1\C 1 I)J1mptMIll 'betl~flbejlli

Size: px
Start display at page:

Download "1\C 1 I)J1mptMIll 'betl~flbejlli"

Transcription

1 1\C 1 )J1mptMll 'betl~flbejll l~~1hlbd ada]t6gh -or~«ejf. '~illrlf J~..6 '~~~ll!~ 4iJ~ "Mf:i',nl.Nqr2l' ~':l:mj}.i~:tv t.~l '\h Dr. N.Homsup, Abstract n this paper, two high-order FDTD schemes are developed to solve the Maxwell's equations with a bounded domain. The first scheme is the extension of the standard Yee algorithms which rely on the approximation of a partial derivative by the central-difference approximation. The second scheme is based on a spline function. This scheme uses the mesh stencil as used in the standard Yee cells and it is relatively easy to modify an existing code based on the Yee algorithm. Both schemes can be adapted for an unbounded space problem such as a scatter in an unbounded space.. ntroduction The finite-difference time -domain (FDTD) scheme is now widely used in vari- ous applications and the literature on it is extensive [1] - [3]. The main advantages of FDTD- based techniques for solving the Maxwell's equations are simplicity and the ability to handle complex geometry. Derivation from Maxwell's equations is based on a method of approximating derivatives by finite difference and approximating line integrals, surface integrals, and volume integrals by summations. t uses basic arithmetic operations-addition, subtraction, multiplication, and division. Material properties are specified at each grid point. At the interface points of different materials. FDTD can model material through pararneter averaging. The field at each grid point is calculated explicitly using only adjacent field's values at previous time. The disadvantages of the FDTD include the require 1 Associate Professor, Department of Electrical Engineering, Faculty of Engineering, Kasetsart University.

2 ment of a high-speed computer and large amount of memory when the linear dimension of the object is large compared to the wavelength because of the dispersion introduced by the algorithm. Most of FOTO schemes are the second-order accurate; the fourth order accurate-compact scheme was introduced by Turkel & Yefet r4]. They approximate the spatial derivative to the fourth order using an implicit method. Their method requires the inversion of a tridiagonal matrix to find all spatial derivatives and all grid points must be uniform. This paper presents two new FOTO schemes. The first scheme is the extension of the standard Yee scheme to higher-order accuracy. The second scheme is a compact FOTO scheme, whith can be used with a nonunifonn grid. All spatial derivati ves are approximated using a cubic spline method. The difference between the Yee scheme and this scheme is the replacement of the second orders accurate spatial derivatives by a higher order accurate derivatives using a cubic spline interpolation. Thus, the scheme is a fourth order in space but second order in time. This is a reasonable option since the temporal accuracy can be improved by choosing a smaller time step. This increases the work only linearly and does not increase the storage. This higher order scheme in space enables one to choose a coarser mesh, This decreases the work in each space dimension and also decreases the storage.. Finite Difference Scheme To simplify the notation, only the two-dimensional case with a ~ 0 is considered. The only sources for the problem are incident waves. The extension of the method to three space dimensions sources and variable coefficients is straightforward. The TM system is consider and the time is normalized with the speed of light, c. let, ~ ct, and Z ~ V~, where z is a wave impedance. The TM wave equations then becomes: de, d1 dh, d, ijh y (h Z(dH y dx 1 de, -Z dy 1 de, Z dx _ d~) dy (1 ) (2) (3) Then, Yee's difference equations m'e presented in the form that will enable one to generalize them easily. " 1 " -- 8 E (4) O[H.x!i,i_1 l 2 Z Y L i,j-1/2 1-8E " () 8[ H y l :~1/2,J Z x z i-1/2,j 5, Where n+1l2 n+1!2 Z[8 x H v l -8 x H x l, ](6) - J.J Un ( U " '/2,-U.'/2 ")/~x (7) x 1,J l+,j 1,.1 S U~+1/2 1"'t1 n ) ( U. U /~t (8 ) ( The second order accuracy of Yee algorithms can be extended to higher order as shown in Table 1.

3 Order of,.~rder of Denvallve accuracy 1?, 6 f, i\ppro;dmalloll at x~,') ~-c",'ruin:ile< dl noj<:s' - i J L -5U -,11'2 i??,/2 5/2 - -, i ,., "" "" &40 & " " "", Cubic Spline nterpolation Consider an interval, a <; x <; b, and divide this interval as a = X o < Xl <... < X O - 1 < X n ~ b, The objective in cubic splines is to derive the third order polynomial for each interval between knots, as (9) t can be shown that,",( x - X,) j;(xi-1)(x -x) 1-1 ' " (X-X,_) + (Xi) (X - X _ ): Xj _ 1 ~X:S; Xi 1 i 1 f, (X;_) 3 f, (X,) J (X,-X) (X-X ) 6(X i - Xi_) 6(x - X _ ) -l, 1 ( 1 0 ) Eq,(l 0) Contain only two unknown r(xi-1) and f"(x,)- Three-second derivatives can be determined by invoking the condition that the first derivatives at the knots must be continuous: (11 ) Eq, (10) can be differentiated to gve an expansion for the first deri vati ve, f this is done for both the (i-1 th and the i th interval and the two results are set equal according to Eq, (11 ), the following relation results: (x~x ) [f(x'+l )-f(x,)] +.x::~ [f(x'_l )-j(x,)]; 1 1,2....,(n-1) (1 2) 1+1 l1 Eq, (12) is written for all interior knots, (n-1) simultaneous equations result with (n+1) unknown second derivatives, However, this is a natural cubic splines, the second derivatives at the end knot are zero and the problem reduces to (n-1) equations with (n-1) unknowns, n addition, notice that the system of equations will be tridiagonal and is extremely easy to solve, This cubic spline interpolation is used to

