Problem #130 Ant On Cylinders

Size: px
Start display at page:

Download "Problem #130 Ant On Cylinders"

Transcription

1 Problem #130 Ant On Cyliners The Distance The Ant Travels Along The Surface John Snyer November, 009 Problem Consier the soli boune by the three right circular cyliners x y (greenish-yellow), x z (re), an y z (blue) shown in the figure below. An ant wants to follow the shortest path along the surface from the point a, a, 0 to the point 0, a, a. What is the length of this path? Solution Summary The shortest istance the ant can travel between the two points is given by the following expression. a 8, where The value of the constant is given by the solution to the following transcenental equation. Π 4 sin 1

2 AntOnCyliners130.nb Analysis We begin with a visualization showing the soli forme by the 3 intersecting cyliners. The ant starts his journey at the yellow point shown in the center of the re patch at the point a, a, 0 an ens his journey at the yellow point shown at the center of the blue patch at the point 0, a, a. Blocka 1, p1, p, p1 ContourPlot3Dx y, x z, y z, x,,, y,,, z,,, ContourStyle Re, Green, Blue, Mesh False, MaxRecursion 4, PlotPoints, RegionFunction Functionx, y, z, x y.0005 a && x z.0005 a && y z.0005 a ; p Graphics3DPointSize0.05, Yellow, Spherea, a, 0, 0.04, Sphere0, a, a, 0.04; cyliners Showp1, p, ViewPoint.03986,.67915, , AxesLabel "x", "y", "z", ImageSize Full

3 AntOnCyliners130.nb 3 A geoesic is the curve giving the shortest istance between two points on a surface. From the calculus of variations it is well know that a helix efines a geoesic on the surface of a right circular cyliner. In the present case the ant must travel along two such geoesic curves; each curve has one of its en points at a yellow ot an the other at a common point on the bounary between the re an blue patches efine by the plane x z. In the case of the re patch the parametric equation of the helix can be written as follows. x, y, z a cost, a sint, t Π 4 c Here t is a parameter potentially ranging over the interval 0 t Π n c is a yet to be etermine constant. The corresponing formula for the helix on the blue patch woul be as follows. x, y, z t Π 4 c, a sint, a cost Consiering the helix on the re patch we notice that we must have x z when the helix reaches the bounary plane between the re an blue patches. Calling the x coorinate of this point, we can solve for the value of constant c an the value of the parameter t at the bounary. Reuce Cost, t Π 4 c, 0, Π 4 t Π, t, c, Reals, Backsubstitution True a 0 && 0 a && t ArcCos 4 && c Π 4 ArcCos So the equation of the helix on the re patch is given by the following expression where the parameter t runs over the interval Π 4 t cos 1. x, y, z a cost, a sint, t Π 4 4 cos 1 4 Π By symmetry the istance from the bounary to the yellow point is the same within both the re an blue patches. It is sufficient, therefore, to fin the arc length istance along the geoesic on the surface of the re patch an then ouble the result to fin the total minimum istance along which the ant must travel. The element of arc length s is foun using the well know formula for the this quantity in its parametric form. s SqrtPlus D, t & a Cost, a Sint, t Π ArcCos Π FullSimplify, 0 a && Π 4 t Π & 8 Π 4 ArcCos This can be symbolically integrate to fin the arc length istance of the geoesic along the re patch from the yellow point to the bounary plane between the re an blue patches.

4 4 AntOnCyliners130.nb Assuming0, arc Integrates, t, Π 4, ArcCos FullSimplify 8 Π 4 ArcCos Π 4 ArcCos To simplify things we'll square this arc length an work with it in that form. The square of the minimum arc length istance along the geoesic on the surface of the re patch is then as follows. arc arc FullSimplify, 0 & a Π ArcCos 8 ArcSin Let's plot the square of the istance the ant travels along the re patch for various values of the parameter using the sample value a 1. Blocka 1, Plotarc,, 0, a, AxesOrigin 0, 0.5, PlotStyle Thick, AspectRatio Automatic Recall that the parameter is the value of the x coorinate of the geoesic curve when it reaches the plane bounary x z between the re an blue patches. We see from this plot that there is clearly a value of the parameter which will minimize the istance the ant must travel. We can fin this value of to any egree of precision by taking the erivative of the geoesic arc length, setting it equal to zero, an solving for. In oing this we'll set a 1 an then ajust for alternative values of a later on. Blocka 1, FullSimplifyDarc, 0, 0 a 4 ArcSin Π So the equation which must be solve to fin the value of is as follows. Π 4 sin 1 From this equation we see that the following relationships must hol.

