Aspects of RF Simulation and Analysis Software Methods. David Carpenter. Remcom. B = t. D t. Remcom (Europe)

Size: px
Start display at page:

Download "Aspects of RF Simulation and Analysis Software Methods. David Carpenter. Remcom. B = t. D t. Remcom (Europe)"

Transcription

1 Remcom (Europe) Central Boulevard Blythe Valley Park Solihull West Midlands England, B90 8AG (fax) Aspects of RF Simulation and Analysis Software Methods David Carpenter Remcom E B t H J + D t

2 Solving Maxwell s Equations Differential, integral and asymptotic approaches Popular examples: FEM (finite element method) normally frequency domain FDTD (finite difference time domain) BEM (boundary element method) MoM (Method of Moments) GTD/UTD (Geometrical/uniform theory of diffraction) with SBR (shooting and bouncing rays) PO Physical Optics B µh B 0 D E

3 Finite Difference Time Domain Method Explicitly solves Maxwell s Equations in time domain Subdivide geometry into spatial grid Grid is small compared to wavelength Grid is small compared to geometry features Step through time B µh B 0 D E

4 FDTD Applications Antennas-impedance, radiation, efficiency, matching SAR determination for Cell Phones, Pagers, WiFi MRI design FCC Acceptance for Medical Implant Communications Service (MICS) Microwave Circuits, Waveguides, Fiber Optics, S-Parameters EMC/EMI, Shielding, Coupling Scattering, Radar Cross Section Propagation Photonics Special Materials, including Nonlinear, Dispersive, Negative Index (NIM) and Anisotropic Plasmas (Exhaust, Re-entry) Lightning, EMP B µh B 0 D E

5 FDTD Advantages Simplicity: no Green s functions, no matrices, no asymptotics, no shape functions Wide frequency bandwidth from one calculation Wide variety of materials: dielectric/magnetic, frequency-dependent, nonlinear, anisotropic General geometries (computer memory not dictated by shape) Scales well so suitable for electrically large problems Fits well in parallel computer architectures B µh B 0 D E

6 FDTD Disadvantages Moment Method does not need to solve for fields in free space At very low frequencies the FDTD time step may be very small compared with the period of the sine wave, so many time steps may be needed. B µh B 0 D E

7 Maxwell Curl Equations Faraday s Law Ampere s Law Now assume 1-D propagation in z-direction 1-D Curl Equations B µh B 0 D E

8 Apply Finite Difference Approximation Quantize Space and Time z k z t n t Locate E and H fields centered in time and space Apply finite differences B µh B 0 D E

9 Horn Antenna - Typical Application (1) Pyramidal Horn Antenna Illustrate some of the capabilities of FDTD The horn geometry could be generated using CAD import, or using sweeping and/or shelling For this example a built-in horn primitive of XFDTD will be used B µh B 0 D E

10 Horn Antenna - Typical Application (2) Enter the Horn Parameters for the Horn and Waveguide Feed as shown in the menu B µh B 0 D E

11 Horn Antenna - Typical Application (3) FD CAD object and mesh B µh B 0 D E

12 Horn Antenna - Typical Application (4) Near Field display B µh B 0 D E

13 Horn Antenna E-Plane Gain Pattern Antenna Far Zone Gain B µh B 0 D E

14 BioEM Applications (1) FDTD well suited for Bio-EM analysis such as SAR (Specific Absorption Rate) Usual to start with a model of the human body including all tissue details FDTD models this well with a small mesh throughout B µh B 0 D E

15 E x, y, z BioEM Applications (2) SAR calculated from the electric fields and tissue characteristics SAR σ x E 2 x x 2 + σ y E 2 y y 2 + σ z E 2 z z 2 where SAR σ x, y, z E x, y, z x, y, z Specific Absorption Rate (W/kg) -electrical conductivity (S/m) -magnitude of electric field (V/m) -material density (kg/m3) B µh B 0 D E

16 E x, y, z BioEM Applications (3) B µh B 0 D E

17 GTD/UTD General purpose ray-based electromagnetic analysis for radiation, antenna, scattering, propagation and EMC applications A ray-based EM solver based on the UTD (Uniform Theory of Diffraction) Evaluate E-fields using UTD with material dependent reflection, transmission and diffraction coefficients Combine E-fields with antenna patterns to find received power, time and frequency domain E-field, far-zone radiation patterns, path loss, RCS, etc B µh B 0 D E

18 Hybrid SBR/GTD Approach Objects and features are represented by vector data Positions of Tx/Rx point are required Find geometrical ray paths by using a fast ray tracing procedure based on the Shooting and Bouncing Ray (SBR) method Construct the geometrical optics and the edge diffracted paths from geometrical paths Evaluate E-fields using the Uniform Theory of Diffraction (UTD) and material dependent reflection and transmission coefficients Combine E-fields with antenna patterns to find signal strength, angle of arrival, etc. B µh B 0 D E

19 Line-of-Sight Rays and Reflected Rays B µh B 0 D E

20 Diffracted Rays B µh B 0 D E

21 Multiple Transmitters and Interactions B µh B 0 D E

22 Suitable for electrically large models (1) Geometric features should be greater than a wavelength B µh B 0 D E

23 Suitable for electrically large models (2) Model size/computation time limited by number of facets, edges and vertices B µh B 0 D E

24 May include creeping waves Creeping wave propagation allows propagation across surfaces and around cylinders etc. B µh B 0 D E