4 approximate the partial derivation n the higher-order FDTD scheme. V. Absorbing Boundary Recently, a technique for truncation of the computational domains in finite difference methods was proposed [5]. n this method, which is called by the author's transparent absorbing boundary (TAB), a physical problem to be solved is transformed into a problem for auxiliary fields. These fields are equal to zero at the closed boundary. Since the relationship between the physical fields and their auxiliary counterparts is explicitly known and the former can be found from the latter within the computational domain. V. Computational Results The efficiency of there schemes is tested and compared with the standard Yee scheme, c ~ 1 and Z ~ 1 are chosen for all computation. All cases use the TAB for truncating the computational domain. Consider the simplest mode of propagation in a rectangular cross section waveguide as in Fig.1 x Fig. 1 Unbounded Domain The walls are perfect conductors. So with the boundary and initial conditions: E,(x,y,o) EJo,y,t) 0, Ez(l,y,t) o. The solution is then: Ez(x,y,t) ~ sin(j1l:x)sin(31l:y), sin(j1l:x)sin(3n:y-5rrt). The test problem was computed on a sequence of uniformly refined grid h ~ 1/20, L'.t ~ 1/ ,1 D a Fig. 2 Bounded Domain using TAB n the following tests, the function F(x,y) is chosen as: F(x,y) ~ g(y) ~ 1-J(y-0.5) 2 (13) standard form: Error The errors are determined using the N,N, Where E,.. is the true solution and E, is.j L the finite difference solution. n Fig. 3, the error for each scheme was plotted as a function of time. These results demonstrate that the higher-order scheme has less error than the standard Yee scheme or the spline-based scheme.

5 has an existing code one the standard Yee scheme. ~ - - = References [1] A. Taflove. Computational Electrody namics, Artech House, [2J K.Kunz. R.Luebbers. The Finite Difference Time Domain Method for Fig. 3 The errors for the test problem V. Conclusion This paper presents two higherorder FDTD schemes for numerical solutions to the Maxwell equations. The performance of these was tested for a prohlem in two dimensions. t was show that the methods are robust in so far as numerical stabilities are concerned. These results show that the higher-order scheme has less error than the standard Yee scheme or the spline-based scheme. The higher-order central difference schemes are applying since they can provide higher accuracy on coarse grids and this can sigmficantly impact a CPU time, particularly in 3-dimensions such as the interaction of electromagnetic field 10 microwave oven cavities. The major advantage of these schemes is thai il requires less programming if one already Electromagnetic, CRC Press [3] K.L.Shlager and J.B.Schneider. A Selective Survey of the Finite-Difference Time-Domain Literature, EEE Antenas & Propagation Magazine, Jury [d] E. Turkel and A.Yefet, Fourth Order Accurate Compact mplicit Method for the Maxwell Equations. [5] J.Peny and C.A.Balanis. A Generalized Reflection- Free Domain Truncation Method: Transparent Absorbing Boundary, EEE Transaction on Antennas & Propagation, Vol.dO. No.7, July [6] L.N.Trefethem, Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations, Oxford University Computing Laboratorv p.132.

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 6:

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 6: file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture6/6_1.htm 1 of 1 6/20/2012 12:24 PM The Lecture deals with: ADI Method file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture6/6_2.htm 1 of 2 6/20/2012

More information

A Diagonal Split-cell Model for the High-order Symplectic FDTD Scheme

A Diagonal Split-cell Model for the High-order Symplectic FDTD Scheme PIERS ONLINE, VOL. 2, NO. 6, 2006 715 A Diagonal Split-cell Model for the High-order Symplectic FDTD Scheme Wei Sha, Xianliang Wu, and Mingsheng Chen Key Laboratory of Intelligent Computing & Signal Processing

More information

ME 261: Numerical Analysis Lecture-12: Numerical Interpolation

ME 261: Numerical Analysis Lecture-12: Numerical Interpolation 1 ME 261: Numerical Analysis Lecture-12: Numerical Interpolation Md. Tanver Hossain Department of Mechanical Engineering, BUET http://tantusher.buet.ac.bd 2 Inverse Interpolation Problem : Given a table

More information

FINITE-DIFFERENCE time-domain (FDTD) numerical

FINITE-DIFFERENCE time-domain (FDTD) numerical 1004 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 7, JULY 1999 Stability and Dispersion Analysis of Battle Lemarie-Based MRTD Schemes Emmanouil M. Tentzeris, Member, IEEE, Robert

More information

Aspects of RF Simulation and Analysis Software Methods. David Carpenter. Remcom. B = t. D t. Remcom (Europe)

Aspects of RF Simulation and Analysis Software Methods. David Carpenter. Remcom. B = t. D t. Remcom (Europe) Remcom (Europe) Central Boulevard Blythe Valley Park Solihull West Midlands England, B90 8AG www.remcom.com +44 870 351 7640 +44 870 351 7641 (fax) Aspects of RF Simulation and Analysis Software Methods