5 AntOnCyliners130.nb 5 sin Π cos Π We can now solve this equation to fin the numerical value of. Blocka 1, ToRulesReuceDarc, 0, 0 a,, Reals Root ArcCos 1 ArcSin &, To sixty ecimal places the value of is as then as follows. N, The reaer may woner what is the physical significance of the constant? In fact,, where is the istance between the centers of two units isks such that the isks overlap by half of each's area. The parameter is iscusse here on MathWorl an is liste by Sloane as sequence A Since the istance the ant must crawl from one yellow point to another is proportional to the value of the parameter a, we can write the shortest istance the ant must travel between the two yellow points in the following form. This result being erive as follows. a 8, where antgeoesic Sqrtarc. a 1, ArcCos ArcSin a Π, 1 4 Π Simplify, 0 1 & We can now illustrate the minimum istance the ant travels between the two yellow points for some selecte values of the parameter a. Block , TableFormTablea, NantGeoesic, 7, a, 10, TableHeaings None, "a", "istance" a istance

6 6 AntOnCyliners130.nb Finally, we can now a the geoesic along which the ant travels to our prior visualization. Blockx , a 1, p1, p, p1 ParametricPlot3D1.01 Cost, 1.01 Sint, 1.01 t Π 4 4 x Π 4 ArcCos x, t, Π 4, ArcCos x, PlotStyle Thick, Cyan; p ParametricPlot3D1.01 t Π 4 4 x Π 4 ArcCos x, 1.01 Sint, 1.01 Cost, x t, ArcCos, Π, PlotStyle Thick, Cyan; 4 Showcyliners, p1, p, ViewPoint.03986,.67915, , AxesLabel "x", "y", "z", ImageSize Full

Assignment 1. Prolog to Problem 1. Two cylinders. ü Visualization. Problems by Branko Curgus

Assignment 1. Prolog to Problem 1. Two cylinders. ü Visualization. Problems by Branko Curgus Assignment In[]:= Problems by Branko Curgus SetOptions $FrontEndSession, Magnification Prolog to Problem. Two cylinders In[]:= This is a tribute to a problem that I was assigned as an undergraduate student

More information

Teaching Complex Analysis as a Lab- Type ( flipped ) Course with a Focus on Geometric Interpretations using Mathematica

Teaching Complex Analysis as a Lab- Type ( flipped ) Course with a Focus on Geometric Interpretations using Mathematica Teaching Complex Analysis as a Lab- Type ( flipped ) Course with a Focus on Geometric Interpretations using Mathematica Bill Kinney, Bethel University, St. Paul, MN 2 KinneyComplexAnalysisLabCourse.nb

More information

GRAPHICAL REPRESENTATION OF SURFACES

GRAPHICAL REPRESENTATION OF SURFACES 9- Graphical representation of surfaces 1 9 GRAPHICAL REPRESENTATION OF SURFACES 9.1. Figures defined in Mathematica ô Graphics3D[ ] ø Spheres Sphere of centre 1, 1, 1 and radius 2 Clear "Global` " Graphics3D

More information

A plane. Or, with more details, NotebookDirectory. C:\Dropbox\Work\myweb\Courses\Math_pages\Math_225\

A plane. Or, with more details, NotebookDirectory. C:\Dropbox\Work\myweb\Courses\Math_pages\Math_225\ In[1]:= NotebookDirectory Out[1]= C:\Dropbox\Work\myweb\Courses\Math_pages\Math_5\ A plane Given a point in R 3 (below it is vr) and two non-collinear vectors (below uu and vv) the parametric equation

More information

Examples of Fourier series

Examples of Fourier series Examples of Fourier series Preliminaries In[]:= Below is the definition of a periodic extension of a function defined on L, L. This definition takes a function as a variable. The function has to be inputted

More information

Explore 3D Figures. Dr. Jing Wang (517) , Lansing Community College, Michigan, USA

Explore 3D Figures. Dr. Jing Wang (517) , Lansing Community College, Michigan, USA Explore 3D Figures Dr. Jing Wang (517)2675965, wangj@lcc.edu Lansing Community College, Michigan, USA Part I. 3D Modeling In this part, we create 3D models using Mathematica for various solids in 3D space,

More information

Triple Integrals: Setting up the Integral

Triple Integrals: Setting up the Integral Triple Integrals: Setting up the Integral. Set up the integral of a function f x, y, z over the region above the upper nappe of the cone z x y from z to z. Use the following orders of integration: d x

More information

(a) Find the equation of the plane that passes through the points P, Q, and R.

(a) Find the equation of the plane that passes through the points P, Q, and R. Math 040 Miterm Exam 1 Spring 014 S o l u t i o n s 1 For given points P (, 0, 1), Q(, 1, 0), R(3, 1, 0) an S(,, 0) (a) Fin the equation of the plane that passes through the points P, Q, an R P Q = 0,

More information

CurvesGraphics. A free package for Advanced Calculus illustrations. Gianluca Gorni. Arrows on 2D curves. Motivation

CurvesGraphics. A free package for Advanced Calculus illustrations. Gianluca Gorni. Arrows on 2D curves. Motivation CurvesGraphics A free package for Advanced Calculus illustrations. Gianluca Gorni Motivation As a teacher of Calculus and Mathematical Analysis at college and university level, I feel that Mathematica

More information

H* Define 2 Points in R 3 *L P = 81, 2, 3< Q = 84, 6, 6< PQvec = Q - P. H* Plot a Single Red Point of "Size" 0.05 *L