25 May be used for propagation studies (1) Indoor B µh B 0 D E

26 May be used for propagation studies (2) Outdoor B µh B 0 D E

27 May be used for propagation studies (3) Time of arrival B µh B 0 D E

28 May be used for propagation studies (4) Outdoor - Indoor B µh B 0 D E

29 Summary There are a number of methods for EM simulation All have strengths and weaknesses Select the correct method for the application Most commercial packages are relatively easy to use based on latest GUIs Graphical images provide an insight into results that hand calculations and simple numerical methods may not. B µh B 0 D E

Lecture 7: Introduction to HFSS-IE

Lecture 7: Introduction to HFSS-IE Lecture 7: Introduction to HFSS-IE 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. HFSS-IE: Integral Equation Solver Introduction HFSS-IE: Technology An Integral Equation solver technology

More information

Introduction to the FEKO Suite

Introduction to the FEKO Suite Introduction to the FEKO Suite FEKO is a suite of tools that is used for electromagnetic field analysis of 3D structures. It offers several state-of-the-art numerical methods for the solution of Maxwell

More information

Simulation Advances. Antenna Applications

Simulation Advances. Antenna Applications Simulation Advances for RF, Microwave and Antenna Applications Presented by Martin Vogel, PhD Application Engineer 1 Overview Advanced Integrated Solver Technologies Finite Arrays with Domain Decomposition

More information

Simulation Advances for RF, Microwave and Antenna Applications

Simulation Advances for RF, Microwave and Antenna Applications Simulation Advances for RF, Microwave and Antenna Applications Bill McGinn Application Engineer 1 Overview Advanced Integrated Solver Technologies Finite Arrays with Domain Decomposition Hybrid solving:

More information

SIMULATION OF AN IMPLANTED PIFA FOR A CARDIAC PACEMAKER WITH EFIELD FDTD AND HYBRID FDTD-FEM

SIMULATION OF AN IMPLANTED PIFA FOR A CARDIAC PACEMAKER WITH EFIELD FDTD AND HYBRID FDTD-FEM 1 SIMULATION OF AN IMPLANTED PIFA FOR A CARDIAC PACEMAKER WITH EFIELD FDTD AND HYBRID FDTD- Introduction Medical Implanted Communication Service (MICS) has received a lot of attention recently. The MICS

More information

INTRODUCTION TO The Uniform Geometrical Theory of Diffraction

INTRODUCTION TO The Uniform Geometrical Theory of Diffraction INTRODUCTION TO The Uniform Geometrical Theory of Diffraction D.A. McNamara, C.W.I. Pistorius J.A.G. Malherbe University of Pretoria Artech House Boston London CONTENTS Preface xiii Chapter 1 The Nature

More information

HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation

HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation Laila Salman, PhD Technical Services Specialist laila.salman@ansys.com 1 Agenda Overview of

More information

ERMES: NUMERICAL TOOL FOR SAR COMPUTATIONS

ERMES: NUMERICAL TOOL FOR SAR COMPUTATIONS PROJECT NAME: 04-161 SMART Antennas ERMES: NUMERICAL TOOL FOR SAR COMPUTATIONS SAR TOOL VALIDATION REPORT Project SMART - WP6 Task 6.5 Deliverable 6.5.3 Rubén Otín rotin@cimne.upc.edu CIMNE - International

More information

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Photons with particle-like nature

More information

Outline. Darren Wang ADS Momentum P2

Outline. Darren Wang ADS Momentum P2 Outline Momentum Basics: Microstrip Meander Line Momentum RF Mode: RFIC Launch Designing with Momentum: Via Fed Patch Antenna Momentum Techniques: 3dB Splitter Look-alike Momentum Optimization: 3 GHz Band

More information

HFSS 14 Update for SI and RF Applications Markus Kopp Product Manager, Electronics ANSYS, Inc.

HFSS 14 Update for SI and RF Applications Markus Kopp Product Manager, Electronics ANSYS, Inc. HFSS 14 Update for SI and RF Applications Markus Kopp Product Manager, Electronics ANSYS, Inc. 1 ANSYS, Inc. September 21, Advanced Solvers: Finite Arrays with DDM 2 ANSYS, Inc. September 21, Finite Arrays

More information

For functionality and CAD/EDA import filter, see technical specifications of the CST STUDIO SUITE

For functionality and CAD/EDA import filter, see technical specifications of the CST STUDIO SUITE CST MICROWAVE STUDIO Technical Specification 1 May 2015 Frontend Module For functionality and CAD/EDA import filter, see technical specifications of the CST STUDIO SUITE Transient Solver Module Fast and

More information

Lecture 2: Introduction

Lecture 2: Introduction Lecture 2: Introduction v2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Multiple Advanced Techniques Allow HFSS to Excel at a Wide Variety of Applications Platform Integration and RCS

More information

Keysight EEsof EDA EMPro

Keysight EEsof EDA EMPro Keysight EEsof EDA EMPro 3D Electromagnetic Modeling and Simulation Environment Integrated with your ADS Design Flow Brochure Introduction Electromagnetic Professional (EMPro) is a 3D modeling and simulation

More information

An Introduction to the Finite Difference Time Domain (FDTD) Method & EMPIRE XCcel

An Introduction to the Finite Difference Time Domain (FDTD) Method & EMPIRE XCcel An Introduction to the Finite Difference Time Domain (FDTD) Method & EMPIRE XCcel Simulation Model definition for FDTD DUT Port Simulation Box Graded Mesh six Boundary Conditions 1 FDTD Basics: Field components