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Natural Quartic Spline

Natural Quartic Spline Natural Quartic Spline Rafael E Banchs INTRODUCTION This report describes the natural quartic spline algorithm developed for the enhanced solution of the Time Harmonic Field Electric Logging problem As

More information

AS THE MOST standard algorithm, the traditional finitedifference

AS THE MOST standard algorithm, the traditional finitedifference IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 56, NO. 2, FEBRUARY 2008 493 Survey on Symplectic Finite-Difference Time-Domain Schemes for Maxwell s Equations Wei Sha, Zhixiang Huang, Mingsheng Chen,

More information

Improved Mesh Conforming Boundaries for the TLM Numerical Method

Improved Mesh Conforming Boundaries for the TLM Numerical Method 336 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 Improved Mesh Conforming Boundaries for the TLM Numerical Method I. J. G. Scott and D. de Cogan University of East

More information

Asymptotic Error Analysis

Asymptotic Error Analysis Asymptotic Error Analysis Brian Wetton Mathematics Department, UBC www.math.ubc.ca/ wetton PIMS YRC, June 3, 2014 Outline Overview Some History Romberg Integration Cubic Splines - Periodic Case More History:

More information

Comparison of TLM and FDTD Methods in RCS Estimation

Comparison of TLM and FDTD Methods in RCS Estimation International Journal of Electrical Engineering. ISSN 0974-2158 Volume 4, Number 3 (2011), pp. 283-287 International Research Publication House http://www.irphouse.com Comparison of TLM and FDTD Methods

More information

An Introduction to the Finite Difference Time Domain (FDTD) Method & EMPIRE XCcel

An Introduction to the Finite Difference Time Domain (FDTD) Method & EMPIRE XCcel An Introduction to the Finite Difference Time Domain (FDTD) Method & EMPIRE XCcel Simulation Model definition for FDTD DUT Port Simulation Box Graded Mesh six Boundary Conditions 1 FDTD Basics: Field components

More information

Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models. C. Aberle, A. Hakim, and U. Shumlak

Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models. C. Aberle, A. Hakim, and U. Shumlak Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models C. Aberle, A. Hakim, and U. Shumlak Aerospace and Astronautics University of Washington, Seattle American Physical Society

More information

A New High Order Algorithm with Low Computational Complexity for Electric Field Simulation

A New High Order Algorithm with Low Computational Complexity for Electric Field Simulation Journal of Computer Science 6 (7): 769-774, 1 ISSN 1549-3636 1 Science Publications A New High Order Algorithm with Low Computational Complexity for lectric Field Simulation 1 Mohammad Khatim Hasan, Jumat

More information

SIMULATION OF AN IMPLANTED PIFA FOR A CARDIAC PACEMAKER WITH EFIELD FDTD AND HYBRID FDTD-FEM

SIMULATION OF AN IMPLANTED PIFA FOR A CARDIAC PACEMAKER WITH EFIELD FDTD AND HYBRID FDTD-FEM 1 SIMULATION OF AN IMPLANTED PIFA FOR A CARDIAC PACEMAKER WITH EFIELD FDTD AND HYBRID FDTD- Introduction Medical Implanted Communication Service (MICS) has received a lot of attention recently. The MICS

More information

A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems

A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems Veysel Demir vdemir@olemiss.edu Mohamed Al Sharkawy malshark@olemiss.edu Atef Z. Elsherbeni atef@olemiss.edu Abstract

More information

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010 Lecture 8, Ceng375 Numerical Computations at December 9, 2010 Computer Engineering Department Çankaya University 8.1 Contents 1 2 3 8.2 : These provide a more efficient way to construct an interpolating

More information

A Generalized Higher Order Finite-Difference Time-Domain Method and Its Application in Guided-Wave Problems

A Generalized Higher Order Finite-Difference Time-Domain Method and Its Application in Guided-Wave Problems 856 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 3, MARCH 2003 A Generalized Higher Order Finite-Difference Time-Domain Method and Its Application in Guided-Wave Problems Zhenhai

More information

FOURTH ORDER COMPACT FORMULATION OF STEADY NAVIER-STOKES EQUATIONS ON NON-UNIFORM GRIDS

FOURTH ORDER COMPACT FORMULATION OF STEADY NAVIER-STOKES EQUATIONS ON NON-UNIFORM GRIDS International Journal of Mechanical Engineering and Technology (IJMET Volume 9 Issue 10 October 2018 pp. 179 189 Article ID: IJMET_09_10_11 Available online at http://www.iaeme.com/ijmet/issues.asp?jtypeijmet&vtype9&itype10

More information

Abstract. 1 Introduction

Abstract. 1 Introduction A CAD tool for the analysis of complex-geometry microwave circuits P. Ciampolini, L. Roselli Istituto di Elettronica, Universita di Perugia, Via G. Duranti I/A, 1-06131 Perugia, Italy Abstract In this

More information

WHEN solving the radiation problem using a numerical

WHEN solving the radiation problem using a numerical 408 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 2, FEBRUARY 2004 The Concurrent Complementary Operators Method Applied to Two-Dimensional Time-Harmonic Radiation and Scattering Problems