H* Define 2 Points in R 3 *L P = 81, 2, 3< Q = 84, 6, 6< PQvec = Q - P. H* Plot a Single Red Point of Size 0.05 *L Define and plotting a point and vector H* Define 2 Points in R 3 *L P = 81, 2, 3< Q = 84, 6, 6< PQvec = Q - P H* Plot a Single Red Point of "Size" 0.05 *L Graphics3D@8PointSize@0.05D, Red, Point@PD

More information

Animação e Visualização Tridimensional. Collision Detection Corpo docente de AVT / CG&M / DEI / IST / UTL

Animação e Visualização Tridimensional. Collision Detection Corpo docente de AVT / CG&M / DEI / IST / UTL Animação e Visualização Triimensional Collision Detection Collision Hanling Collision Detection Collision Determination Collision Response Collision Hanling Collision Detection Collision Determination

More information

MATH 162 Calculus II Computer Laboratory Topic: Introduction to Mathematica & Parametrizations

MATH 162 Calculus II Computer Laboratory Topic: Introduction to Mathematica & Parametrizations MATH 162 Calculus II Computer Laboratory Topic: Introduction to Mathematica & Goals of the lab: To learn some basic operations in Mathematica, such as how to define a function, and how to produce various

More information

1 Basic Plotting. Radii Speeds Offsets 1, 1, 1 2, 5, 19 0, 0, 0 1, 0.8, 0.4, 0.2, 0.4, 0.2 1, 10, 17, 26, 28, 37 0, Π, Π, 0, 0, Π

1 Basic Plotting. Radii Speeds Offsets 1, 1, 1 2, 5, 19 0, 0, 0 1, 0.8, 0.4, 0.2, 0.4, 0.2 1, 10, 17, 26, 28, 37 0, Π, Π, 0, 0, Π 1 Basic Plotting Placing wheels on wheels on wheels and giving them different rates of spin leads to some interesting parametric plots. The images show four examples. They arise from the values below,

More information

CONSTRUCTION AND ANALYSIS OF INVERSIONS IN S 2 AND H 2. Arunima Ray. Final Paper, MATH 399. Spring 2008 ABSTRACT

CONSTRUCTION AND ANALYSIS OF INVERSIONS IN S 2 AND H 2. Arunima Ray. Final Paper, MATH 399. Spring 2008 ABSTRACT CONSTUCTION AN ANALYSIS OF INVESIONS IN S AN H Arunima ay Final Paper, MATH 399 Spring 008 ASTACT The construction use to otain inversions in two-imensional Eucliean space was moifie an applie to otain

More information

Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f 1, f 2,, x, x min, x max plots several functions f i.

Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f 1, f 2,, x, x min, x max plots several functions f i. HdPlot.nb? Plot Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f, f,, x, x min, x max plots several functions f i. Plot Sin 7 x Exp x ^, x,, 4.5 3 4.5 Plot Sin

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my Calculus I course that I teach here at Lamar University. Despite the fact that these are my class notes, they shoul be accessible to anyone wanting to learn Calculus

More information

Making Holes and Windows in Surfaces

Making Holes and Windows in Surfaces The Mathematica Journal Making Holes and Windows in Surfaces Alan Horwitz In this article, we demonstrate makehole, a program which removes points from any Graphics or Graphics3D picture whose coordinates

More information

4.2 Implicit Differentiation

4.2 Implicit Differentiation 6 Chapter 4 More Derivatives 4. Implicit Differentiation What ou will learn about... Implicitl Define Functions Lenses, Tangents, an Normal Lines Derivatives of Higher Orer Rational Powers of Differentiable

More information

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota Questions to:

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota   Questions to: Lab_B.nb Lab B Parametrizing Surfaces Math 37 University of Minnesota http://www.math.umn.edu/math37 Questions to: rogness@math.umn.edu Introduction As in last week s lab, there is no calculus in this

More information

Some Examples to Show That Objects Be Presented by Mathematical Equations

Some Examples to Show That Objects Be Presented by Mathematical Equations American Journal of Computational Mathematics, 01,, 199-06 http://dx.doi.org/10.436/ajcm.01.305 Published Online September 01 (http://www.scirp.org/journal/ajcm) Some Examples to Show That Objects Be Presented

More information

Graphs of Functions, Limits, and

Graphs of Functions, Limits, and Chapter Continuity Graphs of Functions, Limits, and ü. Plotting Graphs Students should read Chapter of Rogawski's Calculus [] for a detailed discussion of the material presented in this section. ü.. Basic

More information

Research Article Inviscid Uniform Shear Flow past a Smooth Concave Body

Research Article Inviscid Uniform Shear Flow past a Smooth Concave Body International Engineering Mathematics Volume 04, Article ID 46593, 7 pages http://x.oi.org/0.55/04/46593 Research Article Invisci Uniform Shear Flow past a Smooth Concave Boy Abullah Mura Department of