More information

THIS paper presents early results of new tracing algorithm

THIS paper presents early results of new tracing algorithm INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2015, VOL. 61, NO. 3, PP. 273 279 Manuscript received February 7, 2015; revised September, 2015. DOI: 10.1515/eletel-2015-0036 Novel Tracing Algorithm

More information

CECOS University Department of Electrical Engineering. Wave Propagation and Antennas LAB # 1

CECOS University Department of Electrical Engineering. Wave Propagation and Antennas LAB # 1 CECOS University Department of Electrical Engineering Wave Propagation and Antennas LAB # 1 Introduction to HFSS 3D Modeling, Properties, Commands & Attributes Lab Instructor: Amjad Iqbal 1. What is HFSS?

More information

A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems

A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems Veysel Demir vdemir@olemiss.edu Mohamed Al Sharkawy malshark@olemiss.edu Atef Z. Elsherbeni atef@olemiss.edu Abstract

More information

CONTENTS Preface Introduction Finite Element Formulation Finite Element Mesh Truncation

CONTENTS Preface Introduction Finite Element Formulation Finite Element Mesh Truncation Preface xi 1 Introduction 1 1.1 Numerical Simulation of Antennas 1 1.2 Finite Element Analysis Versus Other Numerical Methods 2 1.3 Frequency- Versus Time-Domain Simulations 5 1.4 Brief Review of Past

More information

MRI Induced Heating of a Pacemaker. Peter Krenz, Application Engineer

MRI Induced Heating of a Pacemaker. Peter Krenz, Application Engineer MRI Induced Heating of a Pacemaker Peter Krenz, Application Engineer 1 Problem Statement Electric fields generated during MRI exposure are dissipated in tissue of the human body resulting in a temperature

More information

Electromagnetic & Acoustic Simulation Technologies. ave Computation Technologies, Inc.

Electromagnetic & Acoustic Simulation Technologies. ave Computation Technologies, Inc. Electromagnetic & Acoustic Simulation Technologies ave Computation Technologies, Inc. Mission Wave Computation Technologies, Inc. (WCT) was founded in 2005 at the Research Triangle Area, North Carolina,

More information

Comparison of TLM and FDTD Methods in RCS Estimation

Comparison of TLM and FDTD Methods in RCS Estimation International Journal of Electrical Engineering. ISSN 0974-2158 Volume 4, Number 3 (2011), pp. 283-287 International Research Publication House http://www.irphouse.com Comparison of TLM and FDTD Methods

More information

Acoustic Simulation. COMP 768 Presentation Lakulish Antani April 9, 2009

Acoustic Simulation. COMP 768 Presentation Lakulish Antani April 9, 2009 Acoustic Simulation COMP 768 Presentation Lakulish Antani April 9, 2009 Acoustic Simulation Sound Synthesis Sound Propagation Sound Rendering 2 Goal Simulate the propagation of sound in an environment

More information

Simulation of Photo-Sensitive Devices with FDTD Method. Copyright 2008 Crosslight Software Inc.

Simulation of Photo-Sensitive Devices with FDTD Method. Copyright 2008 Crosslight Software Inc. Simulation of Photo-Sensitive Devices with FDTD Method Copyright 2008 Crosslight Software Inc. www.crosslight.com What is FDTD method? FDTD=Finite Difference Time Domain FDTD method solves Maxwell s equations

More information

High Frequency Wave Propagation and Discrete Geodesics

High Frequency Wave Propagation and Discrete Geodesics High Frequency Wave Propagation and Discrete Geodesics Vladimir Oliker Department of Mathematics and Computer Science Emory University, Atlanta, Ga oliker@mathcs.emory.edu Workshop on High Frequency Wave

More information

RCS Measurement and Analysis of Rectangular and Circular Cross-section Cavities

RCS Measurement and Analysis of Rectangular and Circular Cross-section Cavities RCS Measurement and Analysis of Rectangular and Circular Cross-section Cavities Abhinav Bharat, M L Meena, S. Sunil Kumar, Neha Sangwa, Shyam Rankawat Defence Laboratory, DRDO Jodhpur, India-342011 Abstract

More information

A fast three-dimensional deterministic ray tracing coverage simulator for a 24 GHz anti-collision radar

A fast three-dimensional deterministic ray tracing coverage simulator for a 24 GHz anti-collision radar Adv. Radio Sci., 11, 55 6, 213 www.adv-radio-sci.net/11/55/213/ doi:1.5194/ars-11-55-213 Author(s) 213. CC Attribution 3. License. Advances in Radio Science A fast three-dimensional deterministic ray tracing

More information

Physics 202, Lecture 23

Physics 202, Lecture 23 Physics 202, Lecture 23 Today s Topics Lights and Laws of Geometric Optics Nature of Light Reflection and Refraction Law of Reflection Law of Refraction Index of Reflection, Snell s Law Total Internal

More information

Numerical methods in plasmonics. The method of finite elements

Numerical methods in plasmonics. The method of finite elements Numerical methods in plasmonics The method of finite elements Outline Why numerical methods The method of finite elements FDTD Method Examples How do we understand the world? We understand the world through

More information

HFSS PO Hybrid Region

HFSS PO Hybrid Region HFSS PO Hybrid Region Introduction The design of electrically large systems poses many challenges. Electromagnetic simulations can relatively quickly assess options and trade-offs before any physical testing.