More information

APPM/MATH Problem Set 4 Solutions

APPM/MATH Problem Set 4 Solutions APPM/MATH 465 Problem Set 4 Solutions This assignment is due by 4pm on Wednesday, October 16th. You may either turn it in to me in class on Monday or in the box outside my office door (ECOT 35). Minimal

More information

Parallel Algorithms: Adaptive Mesh Refinement (AMR) method and its implementation

Parallel Algorithms: Adaptive Mesh Refinement (AMR) method and its implementation Parallel Algorithms: Adaptive Mesh Refinement (AMR) method and its implementation Massimiliano Guarrasi m.guarrasi@cineca.it Super Computing Applications and Innovation Department AMR - Introduction Solving

More information

Toward the Development of a Three-Dimensional Unconditionally Stable Finite-Difference Time-Domain Method

Toward the Development of a Three-Dimensional Unconditionally Stable Finite-Difference Time-Domain Method 1550 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 9, SEPTEMBER 2000 Toward the Development of a Three-Dimensional Unconditionally Stable Finite-Difference Time-Domain Method Fenghua

More information

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 )

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 ) f f f f f (/2).9.8.7.6.5.4.3.2. S Knots.7.6.5.4.3.2. 5 5.2.8.6.4.2 S Knots.2 5 5.9.8.7.6.5.4.3.2..9.8.7.6.5.4.3.2. S Knots 5 5 S Knots 5 5 5 5.35.3.25.2.5..5 5 5.6.5.4.3.2. 5 5 4 x 3 3.5 3 2.5 2.5.5 5

More information

Computer Project 3. AA Computational Fluid Dyanmics University of Washington. Mishaal Aleem March 17, 2015

Computer Project 3. AA Computational Fluid Dyanmics University of Washington. Mishaal Aleem March 17, 2015 Computer Project 3 AA 543 - Computational Fluid Dyanmics University of Washington Mishaal Aleem March 17, 2015 Contents Introduction........................................... 1 3.1 Grid Generator.......................................

More information

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not.

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not. AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 2: Spline Approximations Dianne P O Leary c 2001, 2002, 2007 Piecewise polynomial interpolation Piecewise polynomial interpolation Read: Chapter 3 Skip:

More information

Plane wave in free space Exercise no. 1

Plane wave in free space Exercise no. 1 Plane wave in free space Exercise no. 1 The exercise is focused on numerical modeling of plane wave propagation in ANSYS HFSS. Following aims should be met: 1. A numerical model of a plane wave propagating

More information

Computational Physics PHYS 420

Computational Physics PHYS 420 Computational Physics PHYS 420 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple Curves and surfaces Escaping Flatland Until now we have worked with flat entities such as lines and flat polygons Fit well with graphics hardware Mathematically simple But the world is not composed of

More information

Homework #6 Brief Solutions 2012

Homework #6 Brief Solutions 2012 Homework #6 Brief Solutions %page 95 problem 4 data=[-,;-,;,;4,] data = - - 4 xk=data(:,);yk=data(:,);s=csfit(xk,yk,-,) %Using the program to find the coefficients S =.456 -.456 -.. -.5.9 -.5484. -.58.87.

More information

Numerical Methods in Physics Lecture 2 Interpolation

Numerical Methods in Physics Lecture 2 Interpolation Numerical Methods in Physics Pat Scott Department of Physics, Imperial College November 8, 2016 Slides available from http://astro.ic.ac.uk/pscott/ course-webpage-numerical-methods-201617 Outline The problem

More information

lecture 10: B-Splines

lecture 10: B-Splines 9 lecture : -Splines -Splines: a basis for splines Throughout our discussion of standard polynomial interpolation, we viewed P n as a linear space of dimension n +, and then expressed the unique interpolating

More information

3. Lifting Scheme of Wavelet Transform

3. Lifting Scheme of Wavelet Transform 3. Lifting Scheme of Wavelet Transform 3. Introduction The Wim Sweldens 76 developed the lifting scheme for the construction of biorthogonal wavelets. The main feature of the lifting scheme is that all

More information

High Frequency Wave Scattering

High Frequency Wave Scattering High Frequency Wave Scattering University of Reading March 21st, 2006 - Scattering theory What is the effect of obstacles or inhomogeneities on an incident wave? - Scattering theory What is the effect

More information

Comparison of the Dispersion Properties of Several Low-Dispersion Finite-Difference Time-Domain Algorithms

Comparison of the Dispersion Properties of Several Low-Dispersion Finite-Difference Time-Domain Algorithms 642 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 3, MARCH 2003 Comparison of the Dispersion Properties of Several Low-Dispersion Finite-Difference Time-Domain Algorithms Kurt L. Shlager,

More information

Implementation of the finite-difference method for solving Maxwell`s equations in MATLAB language on a GPU

Implementation of the finite-difference method for solving Maxwell`s equations in MATLAB language on a GPU Implementation of the finite-difference method for solving Maxwell`s equations in MATLAB language on a GPU 1 1 Samara National Research University, Moskovskoe Shosse 34, Samara, Russia, 443086 Abstract.