More information

Kinematic Analysis of a Family of 3R Manipulators

Kinematic Analysis of a Family of 3R Manipulators Kinematic Analysis of a Family of R Manipulators Maher Baili, Philippe Wenger an Damien Chablat Institut e Recherche en Communications et Cybernétique e Nantes, UMR C.N.R.S. 6597 1, rue e la Noë, BP 92101,

More information

Try It. Implicit and Explicit Functions. Video. Exploration A. Differentiating with Respect to x

Try It. Implicit and Explicit Functions. Video. Exploration A. Differentiating with Respect to x SECTION 5 Implicit Differentiation Section 5 Implicit Differentiation Distinguish between functions written in implicit form an eplicit form Use implicit ifferentiation to fin the erivative of a function

More information

MATH 1020 WORKSHEET 10.1 Parametric Equations

MATH 1020 WORKSHEET 10.1 Parametric Equations MATH WORKSHEET. Parametric Equations If f and g are continuous functions on an interval I, then the equations x ft) and y gt) are called parametric equations. The parametric equations along with the graph

More information

Parametric Curves, Polar Plots and 2D Graphics

Parametric Curves, Polar Plots and 2D Graphics Parametric Curves, Polar Plots and 2D Graphics Fall 2016 In[213]:= Clear "Global`*" 2 2450notes2_fall2016.nb Parametric Equations In chapter 9, we introduced parametric equations so that we could easily

More information

Implicit and Explicit Functions

Implicit and Explicit Functions 60_005.q //0 :5 PM Page SECTION.5 Implicit Differentiation Section.5 EXPLORATION Graphing an Implicit Equation How coul ou use a graphing utilit to sketch the graph of the equation? Here are two possible

More information

11. Differentiating inverse functions.

11. Differentiating inverse functions. . Differentiating inverse functions. The General Case: Fin y x when y f x. Since f y x an we regar y as being a function of x, we ifferentiate both sies of the equation f y x with respect to x using the

More information

Classical Mechanics Examples (Lagrange Multipliers)

Classical Mechanics Examples (Lagrange Multipliers) Classical Mechanics Examples (Lagrange Multipliers) Dipan Kumar Ghosh Physics Department, Inian Institute of Technology Bombay Powai, Mumbai 400076 September 3, 015 1 Introuction We have seen that the

More information

Functions f and g are called a funny cosine and a funny sine if they satisfy the following properties:

Functions f and g are called a funny cosine and a funny sine if they satisfy the following properties: Assignment problems by Branko Ćurgus posted on 2070720 Problem. Funny trigonometry and its beauty ü Few Mathematica comments There are several standard Mathematica functions that can be useful here. For

More information

Introduction to Mathematica and Graphing in 3-Space

Introduction to Mathematica and Graphing in 3-Space 1 Mathematica is a powerful tool that can be used to carry out computations and construct graphs and images to help deepen our understanding of mathematical concepts. This document will serve as a living

More information

Algebra II Quadratic Functions

Algebra II Quadratic Functions 1 Algebra II Quadratic Functions 2014-10-14 www.njctl.org 2 Ta b le o f C o n te n t Key Terms click on the topic to go to that section Explain Characteristics of Quadratic Functions Combining Transformations

More information

REPRESENTATION OF CURVES IN PARAMETRIC FORM

REPRESENTATION OF CURVES IN PARAMETRIC FORM - Representation of curves in parametric form 1 REPRESENTATION OF CURVES IN PARAMETRIC FORM.1. Parametrization of curves in the plane Given a curve in parametric form, its graphical representation in a

More information

Updated: August 24, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University

Updated: August 24, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University Updated: August 24, 216 Calculus III Section 1.2 Math 232 Calculus III Brian Veitch Fall 215 Northern Illinois University 1.2 Calculus with Parametric Curves Definition 1: First Derivative of a Parametric

More information

Math 131. Implicit Differentiation Larson Section 2.5

Math 131. Implicit Differentiation Larson Section 2.5 Math 131. Implicit Differentiation Larson Section.5 So far we have ealt with ifferentiating explicitly efine functions, that is, we are given the expression efining the function, such as f(x) = 5 x. However,

More information

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section.

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section. Chapter 12 Vector Geometry Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible to view 3-D plots generated by Mathematica

More information

MATH 200 (Fall 2016) Exam 1 Solutions (a) (10 points) Find an equation of the sphere with center ( 2, 1, 4).