More information

Electromagnetics. R14 Update. Greg Pitner ANSYS, Inc. February 24, 2012

Electromagnetics. R14 Update. Greg Pitner ANSYS, Inc. February 24, 2012 Electromagnetics R14 Update Greg Pitner 1 HFSS Version 14 2 HFSS Overview Advanced Integrated Solver Technologies Finite Arrays with Domain Decomposition Hybrid solving: FEBI, IE Regions Physical Optics

More information

Sorting Through EM Simulators

Sorting Through EM Simulators DesignFeature DAVE MORRIS Application Engineer Agilent Technologies, Lakeside, Cheadle Royal Business Park, Stockport 3K8 3GR, England; e-mail: david_morris@agilent.com, www.agilent.com. ELECTRONICALLY

More information

ELECTROMAGNETIC diffraction by perfectly conducting

ELECTROMAGNETIC diffraction by perfectly conducting IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 11, NOVEMBER 1999 1697 Oblique Scattering by a Pair of Conducting Half Planes: TM Case Jong-Won Yu and Noh-Hoon Myung Abstract An exact series

More information

Modeling the Effects of Wind Turbines on Radar Returns

Modeling the Effects of Wind Turbines on Radar Returns Modeling the Effects of Wind Turbines on Radar Returns R. Ryan Ohs, Gregory J. Skidmore, Dr. Gary Bedrosian Remcom, Inc. State College, PA USA Abstract Wind turbines located near radar installations can

More information

Parallel hp-finite Element Simulations of 3D Resistivity Logging Instruments

Parallel hp-finite Element Simulations of 3D Resistivity Logging Instruments Parallel hp-finite Element Simulations of 3D Resistivity Logging Instruments M. Paszyński 1,3, D. Pardo 1,2, L. Demkowicz 1, C. Torres-Verdin 2 1 Institute for Computational Engineering and Sciences 2

More information

Parallelization of a Electromagnetic Analysis Tool

Parallelization of a Electromagnetic Analysis Tool Parallelization of a Electromagnetic Analysis Tool Milissa Benincasa Black River Systems Co. 162 Genesee Street Utica, NY 13502 (315) 732-7385 phone (315) 732-5837 fax benincas@brsc.com United States Chris

More information

COMPUTER SIMULATION TECHNIQUES FOR ACOUSTICAL DESIGN OF ROOMS - HOW TO TREAT REFLECTIONS IN SOUND FIELD SIMULATION

COMPUTER SIMULATION TECHNIQUES FOR ACOUSTICAL DESIGN OF ROOMS - HOW TO TREAT REFLECTIONS IN SOUND FIELD SIMULATION J.H. Rindel, Computer simulation techniques for the acoustical design of rooms - how to treat reflections in sound field simulation. ASVA 97, Tokyo, 2-4 April 1997. Proceedings p. 201-208. COMPUTER SIMULATION

More information

ACCELERATION OF ASYMPTOTIC COMPUTATIONAL ELECTROMAGNETICS PHYSICAL OPTICS SHOOTING AND BOUNCING RAY (PO-SBR) METHOD USING CUDA HUAN-TING MENG THESIS

ACCELERATION OF ASYMPTOTIC COMPUTATIONAL ELECTROMAGNETICS PHYSICAL OPTICS SHOOTING AND BOUNCING RAY (PO-SBR) METHOD USING CUDA HUAN-TING MENG THESIS ACCELERATION OF ASYMPTOTIC COMPUTATIONAL ELECTROMAGNETICS PHYSICAL OPTICS SHOOTING AND BOUNCING RAY (PO-SBR) METHOD USING CUDA BY HUAN-TING MENG THESIS Submitted in partial fulfillment of the requirements

More information

Contents Contents Creating a Simulation Example: A Dipole Antenna AMDS User s Guide

Contents Contents Creating a Simulation Example: A Dipole Antenna AMDS User s Guide Contents Contents 1 Creating a Simulation 7 Introduction 8 Data Files for Examples 8 Software Organization 9 Constructing the Geometry 10 Creating the Mesh 11 Defining Run Parameters 13 Requesting Results

More information

High-Frequency Algorithmic Advances in EM Tools for Signal Integrity Part 1. electromagnetic. (EM) simulation. tool of the practic-

High-Frequency Algorithmic Advances in EM Tools for Signal Integrity Part 1. electromagnetic. (EM) simulation. tool of the practic- From January 2011 High Frequency Electronics Copyright 2011 Summit Technical Media, LLC High-Frequency Algorithmic Advances in EM Tools for Signal Integrity Part 1 By John Dunn AWR Corporation Only 30

More information

Progress In Electromagnetics Research M, Vol. 20, 29 42, 2011

Progress In Electromagnetics Research M, Vol. 20, 29 42, 2011 Progress In Electromagnetics Research M, Vol. 20, 29 42, 2011 BEAM TRACING FOR FAST RCS PREDICTION OF ELECTRICALLY LARGE TARGETS H.-G. Park, H.-T. Kim, and K.-T. Kim * Department of Electrical Engineering,

More information

THE concept of using a lossy material to absorb an

THE concept of using a lossy material to absorb an 40 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 45, NO. 1, JANUARY 1997 A Comparison of Anisotropic PML to Berenger s PML and Its Application to the Finite-Element Method for EM Scattering Jo-Yu

More information

Simulating Reflector Antenna Performance with GRASP9

Simulating Reflector Antenna Performance with GRASP9 Simulating Reflector Antenna Performance with GRASP9 Bruce Veidt National Research Council of Canada bruce.veidt@nrc.ca and Walter Brisken NRAO Socorro wbrisken@aoc.nrao.edu September 2011 Opening Remarks

More information

Supplementary Figure 1 Optimum transmissive mask design for shaping an incident light to a desired

Supplementary Figure 1 Optimum transmissive mask design for shaping an incident light to a desired Supplementary Figure 1 Optimum transmissive mask design for shaping an incident light to a desired tangential form. (a) The light from the sources and scatterers in the half space (1) passes through the

More information

TABLE OF CONTENTS SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 SECTION 3 WAVE REFLECTION AND TRANSMISSION IN RODS Introduction...