More information

Handout 4 - Interpolation Examples

Handout 4 - Interpolation Examples Handout 4 - Interpolation Examples Middle East Technical University Example 1: Obtaining the n th Degree Newton s Interpolating Polynomial Passing through (n+1) Data Points Obtain the 4 th degree Newton

More information

Asynchronous OpenCL/MPI numerical simulations of conservation laws

Asynchronous OpenCL/MPI numerical simulations of conservation laws Asynchronous OpenCL/MPI numerical simulations of conservation laws Philippe HELLUY 1,3, Thomas STRUB 2. 1 IRMA, Université de Strasbourg, 2 AxesSim, 3 Inria Tonus, France IWOCL 2015, Stanford Conservation

More information

Meshless physical simulation of semiconductor devices using a wavelet-based nodes generator

Meshless physical simulation of semiconductor devices using a wavelet-based nodes generator Meshless physical simulation of semiconductor devices using a wavelet-based nodes generator Rashid Mirzavand 1, Abdolali Abdipour 1a), Gholamreza Moradi 1, and Masoud Movahhedi 2 1 Microwave/mm-wave &

More information

Simulation of Photo-Sensitive Devices with FDTD Method. Copyright 2008 Crosslight Software Inc.

Simulation of Photo-Sensitive Devices with FDTD Method. Copyright 2008 Crosslight Software Inc. Simulation of Photo-Sensitive Devices with FDTD Method Copyright 2008 Crosslight Software Inc. www.crosslight.com What is FDTD method? FDTD=Finite Difference Time Domain FDTD method solves Maxwell s equations

More information

MRFD Method for Scattering from Three Dimensional Dielectric Bodies

MRFD Method for Scattering from Three Dimensional Dielectric Bodies RADIONGINRING, VOL., NO., SPTMBR 58 MRFD Method for Scattering from Three Dimensional Dielectric Bodies Ahmet Fazil YAGLI Turksat A.S. Ar-Ge Uydu Tasarim Dir. Gazi Universitesi Teknopark, Golbasi Ankara,

More information

Comparison of different solvers for two-dimensional steady heat conduction equation ME 412 Project 2

Comparison of different solvers for two-dimensional steady heat conduction equation ME 412 Project 2 Comparison of different solvers for two-dimensional steady heat conduction equation ME 412 Project 2 Jingwei Zhu March 19, 2014 Instructor: Surya Pratap Vanka 1 Project Description The purpose of this

More information

An introduction to interpolation and splines

An introduction to interpolation and splines An introduction to interpolation and splines Kenneth H. Carpenter, EECE KSU November 22, 1999 revised November 20, 2001, April 24, 2002, April 14, 2004 1 Introduction Suppose one wishes to draw a curve

More information

Know it. Control points. B Spline surfaces. Implicit surfaces

Know it. Control points. B Spline surfaces. Implicit surfaces Know it 15 B Spline Cur 14 13 12 11 Parametric curves Catmull clark subdivision Parametric surfaces Interpolating curves 10 9 8 7 6 5 4 3 2 Control points B Spline surfaces Implicit surfaces Bezier surfaces

More information

Curve and Surface Fitting with Splines. PAUL DIERCKX Professor, Computer Science Department, Katholieke Universiteit Leuven, Belgium

Curve and Surface Fitting with Splines. PAUL DIERCKX Professor, Computer Science Department, Katholieke Universiteit Leuven, Belgium Curve and Surface Fitting with Splines PAUL DIERCKX Professor, Computer Science Department, Katholieke Universiteit Leuven, Belgium CLARENDON PRESS OXFORD 1995 - Preface List of Figures List of Tables

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,00,000 M Open access books available International authors and editors Downloads Our authors

More information

implicit surfaces, approximate implicitization, B-splines, A- patches, surface fitting

implicit surfaces, approximate implicitization, B-splines, A- patches, surface fitting 24. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE ZBYNĚK ŠÍR FITTING OF PIECEWISE POLYNOMIAL IMPLICIT SURFACES Abstrakt In our contribution we discuss the possibility of an efficient fitting of piecewise

More information

Dual Polarized Phased Array Antenna Simulation Using Optimized FDTD Method With PBC.

Dual Polarized Phased Array Antenna Simulation Using Optimized FDTD Method With PBC. Dual Polarized Phased Array Antenna Simulation Using Optimized FDTD Method With PBC. Sudantha Perera Advanced Radar Research Center School of Electrical and Computer Engineering The University of Oklahoma,

More information

Conformal and Confocal Mantle Cloaking of Elliptical Cylinders Using Sub-Wavelength Metallic Meshes and Patches

Conformal and Confocal Mantle Cloaking of Elliptical Cylinders Using Sub-Wavelength Metallic Meshes and Patches Conformal and Confocal Mantle Cloaking of lliptical Cylinders Using Sub-Wavelength Metallic Meshes and Patches Hossein M. Bernety and Alexander B. Yakovlev Center for Applied lectromagnetic Systems Research

More information

Geometric and Solid Modeling. Problems

Geometric and Solid Modeling. Problems Geometric and Solid Modeling Problems Define a Solid Define Representation Schemes Devise Data Structures Construct Solids Page 1 Mathematical Models Points Curves Surfaces Solids A shape is a set of Points

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

Multiresolution Time-Domain (MRTD) Adaptive Schemes Using Arbitrary Resolutions of Wavelets