MATH 200 (Fall 2016) Exam 1 Solutions (a) (10 points) Find an equation of the sphere with center ( 2, 1, 4). MATH 00 (Fall 016) Exam 1 Solutions 1 1. (a) (10 points) Find an equation of the sphere with center (, 1, 4). (x ( )) + (y 1) + (z ( 4)) 3 (x + ) + (y 1) + (z + 4) 9 (b) (10 points) Find an equation of

More information

Figure 1: 2D arm. Figure 2: 2D arm with labelled angles

Figure 1: 2D arm. Figure 2: 2D arm with labelled angles 2D Kinematics Consier a robotic arm. We can sen it commans like, move that joint so it bens at an angle θ. Once we ve set each joint, that s all well an goo. More interesting, though, is the question of

More information

Review for Applications of Definite Integrals Sections

Review for Applications of Definite Integrals Sections Review for Applications of Definite Integrals Sections 6.1 6.4 Math 166 Iowa State University http://orion.math.iastate.edu/dstolee/teaching/15-166/ September 4, 2015 1. What type of problem: Volume? Arc

More information

Linear First-Order PDEs

Linear First-Order PDEs MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 9 Lecture 2 Linear First-Orer PDEs The most general first-orer linear PDE has the form a(x, y)z x + b(x, y)z y + c(x, y)z = (x, y), (1) where a, b,

More information

Holy Halved Heaquarters Riddler

Holy Halved Heaquarters Riddler Holy Halve Heaquarters Riler Anonymous Philosopher June 206 Laser Larry threatens to imminently zap Riler Heaquarters (which is of regular pentagonal shape with no courtyar or other funny business) with

More information

PARAMETERIZATIONS OF PLANE CURVES

PARAMETERIZATIONS OF PLANE CURVES PARAMETERIZATIONS OF PLANE CURVES Suppose we want to plot the path of a particle moving in a plane. This path looks like a curve, but we cannot plot it like we would plot any other type of curve in the

More information

A Classification of 3R Orthogonal Manipulators by the Topology of their Workspace

A Classification of 3R Orthogonal Manipulators by the Topology of their Workspace A Classification of R Orthogonal Manipulators by the Topology of their Workspace Maher aili, Philippe Wenger an Damien Chablat Institut e Recherche en Communications et Cybernétique e Nantes, UMR C.N.R.S.

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

CHAPTER 6: APPLICATIONS OF INTEGRALS

CHAPTER 6: APPLICATIONS OF INTEGRALS (Exercises for Section 6.1: Area) E.6.1 CHAPTER 6: APPLICATIONS OF INTEGRALS SECTION 6.1: AREA 1) For parts a) and b) below, in the usual xy-plane i) Sketch the region R bounded by the graphs of the given

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

16.6 Parametric Surfaces and Their Areas

16.6 Parametric Surfaces and Their Areas SECTION 6.6 PARAMETRIC SURFACES AND THEIR AREAS i j k (b) From (a), v = w r = =( ) i +( ) j +( ) k = i + j i j k (c) curl v = v = = () () i + ( ) () j + () ( ) k =[ ( )] k = k =w 9. For any continuous

More information

Pairwise alignment using shortest path algorithms, Gunnar Klau, November 29, 2005, 11:

Pairwise alignment using shortest path algorithms, Gunnar Klau, November 29, 2005, 11: airwise alignment using shortest path algorithms, Gunnar Klau, November 9,, : 3 3 airwise alignment using shortest path algorithms e will iscuss: it graph Dijkstra s algorithm algorithm (GDU) 3. References

More information

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines Math 18.02 (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines February 12 Reading Material: From Simmons: 17.1 and 17.2. Last time: Square Systems. Word problem. How many solutions?

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46 Polar Coordinates Polar Coordinates: Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ)

More information

Multiple Angle and Product-to-Sum Formulas. Multiple-Angle Formulas. Double-Angle Formulas. sin 2u 2 sin u cos u. 2 tan u 1 tan 2 u. tan 2u.

Multiple Angle and Product-to-Sum Formulas. Multiple-Angle Formulas. Double-Angle Formulas. sin 2u 2 sin u cos u. 2 tan u 1 tan 2 u. tan 2u. 3330_0505.qxd 1/5/05 9:06 AM Page 407 Section 5.5 Multiple-Angle and Product-to-Sum Formulas 407 5.5 Multiple Angle and Product-to-Sum Formulas What you should learn Use multiple-angle formulas to rewrite

More information

Plane Curve [Parametric Equation]

Plane Curve [Parametric Equation] Plane Curve [Parametric Equation] Bander Almutairi King Saud University December 1, 2015 Bander Almutairi (King Saud University) Plane Curve [Parametric Equation] December 1, 2015 1 / 8 1 Parametric Equation

More information

Chapter 10 Homework: Parametric Equations and Polar Coordinates

Chapter 10 Homework: Parametric Equations and Polar Coordinates Chapter 1 Homework: Parametric Equations and Polar Coordinates Name Homework 1.2 1. Consider the parametric equations x = t and y = 3 t. a. Construct a table of values for t =, 1, 2, 3, and 4 b. Plot the

More information

Representations of Curves and Surfaces, and of their Tangent Lines, and Tangent Planes in R 2 and R 3 Robert L.Foote, Fall 2007

Representations of Curves and Surfaces, and of their Tangent Lines, and Tangent Planes in R 2 and R 3 Robert L.Foote, Fall 2007 CurvesAndSurfaces.nb Representations of Curves and Surfaces, and of their Tangent Lines, and Tangent Planes in R and R 3 Robert L.Foote, Fall 007 Curves and Surfaces Graphs ü The graph of f : Æ is a curve