TABLE OF CONTENTS SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 SECTION 3 WAVE REFLECTION AND TRANSMISSION IN RODS Introduction... TABLE OF CONTENTS SECTION 1 INTRODUCTION... 1 1.1 Introduction... 1 1.2 Objectives... 1 1.3 Report organization... 2 SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 2.1 Introduction... 3 2.2 Wave propagation

More information

system into a useful numerical model

system into a useful numerical model Simplification a ple process of a complex system into a useful numerical model Federico Centola, EMC Technologist, Apple inc 2011 IEEE EMC Society - Santa Clara Valley Chapter meeting EMC Simulations Full

More information

Achieve more with light.

Achieve more with light. Achieve more with light. Comprehensive suite of leading photonic design tools. Component Design Multiphysics Component Design Lumerical s highly integrated suite of component design tools is purposebuilt

More information

Ray-tracing Method for Estimating Radio Propagation Using Genetic Algorithm

Ray-tracing Method for Estimating Radio Propagation Using Genetic Algorithm Ray-tracing Method for Estimating Radio Propagation Using Genetic Algorithm High-precision Propagation Estimation High-speed Computation Area Design Ray-tracing Method for Estimating Radio Propagation

More information

Virtual EM Inc. Ann Arbor, Michigan, USA

Virtual EM Inc. Ann Arbor, Michigan, USA Functional Description of the Architecture of a Special Purpose Processor for Orders of Magnitude Reduction in Run Time in Computational Electromagnetics Tayfun Özdemir Virtual EM Inc. Ann Arbor, Michigan,

More information

A Proposed Set of Specific Standard EMC Problems To Help Engineers Evaluate EMC Modeling Tools

A Proposed Set of Specific Standard EMC Problems To Help Engineers Evaluate EMC Modeling Tools A Proposed Set of Specific Standard EMC Problems To Help Engineers Evaluate EMC Modeling Tools Bruce Archambeault, Ph. D Satish Pratapneni, Ph.D. David C. Wittwer, Ph. D Lauren Zhang, Ph.D. Juan Chen,

More information

Acceleration Techniques for Ray-Path Searching in Urban and Suburban Environments to Implement Efficient Radio Propagation Simulators

Acceleration Techniques for Ray-Path Searching in Urban and Suburban Environments to Implement Efficient Radio Propagation Simulators Acceleration Techniques for Ray-Path Searching in Urban and Suburban Environments to Implement Efficient Radio Propagation Simulators Arno Formella HTW des Saarlandes Goebenstraße 4 D 66117 Saarbrücken,

More information

Ray-Tracing Programme

Ray-Tracing Programme Ray-Tracing Programme User s Manual Jietao Zhang Release 2002 ============ USER MANUAL ============ I. Introduction The 3D ray-tracing program is developed for radio channel prediction. The algorithm is

More information

Eigenmode Expansion Methods for Simulation of Optical Propagation in Photonics - Pros and Cons

Eigenmode Expansion Methods for Simulation of Optical Propagation in Photonics - Pros and Cons Eigenmode Expansion Methods for Simulation of Optical Propagation in Photonics - Pros and Cons Dominic F.G. Gallagher, Thomas P. Felici Photon Design, Oxford, United Kingdom, www.photond.com Keywords:

More information

MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology. Lecture 9: Reflection and Refraction (Petty Ch4)

MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology. Lecture 9: Reflection and Refraction (Petty Ch4) MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology Lecture 9: Reflection and Refraction (Petty Ch4) When to use the laws of reflection and refraction? EM waves

More information

Powerful features (1)

Powerful features (1) HFSS Overview Powerful features (1) Tangential Vector Finite Elements Provides only correct physical solutions with no spurious modes Transfinite Element Method Adaptive Meshing r E = t E γ i i ( x, y,

More information

Development, Analysis, and Validation of Parabolic Equation/Ray-Tracing Techniques in Railway Environments. Xingqi Zhang

Development, Analysis, and Validation of Parabolic Equation/Ray-Tracing Techniques in Railway Environments. Xingqi Zhang Development, Analysis, and Validation of Parabolic Equation/Ray-Tracing Techniques in Railway Environments by Xingqi Zhang A thesis submitted in conformity with the requirements for the degree of Master

More information

A Hybrid Magnetic Field Solver Using a Combined Finite Element/Boundary Element Field Solver

A Hybrid Magnetic Field Solver Using a Combined Finite Element/Boundary Element Field Solver A Hybrid Magnetic Field Solver Using a Combined Finite Element/Boundary Element Field Solver Abstract - The dominant method to solve magnetic field problems is the finite element method. It has been used