Multiresolution Time-Domain (MRTD) Adaptive Schemes Using Arbitrary Resolutions of Wavelets IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 2, FEBRUARY 2002 501 Multiresolution Time-Domain (MRTD) Adaptive Schemes Using Arbitrary Resolutions of Wavelets Emmanouil M. Tentzeris,

More information

CS 450 Numerical Analysis. Chapter 7: Interpolation

CS 450 Numerical Analysis. Chapter 7: Interpolation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

An Efficient Numerical Interface Between FDTD and Haar MRTD Formulation and Applications

An Efficient Numerical Interface Between FDTD and Haar MRTD Formulation and Applications 1146 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 4, APRIL 2003 An Efficient Numerical Interface Between FDTD and Haar MRTD Formulation and Applications Costas D. Sarris, Member,

More information

Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids

Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids M. Mehrenberger Université de Strasbourg and Max-Planck Institut für Plasmaphysik 5 September 2013 M. Mehrenberger (UDS

More information

Isogeometric Collocation Method

Isogeometric Collocation Method Chair for Computational Analysis of Technical Systems Faculty of Mechanical Engineering, RWTH Aachen University Isogeometric Collocation Method Seminararbeit By Marko Blatzheim Supervisors: Dr. Stefanie

More information

(Refer Slide Time: 00:02:24 min)

(Refer Slide Time: 00:02:24 min) CAD / CAM Prof. Dr. P. V. Madhusudhan Rao Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture No. # 9 Parametric Surfaces II So these days, we are discussing the subject

More information

HFSS - Antennas, Arrays and FSS's. David Perry Applications Engineer Ansoft Corporation

HFSS - Antennas, Arrays and FSS's. David Perry Applications Engineer Ansoft Corporation HFSS - Antennas, Arrays and FSS's David Perry Applications Engineer Ansoft Corporation Synopsis Some Excerpts from What s New Enhancements to HFSS Wave Guide Simulator (WGS) What is it? Why you would use

More information

THE concept of using a lossy material to absorb an

THE concept of using a lossy material to absorb an 40 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 1, JANUARY 1997 A Comparison of Anisotropic PML to Berenger s PML and Its Application to the Finite-Element Method for EM Scattering Jo-Yu

More information

A general matrix representation for non-uniform B-spline subdivision with boundary control

A general matrix representation for non-uniform B-spline subdivision with boundary control A general matrix representation for non-uniform B-spline subdivision with boundary control G. Casciola a, L. Romani a a Department of Mathematics, University of Bologna, P.zza di Porta San Donato 5, 40127

More information

A Transmission Line Matrix Model for Shielding Effects in Stents

A Transmission Line Matrix Model for Shielding Effects in Stents A Transmission Line Matrix Model for hielding Effects in tents Razvan Ciocan (1), Nathan Ida (2) (1) Clemson University Physics and Astronomy Department Clemson University, C 29634-0978 ciocan@clemon.edu

More information

Numerical methods in plasmonics. The method of finite elements

Numerical methods in plasmonics. The method of finite elements Numerical methods in plasmonics The method of finite elements Outline Why numerical methods The method of finite elements FDTD Method Examples How do we understand the world? We understand the world through

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /22.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /22. Railton, C. J., & Schneider, J. B. (1999). An analytical and numerical analysis of several locally conformal FDTD schemes. IEEE Transactions on Microwave Theory and Techniques, 47(1), 56-66. [1]. DOI:

More information

CHARMS: A Simple Framework for Adaptive Simulation SIGGRAPH Presented by Jose Guerra

CHARMS: A Simple Framework for Adaptive Simulation SIGGRAPH Presented by Jose Guerra CHARMS: A Simple Framework for Adaptive Simulation SIGGRAPH 2002 Eitan Grinspun Caltech Petr Krysl UCSD Peter Schröder Caltech Presented by Jose Guerra 1 Outline Background Motivation (Element vs. Basis

More information

arxiv: v1 [math.na] 26 Jun 2014

arxiv: v1 [math.na] 26 Jun 2014 for spectrally accurate wave propagation Vladimir Druskin, Alexander V. Mamonov and Mikhail Zaslavsky, Schlumberger arxiv:406.6923v [math.na] 26 Jun 204 SUMMARY We develop a method for numerical time-domain

More information

Linear Interpolating Splines

Linear Interpolating Splines Jim Lambers MAT 772 Fall Semester 2010-11 Lecture 17 Notes Tese notes correspond to Sections 112, 11, and 114 in te text Linear Interpolating Splines We ave seen tat ig-degree polynomial interpolation

More information

Improved Mesh Conforming Boundaries for the TLM Numerical Method

Improved Mesh Conforming Boundaries for the TLM Numerical Method Progress in Electromagnetic Research Symposium, MIT 26-29 March 26. (published in PIERS Online 2 (26) 336-343) Improved Mesh Conforming Boundaries for the TLM Numerical Method I. J. G. Scott 1 and D. de

More information

Ansoft HFSS 3D Boundary Manager

Ansoft HFSS 3D Boundary Manager and Selecting Objects and s Menu Functional and Ansoft HFSS Choose Setup / to: Define the location of ports, conductive surfaces, resistive surfaces, and radiation (or open) boundaries. Define sources