More information

Double Integrals, Iterated Integrals, Cross-sections

Double Integrals, Iterated Integrals, Cross-sections Chapter 14 Multiple Integrals 1 ouble Integrals, Iterated Integrals, Cross-sections 2 ouble Integrals over more general regions, efinition, Evaluation of ouble Integrals, Properties of ouble Integrals

More information

Parametric Curves, Lines in Space

Parametric Curves, Lines in Space Parametric Curves, Lines in Space Calculus III Josh Engwer TTU 02 September 2014 Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September 2014 1 / 37 PART I PART I: 2D PARAMETRIC CURVES Josh Engwer

More information

Problem 25 in Section 16.3

Problem 25 in Section 16.3 Problem 5 in Section 16.3 In[1]:= Recall that in this problem we are studying the pyramid bounded by the planes z 6, y 0, y x 4 and x y z 4. In class we calculated all the vertices of this pyramid. Now

More information

Midterm Review II Math , Fall 2018

Midterm Review II Math , Fall 2018 Midterm Review II Math 2433-3, Fall 218 The test will cover section 12.5 of chapter 12 and section 13.1-13.3 of chapter 13. Examples in class, quizzes and homework problems are the best practice for the

More information

f sin the slope of the tangent line is given by f sin f cos cos sin , but it s also given by 2. So solve the DE with initial condition: sin cos

f sin the slope of the tangent line is given by f sin f cos cos sin , but it s also given by 2. So solve the DE with initial condition: sin cos Math 414 Activity 1 (Due by end of class August 1) 1 Four bugs are placed at the four corners of a square with side length a The bugs crawl counterclockwise at the same speed and each bug crawls directly

More information

Computational methods in Mathematics

Computational methods in Mathematics Computational methods in Mathematics José Carlos Díaz Ramos Cristina Vidal Castiñeira June 13, 2014 1 Graphics Mathematica represents all graphics in terms of a collection of graphics primitives. The primitives

More information

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas 16 Vector Calculus 16.6 and Their Areas Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and Their Areas Here we use vector functions to describe more general

More information

7-5 Parametric Equations

7-5 Parametric Equations 3. Sketch the curve given by each pair of parametric equations over the given interval. Make a table of values for 6 t 6. t x y 6 19 28 5 16.5 17 4 14 8 3 11.5 1 2 9 4 1 6.5 7 0 4 8 1 1.5 7 2 1 4 3 3.5

More information

5.5 Multiple-Angle and Product-to-Sum Formulas

5.5 Multiple-Angle and Product-to-Sum Formulas Section 5.5 Multiple-Angle and Product-to-Sum Formulas 87 5.5 Multiple-Angle and Product-to-Sum Formulas Multiple-Angle Formulas In this section, you will study four additional categories of trigonometric

More information

Calculus II (Math 122) Final Exam, 11 December 2013

Calculus II (Math 122) Final Exam, 11 December 2013 Name ID number Sections B Calculus II (Math 122) Final Exam, 11 December 2013 This is a closed book exam. Notes and calculators are not allowed. A table of trigonometric identities is attached. To receive

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

Measuring Lengths The First Fundamental Form

Measuring Lengths The First Fundamental Form Differential Geometry Lia Vas Measuring Lengths The First Fundamental Form Patching up the Coordinate Patches. Recall that a proper coordinate patch of a surface is given by parametric equations x = (x(u,

More information

WHAT YOU SHOULD LEARN

WHAT YOU SHOULD LEARN GRAPHS OF EQUATIONS WHAT YOU SHOULD LEARN Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs of equations. Find equations of and sketch graphs of

More information

FINDING OPTICAL DISPERSION OF A PRISM WITH APPLICATION OF MINIMUM DEVIATION ANGLE MEASUREMENT METHOD

FINDING OPTICAL DISPERSION OF A PRISM WITH APPLICATION OF MINIMUM DEVIATION ANGLE MEASUREMENT METHOD Warsaw University of Technology Faculty of Physics Physics Laboratory I P Joanna Konwerska-Hrabowska 6 FINDING OPTICAL DISPERSION OF A PRISM WITH APPLICATION OF MINIMUM DEVIATION ANGLE MEASUREMENT METHOD.

More information

Module13:Interference-I Lecture 13: Interference-I

Module13:Interference-I Lecture 13: Interference-I Moule3:Interference-I Lecture 3: Interference-I Consier a situation where we superpose two waves. Naively, we woul expect the intensity (energy ensity or flux) of the resultant to be the sum of the iniviual

More information

1 Finding Trigonometric Derivatives

1 Finding Trigonometric Derivatives MTH 121 Fall 2008 Essex County College Division of Matematics Hanout Version 8 1 October 2, 2008 1 Fining Trigonometric Derivatives 1.1 Te Derivative as a Function Te efinition of te erivative as a function

More information

NEWTON METHOD and HP-48G

NEWTON METHOD and HP-48G NEWTON METHOD an HP-48G DE TING WU DEPART. of MATH. MOREHOUSE COLLEGE I. Introuction Newton metho is an often-use proceure to fin the approximate values of the solutions of an equation. Now, it is covere

More information

16.7 Surface Integrals

16.7 Surface Integrals 16 Vector Calculus 16.7 Surface Integrals Copyright Cengage Learning. All rights reserved. 1 Copyright Cengage Learning. All rights reserved. Surface Integrals The relationship between surface integrals

More information

You can drag the graphs using your mouse to rotate the surface.