More information

GPU Ultrasound Simulation and Volume Reconstruction

GPU Ultrasound Simulation and Volume Reconstruction GPU Ultrasound Simulation and Volume Reconstruction Athanasios Karamalis 1,2 Supervisor: Nassir Navab1 Advisor: Oliver Kutter1, Wolfgang Wein2 1Computer Aided Medical Procedures (CAMP), Technische Universität

More information

A Magnetic Field Integral Equation Based Iterative Solver for Scattered Field Prediction

A Magnetic Field Integral Equation Based Iterative Solver for Scattered Field Prediction Progress In Electromagnetics Research M, Vol. 40, 27 35, 2014 A Magnetic Field Integral Equation Based Iterative Solver for Scattered Field Prediction Robert Brem * and Thomas F. Eibert Abstract An iterative

More information

newfasant US User Guide

newfasant US User Guide newfasant US User Guide Software Version: 6.2.10 Date: April 15, 2018 Index 1. FILE MENU 2. EDIT MENU 3. VIEW MENU 4. GEOMETRY MENU 5. MATERIALS MENU 6. SIMULATION MENU 6.1. PARAMETERS 6.2. DOPPLER 7.

More information

1\C 1 I)J1mptMIll 'betl~flbejlli

1\C 1 I)J1mptMIll 'betl~flbejlli 1\C 1 )J1mptMll 'betl~flbejll l~~1hlbd ada]t6gh -or~«ejf. '~illrlf J~..6 '~~~ll!~ 4iJ~ "Mf:i',nl.Nqr2l' ~':l:mj}.i~:tv t.~l '\h Dr. N.Homsup, Abstract n this paper, two high-order FDTD schemes are developed

More information

Bio-Medical RF Simulations with CST Microwave Studio

Bio-Medical RF Simulations with CST Microwave Studio Bio-Medical RF Simulations with CST Microwave Studio Biological Models Specific Absorption Rate (SAR) Bio-Medical Examples Biological Models The right choice of the biological model is essential for the

More information

Insights into EMC Chamber Design:

Insights into EMC Chamber Design: Insights into EMC Chamber Design: How to achieve an optimized chamber for accurate EMC Measurements Zubiao Xiong, PhD zubiao.xiong@ets-lindgren.com November 16, 2017 EMC Compliance Testing Emission (Disturbance)

More information

Lesson 1 Scattering, Diffraction, and Radiation

Lesson 1 Scattering, Diffraction, and Radiation Lesson 1 Scattering, Diffraction, and Radiation Chen-Bin Huang Department of Electrical Engineering Institute of Photonics Technologies National Tsing Hua University, Taiwan Various slides under courtesy

More information

Mie scattering off plasmonic nanoparticle

Mie scattering off plasmonic nanoparticle Mie scattering off plasmonic nanoparticle Model documentation COMSOL 2009 Version: COMSOL 3.5a1 (build 3.5.0.608) Contents I. Model Overview II. Model Navigator III. Options and settings IV. Geometry modeling

More information

REDESIGN AND OPTIMIZATION OF THE PAVING AL- GORITHM APPLIED TO ELECTROMAGNETIC TOOLS (INVITED PAPER)

REDESIGN AND OPTIMIZATION OF THE PAVING AL- GORITHM APPLIED TO ELECTROMAGNETIC TOOLS (INVITED PAPER) Progress In Electromagnetics Research B, Vol. 29, 409 429, 2011 REDESIGN AND OPTIMIZATION OF THE PAVING AL- GORITHM APPLIED TO ELECTROMAGNETIC TOOLS (INVITED PAPER) J. Moreno, M. J. Algar, I. González,

More information

HFSS Ansys ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

HFSS Ansys ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary HFSS 12.0 Ansys 2009 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Comparison of HFSS 11 and HFSS 12 for JSF Antenna Model UHF blade antenna on Joint Strike Fighter Inherent improvements in

More information

Diffraction Calculation of Arbitrarily Curved Wedge Modeled with NURBS Surfaces

Diffraction Calculation of Arbitrarily Curved Wedge Modeled with NURBS Surfaces Progress In Electromagnetics Research M, Vol. 43, 63 70, 2015 Diffraction Calculation of Arbitrarily Curved Wedge Modeled with NURBS Surfaces Jun Yan 1,JunHu *, 1, Hua Peng Zhao 2, and Zai Ping Nie 1 Abstract

More information

Advanced Surface Based MoM Techniques for Packaging and Interconnect Analysis

Advanced Surface Based MoM Techniques for Packaging and Interconnect Analysis Electrical Interconnect and Packaging Advanced Surface Based MoM Techniques for Packaging and Interconnect Analysis Jason Morsey Barry Rubin, Lijun Jiang, Lon Eisenberg, Alina Deutsch Introduction Fast

More information

A MATLAB PHYSICAL OPTICS RCS PREDICTION CODE

A MATLAB PHYSICAL OPTICS RCS PREDICTION CODE A MATLAB PHYSICAL OPTICS RCS PREDICTION CODE Elmo E. Garrido, Jr. and David C. Jenn Naval Postgraduate School Monterey, CA 93943 SUMMARY POFACETS is an implementation of the physical optics approximation

More information

WHEN solving the radiation problem using a numerical

WHEN solving the radiation problem using a numerical 408 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 2, FEBRUARY 2004 The Concurrent Complementary Operators Method Applied to Two-Dimensional Time-Harmonic Radiation and Scattering Problems