More information

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution Multigrid Pattern I. Problem Problem domain is decomposed into a set of geometric grids, where each element participates in a local computation followed by data exchanges with adjacent neighbors. The grids

More information

High-order FDTD methods via derivative matching for Maxwell s equations with material interfaces

High-order FDTD methods via derivative matching for Maxwell s equations with material interfaces Journal of Computational Physics 00 (004) 60 03 www.elsevier.com/locate/jcp High-order FDTD methods via derivative matching for Maxwell s equations with material interfaces Shan Zhao a, G.W. Wei a,b, *

More information

Incorporating the G-TFSF Concept into the Analytic Field Propagation TFSF Method

Incorporating the G-TFSF Concept into the Analytic Field Propagation TFSF Method SUBMITTED TO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, DEC. 10 1 Incorporating the G-TFSF Concept into the Analytic Field Propagation TFSF Method John B. Schneider Senior Member, IEEE and Zhen Chen

More information

HPC Algorithms and Applications

HPC Algorithms and Applications HPC Algorithms and Applications Dwarf #5 Structured Grids Michael Bader Winter 2012/2013 Dwarf #5 Structured Grids, Winter 2012/2013 1 Dwarf #5 Structured Grids 1. dense linear algebra 2. sparse linear

More information

Scientific Computing: Interpolation

Scientific Computing: Interpolation Scientific Computing: Interpolation Aleksandar Donev Courant Institute, NYU donev@courant.nyu.edu Course MATH-GA.243 or CSCI-GA.22, Fall 25 October 22nd, 25 A. Donev (Courant Institute) Lecture VIII /22/25

More information

Four equations are necessary to evaluate these coefficients. Eqn

Four equations are necessary to evaluate these coefficients. Eqn 1.2 Splines 11 A spline function is a piecewise defined function with certain smoothness conditions [Cheney]. A wide variety of functions is potentially possible; polynomial functions are almost exclusively

More information

MATLAB. Advanced Mathematics and Mechanics Applications Using. Third Edition. David Halpern University of Alabama CHAPMAN & HALL/CRC

MATLAB. Advanced Mathematics and Mechanics Applications Using. Third Edition. David Halpern University of Alabama CHAPMAN & HALL/CRC Advanced Mathematics and Mechanics Applications Using MATLAB Third Edition Howard B. Wilson University of Alabama Louis H. Turcotte Rose-Hulman Institute of Technology David Halpern University of Alabama

More information

Surface Approximation and Interpolation via Matrix SVD

Surface Approximation and Interpolation via Matrix SVD Surface Approximation and Interpolation via Matrix SVD Andrew E. Long and Clifford A. Long Andy Long (longa@nku.edu) is at Northern Kentucky University. He received his Ph.D. in applied mathematics at

More information

Table for Third-Degree Spline Interpolation Using Equi-Spaced Knots. By W. D. Hoskins

Table for Third-Degree Spline Interpolation Using Equi-Spaced Knots. By W. D. Hoskins MATHEMATICS OF COMPUTATION, VOLUME 25, NUMBER 116, OCTOBER, 1971 Table for Third-Degree Spline Interpolation Using Equi-Spaced Knots By W. D. Hoskins Abstract. A table is given for the calculation of the

More information

15.10 Curve Interpolation using Uniform Cubic B-Spline Curves. CS Dept, UK

15.10 Curve Interpolation using Uniform Cubic B-Spline Curves. CS Dept, UK 1 An analysis of the problem: To get the curve constructed, how many knots are needed? Consider the following case: So, to interpolate (n +1) data points, one needs (n +7) knots,, for a uniform cubic B-spline

More information

A meshfree weak-strong form method

A meshfree weak-strong form method A meshfree weak-strong form method G. R. & Y. T. GU' 'centre for Advanced Computations in Engineering Science (ACES) Dept. of Mechanical Engineering, National University of Singapore 2~~~ Fellow, Singapore-MIT

More information

Lecture VIII. Global Approximation Methods: I

Lecture VIII. Global Approximation Methods: I Lecture VIII Global Approximation Methods: I Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Global Methods p. 1 /29 Global function approximation Global methods: function

More information

TABLE OF CONTENTS SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 SECTION 3 WAVE REFLECTION AND TRANSMISSION IN RODS Introduction...

TABLE OF CONTENTS SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 SECTION 3 WAVE REFLECTION AND TRANSMISSION IN RODS Introduction... TABLE OF CONTENTS SECTION 1 INTRODUCTION... 1 1.1 Introduction... 1 1.2 Objectives... 1 1.3 Report organization... 2 SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 2.1 Introduction... 3 2.2 Wave propagation

More information

3D Finite Difference Time-Domain Modeling of Acoustic Wave Propagation based on Domain Decomposition

3D Finite Difference Time-Domain Modeling of Acoustic Wave Propagation based on Domain Decomposition 3D Finite Difference Time-Domain Modeling of Acoustic Wave Propagation based on Domain Decomposition UMR Géosciences Azur CNRS-IRD-UNSA-OCA Villefranche-sur-mer Supervised by: Dr. Stéphane Operto Jade

More information

An Adaptive Stencil Linear Deviation Method for Wave Equations

An Adaptive Stencil Linear Deviation Method for Wave Equations 211 An Adaptive Stencil Linear Deviation Method for Wave Equations Kelly Hasler Faculty Sponsor: Robert H. Hoar, Department of Mathematics ABSTRACT Wave Equations are partial differential equations (PDEs)