You can drag the graphs using your mouse to rotate the surface. The following are some notes for relative maxima and mimima using surfaces plotted in Mathematica. The way to run the code is: Select Menu bar -- Evaluation -- Evaluate Notebook You can drag the graphs

More information

MATH 261 EXAM I PRACTICE PROBLEMS

MATH 261 EXAM I PRACTICE PROBLEMS MATH 261 EXAM I PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 1 typically has 6 problems on it, with no more than one problem of any given type (e.g.,

More information

Defining and Plotting a Parametric Curve in 3D a(t)=(x(t),y(t),z(t)) H* clears all previous assingments so we can reuse them *L

Defining and Plotting a Parametric Curve in 3D a(t)=(x(t),y(t),z(t)) H* clears all previous assingments so we can reuse them *L Defining and Plotting a Parametric Curve in 3D a(t)=(x(t),y(t),z(t)) Clear@"Global`*"D H* clears all previous assingments so we can reuse them *L H* Define vector functions in 3D of one variable t, i.e.

More information

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA:

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA: MA 114 Exam 3 Spring 217 Exam 3 Name: Section and/or TA: Last Four Digits of Student ID: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test.

More information

Topics in Analytic Geometry Part II

Topics in Analytic Geometry Part II Name Chapter 9 Topics in Analytic Geometry Part II Section 9.4 Parametric Equations Objective: In this lesson you learned how to evaluate sets of parametric equations for given values of the parameter

More information

Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f 1, f 2,, x, x min, x max plots several functions f i.

Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f 1, f 2,, x, x min, x max plots several functions f i. HdPlot.nb In[]:=? Plot Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f, f,, x, x min, x max plots several functions f i. In[]:= Plot Sin 7 x Exp x ^, x,, 4.5

More information

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves Block #1: Vector-Valued Functions Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves 1 The Calculus of Moving Objects Problem.

More information

Mathematica Assignment 1

Mathematica Assignment 1 Math 21a: Multivariable Calculus, Fall 2000 Mathematica Assignment 1 Support Welcome to this Mathematica computer assignment! In case of technical problems with this assignment please consult first the

More information

Bends, Jogs, And Wiggles for Railroad Tracks and Vehicle Guide Ways

Bends, Jogs, And Wiggles for Railroad Tracks and Vehicle Guide Ways Ben, Jogs, An Wiggles for Railroa Tracks an Vehicle Guie Ways Louis T. Klauer Jr., PhD, PE. Work Soft 833 Galer Dr. Newtown Square, PA 19073 lklauer@wsof.com Preprint, June 4, 00 Copyright 00 by Louis

More information

Lecture 2. Dr John Armstrong

Lecture 2. Dr John Armstrong Computing for Geometry and Number Theory Lecture 2 Dr John Armstrong King's College London December 6, 2018 Last week we used Mathematica as a calculator Using the workbook, for example to type SHIFT +

More information

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time.

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time. Module 15 : Vector fields, Gradient, Divergence and Curl Lecture 45 : Curves in space [Section 45.1] Objectives In this section you will learn the following : Concept of curve in space. Parametrization

More information

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations Lecture 15 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Length of a Curve and Parametric Equations Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 5 Lecture 15 1 Length of a

More information

Solutions to Tutorial 1 (Week 8)

Solutions to Tutorial 1 (Week 8) The University of Syney School of Mathematics an Statistics Solutions to Tutorial 1 (Week 8) MATH2069/2969: Discrete Mathematics an Graph Theory Semester 1, 2018 1. In each part, etermine whether the two

More information

MAC Learning Objectives. Module 12 Polar and Parametric Equations. Polar and Parametric Equations. There are two major topics in this module:

MAC Learning Objectives. Module 12 Polar and Parametric Equations. Polar and Parametric Equations. There are two major topics in this module: MAC 4 Module 2 Polar and Parametric Equations Learning Objectives Upon completing this module, you should be able to:. Use the polar coordinate system. 2. Graph polar equations. 3. Solve polar equations.

More information

Math 126C: Week 3 Review

Math 126C: Week 3 Review Math 126C: Week 3 Review Note: These are in no way meant to be comprehensive reviews; they re meant to highlight the main topics and formulas for the week. Doing homework and extra problems is always the

More information

Chapter 35 Homework (due 12/03/13)!!