More information

A Diagonal Split-cell Model for the High-order Symplectic FDTD Scheme

A Diagonal Split-cell Model for the High-order Symplectic FDTD Scheme PIERS ONLINE, VOL. 2, NO. 6, 2006 715 A Diagonal Split-cell Model for the High-order Symplectic FDTD Scheme Wei Sha, Xianliang Wu, and Mingsheng Chen Key Laboratory of Intelligent Computing & Signal Processing

More information

Progress In Electromagnetics Research, PIER 43, , 2003

Progress In Electromagnetics Research, PIER 43, , 2003 Progress In Electromagnetics Research, PIER 43, 123 142, 2003 2D CAVITY MODELING USING METHOD OF MOMENTS AND ITERATIVE SOLVERS C.-F. Wang and Y.-B. Gan Temasek Laboratories National University of Singapore

More information

Dynamical Theory of X-Ray Diffraction

Dynamical Theory of X-Ray Diffraction Dynamical Theory of X-Ray Diffraction ANDRE AUTHIER Universite P. et M. Curie, Paris OXFORD UNIVERSITY PRESS Contents I Background and basic results 1 1 Historical developments 3 1.1 Prologue 3 1.2 The

More information

Comparison of iteration convergences of SIE and VSIE for solving electromagnetic scattering problems for coated objects

Comparison of iteration convergences of SIE and VSIE for solving electromagnetic scattering problems for coated objects RADIO SCIENCE, VOL. 38, NO. 2, 1028, doi:10.1029/2002rs002610, 2003 Comparison of iteration convergences of SIE and VSIE for solving electromagnetic scattering problems for coated objects Cai-Cheng Lu

More information

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface Chapter 8 GEOMETRICAL OPTICS Introduction Reflection and refraction at boundaries. Reflection at a single surface Refraction at a single boundary Dispersion Summary INTRODUCTION It has been shown that

More information

Introduction to EMIIEMC Computational Modeling

Introduction to EMIIEMC Computational Modeling Appendix A Introduction to EMIIEMC Computational Modeling A.I Introduction The subject of EMI modeling is beginning to appear in the technical literature with increasing frequency. Most articles identify

More information

HFSS - Antennas, Arrays and FSS's. David Perry Applications Engineer Ansoft Corporation

HFSS - Antennas, Arrays and FSS's. David Perry Applications Engineer Ansoft Corporation HFSS - Antennas, Arrays and FSS's David Perry Applications Engineer Ansoft Corporation Synopsis Some Excerpts from What s New Enhancements to HFSS Wave Guide Simulator (WGS) What is it? Why you would use

More information

Agilent W2100 Antenna Modeling Design System

Agilent W2100 Antenna Modeling Design System Agilent W2100 Antenna Modeling Design System User s Guide Agilent Technologies Notices Agilent Technologies, Inc. 2007 No part of this manual may be reproduced in any form or by any means (including electronic

More information

The Application of the Finite-Difference Time-Domain Method to EMC Analysis

The Application of the Finite-Difference Time-Domain Method to EMC Analysis The Application of the Finite-Difference Time-Domain Method to EMC Analysis Stephen D Gedney University of Kentucky Department of Electrical Engineering Lexington, KY 40506-0046 &s&r& The purpose of this

More information

A Preliminary Ray Tracing Approach to Computational Electromagnetics for Reverberation Chambers

A Preliminary Ray Tracing Approach to Computational Electromagnetics for Reverberation Chambers J. Electromagnetic Analysis & Applications, 21, 2, 62-66 doi:1.236/jemaa.21.2861 Published Online August 21 (http://www.scirp.org/journal/jemaa) A Preliminary Ray Tracing Approach to Computational Electromagnetics

More information

Basics of treatment planning II

Basics of treatment planning II Basics of treatment planning II Sastry Vedam PhD DABR Introduction to Medical Physics III: Therapy Spring 2015 Dose calculation algorithms! Correction based! Model based 1 Dose calculation algorithms!

More information

Choosing the Right Photonic Design Software

Choosing the Right Photonic Design Software White Paper Choosing the Right Photonic Design Software September 2016 Authors Chenglin Xu RSoft Product Manager, Synopsys Dan Herrmann CAE Manager, Synopsys Introduction There are many factors to consider

More information

FEKO Release Notes

FEKO Release Notes FEKO 2017.1.1 Release Notes Introduction FEKO 2017.1.1 is a bug-fix update that includes the enhancements and bug fixes documented below. Note: FEKO 2017.1.1 is a cumulative update that contains changes

More information

IMPLEMENTATION OF ANALYTICAL (MATLAB) AND NUMERICAL (HFSS) SOLUTIONS ADVANCED ELECTROMAGNETIC THEORY SOHAIB SAADAT AFRIDI HAMMAD BUTT ZUNNURAIN AHMAD

IMPLEMENTATION OF ANALYTICAL (MATLAB) AND NUMERICAL (HFSS) SOLUTIONS ADVANCED ELECTROMAGNETIC THEORY SOHAIB SAADAT AFRIDI HAMMAD BUTT ZUNNURAIN AHMAD STUDY OF SCATTERING & RESULTANT RADIATION PATTERN: INFINITE LINE CURRENT SOURCE POSITIONED HORIZONTALLY OVER A PERFECTLY CONDUCTING INFINITE GROUND PLANE IMPLEMENTATION OF ANALYTICAL (MATLAB) AND NUMERICAL

