6b Class 11: Kuratowski and Coloring

Ma/CS 6b Class 11: Kuratowski and Coloring Ma/CS 6b Class 11: Kuratowski and Coloring By Adam Sheffer Kuratowski's Theorem Theorem. A graph is planar if and only if it does not have K 5 and K 3,3 as topological minors. We know that if a graph contains

More information

Clipping Polygons. A routine for clipping polygons has a variety of graphics applications.

Clipping Polygons. A routine for clipping polygons has a variety of graphics applications. The Mathematica Journal Clipping Polygons Garry Helzer Department of Mathematics University of Maryland College Park, MD 20742 gah@math.umd.edu A routine for clipping polygons has a variety of graphics

More information

Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001

Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001 Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001 Which unit-side-length convex polygons can be formed by packing together unit squares and unit equilateral triangles? For instance

More information

Math 155, Lecture Notes- Bonds

Math 155, Lecture Notes- Bonds Math 155, Lecture Notes- Bonds Name Section 10.1 Conics and Calculus In this section, we will study conic sections from a few different perspectives. We will consider the geometry-based idea that conics

More information

GAUSS-BONNET FOR DISCRETE SURFACES

GAUSS-BONNET FOR DISCRETE SURFACES GAUSS-BONNET FOR DISCRETE SURFACES SOHINI UPADHYAY Abstract. Gauss-Bonnet is a deep result in differential geometry that illustrates a fundamental relationship between the curvature of a surface and its

More information

JEFFERSON COLLEGE COURSE SYLLABUS MTH 009 GEOMETRY. 1 Credit Hour. Prepared By: Carol Ising. Revised Date: September 9, 2008 by: Carol Ising

JEFFERSON COLLEGE COURSE SYLLABUS MTH 009 GEOMETRY. 1 Credit Hour. Prepared By: Carol Ising. Revised Date: September 9, 2008 by: Carol Ising JEFFERSON COLLEGE COURSE SYLLABUS MTH 009 GEOMETRY 1 Credit Hour Prepared By: Carol Ising Revised Date: September 9, 2008 by: Carol Ising Arts & Science Education Dr. Mindy Selsor, Dean MTH009 Geometry

More information

IND62 TIM CALIBRATION OF FREE-FORM STANDARD AND THEIR APPLICATIONS FOR IN-PROCESS MEASUREMENT ON MACHINE TOOLS

IND62 TIM CALIBRATION OF FREE-FORM STANDARD AND THEIR APPLICATIONS FOR IN-PROCESS MEASUREMENT ON MACHINE TOOLS IND62 TIM CALIBRATION OF FREE-FORM STANDARD AND THEIR APPLICATIONS FOR IN-PROCESS MEASUREMENT ON MACHINE TOOLS VÍT ZELENÝ, IVANA LINKEOVÁ, PAVEL SKALNÍK (LENGTH MEASUREMENT DEPARTMENT) 5th November 2014

More information

What would you see if you live on a flat torus? What is the relationship between it and a room with 2 mirrors?

What would you see if you live on a flat torus? What is the relationship between it and a room with 2 mirrors? DAY I Activity I: What is the sum of the angles of a triangle? How can you show it? How about a quadrilateral (a shape with 4 sides)? A pentagon (a shape with 5 sides)? Can you find the sum of their angles

More information

CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS

CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS Big IDEAS: 1) Writing equations of conic sections ) Graphing equations of conic sections 3) Solving quadratic systems Section: Essential Question 8-1 Apply

More information

Intersection of an Oriented Box and a Cone

Intersection of an Oriented Box and a Cone Intersection of an Oriented Box and a Cone David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International

More information

Further Graphics. A Brief Introduction to Computational Geometry

Further Graphics. A Brief Introduction to Computational Geometry Further Graphics A Brief Introduction to Computational Geometry 1 Alex Benton, University of Cambridge alex@bentonian.com Supported in part by Google UK, Ltd Terminology We ll be focusing on discrete (as

More information