Chapter 35 Homework (due 12/03/13)!! Chapter 35 Homework (ue 12/03/13) 35.6 35.20 35.21 35.29 35.51 35.55 35.66 35.68 page 1 Problem 35.6 An unerwater scuba iver sees the sun an in the parent angle of 45 above the horizontal. What is the

More information

Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations / 17

Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations / 17 Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, Parametric equations Johns Hopkins University Fall 2014 Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations 2014 1 / 17

More information

State Indexed Policy Search by Dynamic Programming. Abstract. 1. Introduction. 2. System parameterization. Charles DuHadway

State Indexed Policy Search by Dynamic Programming. Abstract. 1. Introduction. 2. System parameterization. Charles DuHadway State Inexe Policy Search by Dynamic Programming Charles DuHaway Yi Gu 5435537 503372 December 4, 2007 Abstract We consier the reinforcement learning problem of simultaneous trajectory-following an obstacle

More information

BIJECTIONS FOR PLANAR MAPS WITH BOUNDARIES

BIJECTIONS FOR PLANAR MAPS WITH BOUNDARIES BIJECTIONS FOR PLANAR MAPS WITH BOUNDARIES OLIVIER BERNARDI AND ÉRIC FUSY Abstract. We present bijections for planar maps with bounaries. In particular, we obtain bijections for triangulations an quarangulations

More information

Differentiation Using Product and Quotient Rule 1

Differentiation Using Product and Quotient Rule 1 Differentiation Using Prouct an Quotient Rule 1 1.. ( + 1)( + + 1) + 1 + +. 4. (7 + 15) ( 7 + 15) 5. 6. ( + 7) (5 + 14) 7. 9. + 4 ( 1) (10 + ) 8 + 49 6 4 + 7 10. 8. 1 4 1 11. 1. 1 ( + 1) ( 1) 1. 04 + 59

More information

Math 348 Differential Geometry of Curves and Surfaces

Math 348 Differential Geometry of Curves and Surfaces Math 348 Differential Geometry of Curves and Surfaces Lecture 3 Curves in Calculus Xinwei Yu Sept. 12, 2017 CAB 527, xinwei2@ualberta.ca Department of Mathematical & Statistical Sciences University of

More information

Sum and Difference Identities. Cosine Sum and Difference Identities: cos A B. does NOT equal cos A. Cosine of a Sum or Difference. cos B.

Sum and Difference Identities. Cosine Sum and Difference Identities: cos A B. does NOT equal cos A. Cosine of a Sum or Difference. cos B. 7.3 Sum and Difference Identities 7-1 Cosine Sum and Difference Identities: cos A B Cosine of a Sum or Difference cos cos does NOT equal cos A cos B. AB AB EXAMPLE 1 Finding Eact Cosine Function Values

More information

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let Calculus Lia Vas Polar Coordinates If P = (x, y) is a point in the xy-plane and O denotes the origin, let r denote the distance from the origin O to the point P = (x, y). Thus, x + y = r ; θ be the angle

More information

Final Examination. Math1339 (C) Calculus and Vectors. December 22, :30-12:30. Sanghoon Baek. Department of Mathematics and Statistics

Final Examination. Math1339 (C) Calculus and Vectors. December 22, :30-12:30. Sanghoon Baek. Department of Mathematics and Statistics Math1339 (C) Calculus and Vectors December 22, 2010 09:30-12:30 Sanghoon Baek Department of Mathematics and Statistics University of Ottawa Email: sbaek@uottawa.ca MAT 1339 C Instructor: Sanghoon Baek

More information

HydroperoxyCyclophosphamideDoses 0, 0.32`, 0.5`, 0.79`, 1.2`, 2, 3.2`, 5.07`, 8, 12.67`, 20;

HydroperoxyCyclophosphamideDoses 0, 0.32`, 0.5`, 0.79`, 1.2`, 2, 3.2`, 5.07`, 8, 12.67`, 20; In[1]:= HydroperoxyCyclophosphamideDoses 0, 0.32`, 0.5`, 0.79`, 1.2`, 2, 3.2`, 5.07`, 8, 12.67`, 20; In[2]:= In[3]:= VincristineDoses 0, 0.00032`, 0.000507`, 0.0008`, 0.00127`, 0.002`, 0.0032`, 0.00507`,

More information

1. How Mathematica works

1. How Mathematica works Departments of Civil Engineering and Mathematics CE 109: Computing for Engineering Mathematica Session 1: Introduction to the system Mathematica is a piece of software described by its manufacturers as

More information

Inverse Trigonometric Functions:

Inverse Trigonometric Functions: Inverse Trigonometric Functions: Trigonometric functions can be useful models for many real life phenomena. Average monthly temperatures are periodic in nature and can be modeled by sine and/or cosine

More information

1) Find. a) b) c) d) e) 2) The function g is defined by the formula. Find the slope of the tangent line at x = 1. a) b) c) e) 3) Find.

1) Find. a) b) c) d) e) 2) The function g is defined by the formula. Find the slope of the tangent line at x = 1. a) b) c) e) 3) Find. 1 of 7 1) Find 2) The function g is defined by the formula Find the slope of the tangent line at x = 1. 3) Find 5 1 The limit does not exist. 4) The given function f has a removable discontinuity at x

More information