More information

Eigenmode Expansion Methods for Simulation of Optical Propagation in Photonics - Pros and Cons

Eigenmode Expansion Methods for Simulation of Optical Propagation in Photonics - Pros and Cons Eigenmode Expansion Methods for Simulation of Optical Propagation in Photonics - Pros and Cons Dominic F.G. Gallagher, Thomas P. Felici Photon Design, Oxford, United Kingdom, www.photond.com Keywords:

More information

Design of Electromagnetic Test Sites

Design of Electromagnetic Test Sites Sensor and Simulation Notes Note 533 3 August 2008 Design of Electromagnetic Test Sites Carl E. Baum University of New Mexico Department of Electrical and Computer Engineering Albuquerque New Mexico 87131

More information

782 Schedule & Notes

782 Schedule & Notes 782 Schedule & Notes Tentative schedule - subject to change at a moment s notice. This is only a guide and not meant to be a strict schedule of how fast the material will be taught. The order of material

More information

Timo Lähivaara, Tomi Huttunen, Simo-Pekka Simonaho University of Kuopio, Department of Physics P.O.Box 1627, FI-70211, Finland

Timo Lähivaara, Tomi Huttunen, Simo-Pekka Simonaho University of Kuopio, Department of Physics P.O.Box 1627, FI-70211, Finland Timo Lähivaara, Tomi Huttunen, Simo-Pekka Simonaho University of Kuopio, Department of Physics P.O.Box 627, FI-72, Finland timo.lahivaara@uku.fi INTRODUCTION The modeling of the acoustic wave fields often

More information

Physical & Electromagnetic Optics: Diffraction Gratings

Physical & Electromagnetic Optics: Diffraction Gratings 31/05/2018 Physical & Electromagnetic Optics: Diffraction Gratings Optical Engineering Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Multiple

More information

Optimization of Via Connections between Transmission Lines in Multilayer LTCC- Modules

Optimization of Via Connections between Transmission Lines in Multilayer LTCC- Modules Optimization of Via onnections between Transmission Lines in Multilayer LT-Modules Optimization of Via onnections between Transmission Lines in Multilayer LT- Modules Torsten Thelemann, Heiko Thust, and

More information

Unit 1: The wireless channel

Unit 1: The wireless channel Unit 1: The wireless channel Wireless communications course Ronal D. Montoya M. http://tableroalparque.weebly.com/radiocomunicaciones.html ronalmontoya5310@correo.itm.edu.co August 16, 2017 1/21 Outline

More information

New Modelling Capabilities in Commercial Software for High-Gain Antennas

New Modelling Capabilities in Commercial Software for High-Gain Antennas 6th European Conference on Antennas and Propagation (EUCAP) New Modelling Capabilities in Commercial Software for High-Gain Antennas Erik Jørgensen, Michael Lumholt, Peter Meincke, Min Zhou, Stig B. Sørensen,

More information

3 Plane-wave Illumination of Human Phantom

3 Plane-wave Illumination of Human Phantom Chapter 3. Plane-wave Illumination of Human Phantom 45 3 Plane-wave Illumination of Human Phantom 3.1 Introduction This chapter will first describe how the electromagnetic model of the human phantom and

More information

ALGORITHMS FOR SIMULATION OF SOUND AND ULTRASOUND PROPAGATION IN COMPLEX DISPERSIVE ENVIRONMENTS

ALGORITHMS FOR SIMULATION OF SOUND AND ULTRASOUND PROPAGATION IN COMPLEX DISPERSIVE ENVIRONMENTS ALGORITHMS FOR SIMULATION OF SOUND AND ULTRASOUND PROPAGATION IN COMPLEX DISPERSIVE ENVIRONMENTS Marjan Sikora Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, R. Boškovića

More information

Simulation of Transition Radiation from a flat target using CST particle studio.

Simulation of Transition Radiation from a flat target using CST particle studio. Simulation of Transition Radiation from a flat target using CST particle studio. K. Lekomtsev 1, A. Aryshev 1, P. Karataev 2, M. Shevelev 1, A. Tishchenko 3 and J. Urakawa 1 1. High Energy Accelerator

More information

Surface Plasmon and Nano-metallic layout simulation with OptiFDTD

Surface Plasmon and Nano-metallic layout simulation with OptiFDTD Surface Plasmon and Nano-metallic layout simulation with OptiFDTD 1. Lorentz_Drude Model and Surface Plasma wave Metallic photonic materials demonstrate unique properties due to the existence on metals

More information

Fiber Optic Communication Systems. Unit-03: Properties of Light. https://sites.google.com/a/faculty.muet.edu.pk/abdullatif

Fiber Optic Communication Systems. Unit-03: Properties of Light. https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Unit-03: Properties of Light https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Department of Telecommunication, MUET UET Jamshoro 1 Refractive index Department of Telecommunication, MUET UET Jamshoro

More information

Specification of Diffraction Orders for Grating Regions

Specification of Diffraction Orders for Grating Regions Specification of Diffraction Orders for Grating Regions Abstract For the configuration of waveguide layouts VirtualLab offers the waveguide component. Within this component it is possible to define an

More information

CHAPTER 4 RAY COMPUTATION. 4.1 Normal Computation

CHAPTER 4 RAY COMPUTATION. 4.1 Normal Computation CHAPTER 4 RAY COMPUTATION Ray computation is the second stage of the ray tracing procedure and is composed of two steps. First, the normal to the current wavefront is computed. Then the intersection of

More information