More information

AMR Multi-Moment FVM Scheme

AMR Multi-Moment FVM Scheme Chapter 4 AMR Multi-Moment FVM Scheme 4.1 Berger s AMR scheme An AMR grid with the hierarchy of Berger s AMR scheme proposed in [13] for CFD simulations is given in Fig.4.1 as a simple example for following

More information

Long time integrations of a convective PDE on the sphere by RBF collocation

Long time integrations of a convective PDE on the sphere by RBF collocation Long time integrations of a convective PDE on the sphere by RBF collocation Bengt Fornberg and Natasha Flyer University of Colorado NCAR Department of Applied Mathematics Institute for Mathematics Applied

More information

Gradient and Grid Perturbation. 1. Finite Difference Method 2. Complex-Step Method 3. Grid Perturbation

Gradient and Grid Perturbation. 1. Finite Difference Method 2. Complex-Step Method 3. Grid Perturbation Gradient and 1. Finite Difference Method 2. Complex-Step Method 3. Finite Difference Method Traditionally finite-difference methods have been used to calculate sensitivities of aerodynamic cost functions.

More information

Computer Graphics. Curves and Surfaces. Hermite/Bezier Curves, (B-)Splines, and NURBS. By Ulf Assarsson

Computer Graphics. Curves and Surfaces. Hermite/Bezier Curves, (B-)Splines, and NURBS. By Ulf Assarsson Computer Graphics Curves and Surfaces Hermite/Bezier Curves, (B-)Splines, and NURBS By Ulf Assarsson Most of the material is originally made by Edward Angel and is adapted to this course by Ulf Assarsson.

More information

CHAPTER 4 RAY COMPUTATION. 4.1 Normal Computation

CHAPTER 4 RAY COMPUTATION. 4.1 Normal Computation CHAPTER 4 RAY COMPUTATION Ray computation is the second stage of the ray tracing procedure and is composed of two steps. First, the normal to the current wavefront is computed. Then the intersection of

More information

Geometric Modeling of Curves

Geometric Modeling of Curves Curves Locus of a point moving with one degree of freedom Locus of a one-dimensional parameter family of point Mathematically defined using: Explicit equations Implicit equations Parametric equations (Hermite,

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information Compact spectrometer based on a disordered photonic chip Brandon Redding, Seng Fatt Liew, Raktim Sarma, Hui Cao* Department of Applied Physics, Yale University, New Haven, CT

More information

Computational Fluid Dynamics - Incompressible Flows

Computational Fluid Dynamics - Incompressible Flows Computational Fluid Dynamics - Incompressible Flows March 25, 2008 Incompressible Flows Basis Functions Discrete Equations CFD - Incompressible Flows CFD is a Huge field Numerical Techniques for solving

More information

Modeling of Elliptical Air Hole PCF for Lower Dispersion

Modeling of Elliptical Air Hole PCF for Lower Dispersion Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 4 (2013), pp. 439-446 Research India Publications http://www.ripublication.com/aeee.htm Modeling of Elliptical Air Hole

More information

A Simple Method for Static Load Balancing of Parallel FDTD Codes Franek, Ondrej

A Simple Method for Static Load Balancing of Parallel FDTD Codes Franek, Ondrej Aalborg Universitet A Simple Method for Static Load Balancing of Parallel FDTD Codes Franek Ondrej Published in: Electromagnetics in Advanced Applications (ICEAA) 2016 International Conference on DOI (link

More information

Math 226A Homework 4 Due Monday, December 11th

Math 226A Homework 4 Due Monday, December 11th Math 226A Homework 4 Due Monday, December 11th 1. (a) Show that the polynomial 2 n (T n+1 (x) T n 1 (x)), is the unique monic polynomial of degree n + 1 with roots at the Chebyshev points x k = cos ( )

More information

The use of the Spectral Properties of the Basis Splines in Problems of Signal Processing

The use of the Spectral Properties of the Basis Splines in Problems of Signal Processing The use of the Spectral Properties of the Basis Splines in Problems of Signal Processing Zaynidinov Hakim Nasiritdinovich, MirzayevAvazEgamberdievich, KhalilovSirojiddinPanjievich Doctor of Science, professor,

More information

Chapter 6. Semi-Lagrangian Methods

Chapter 6. Semi-Lagrangian Methods Chapter 6. Semi-Lagrangian Methods References: Durran Chapter 6. Review article by Staniford and Cote (1991) MWR, 119, 2206-2223. 6.1. Introduction Semi-Lagrangian (S-L for short) methods, also called

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 13: The Lecture deals with:

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 13: The Lecture deals with: The Lecture deals with: Some more Suggestions for Improvement of Discretization Schemes Some Non-Trivial Problems with Discretized Equations file:///d /chitra/nptel_phase2/mechanical/cfd/lecture13/13_1.htm[6/20/2012

More information

Driven Cavity Example

Driven Cavity Example BMAppendixI.qxd 11/14/12 6:55 PM Page I-1 I CFD Driven Cavity Example I.1 Problem One of the classic benchmarks in CFD is the driven cavity problem. Consider steady, incompressible, viscous flow in a square

More information