Comparison of Parallel Processing Systems. Motivation

Size: px
Start display at page:

Download "Comparison of Parallel Processing Systems. Motivation"

Transcription

1 Comparison of Parallel Processing Systems Ash Dean Katie Willis CS 67 George Mason University Motivation Increasingly, corporate and academic projects require more computing power than a typical PC can handle, i.e., The Human Genome Project The cost of traditional supercomputers can range from $1 million to over $0 million. (Source: The Washington Post, Feb. 6) 1

2 Outline Metrics for Parallel Systems Analytical Comparison The LinPack Benchmark Performance of Supercomputers Performance of a Beowulf Cluster Concluding Remarks Speedup Increase in the number of completed jobs, C 0 Decrease in the total execution time, T 0 X = C 0 / T 0 Increased Throughput S p = T 1 / T p

3 Efficiency Need a metric to ascertain the benefit of each additional processor E p = S p /p E 1 = S 1 = 1 Theoretical upper bound since no single processor can do more than p times as much work per time unit as one processor Essentially a measure of overhead As the number of processors increase, overhead increases as well Analytical Comparisons Supercomputer Queuing Network We assume a service demand of.0 seconds 1 3 n 3

4 Analytical Comparison Beowulf Cluster Queuing Network Assume a service demand of.0 seconds 1 Load Balancer/ Fork Process 3 Join n Analytical Comparison

5 Analytical Comparison LinPack Benchmark Developed at the University of Tennessee, Department of Computer Science Internationally used to evaluate high performance computers Top500 Supercomputers worldwide are evaluated using the LinPack Benchmark The fastest computer currently is the Earth Simulator in Japan, which runs at 35,60 GigaFlops 5

6 LinPack Benchmark Measure of a computer s floating point rate of execution Collection of subroutines for solving various systems of dense linear equations Solving a system of equations requires O(n 3 ) floating-point operations Based on LU decomposition with partial pivoting. Supercomputer Performance Computer Uniprocessor Time Number of Processors Multiprocessor Time Speedup Efficiency Cray Y-MP/ Cray Y-MP/ Cray Y-MP/ Cray Y-MP/ Convex SPP Convex SPP Convex SPP

7 Supercomputer Performance Speedup Processors average a speedup of 5.77 Processors average a speedup of 3.3 Supercomputer Performance Efficiency Processors average an efficiency of Processors average an efficiency of 0.5 7

8 Beowulf Cluster Performance Cluster contains up to nodes Each node uses an AMD Athlon XP MHz 56Kb Cache 56Mb Main Memory Each line in the table represents an average of 0 runs Beowulf Cluster Performance With one processor, average approximately.5 E - GigaFlops With two processors, average approximately 7.79 E - GigaFlops With four processors, average approximately.59 E -3 GigaFlops With eight processors, average approximately.63 E -3 GigaFlops

9 Beowulf Cluster Performance Uniprocessor Time Number of Processors Multiprocessor Time Speedup Efficiency Concluding Remarks Beowulf Clusters are an ideal solution when only a relatively small number of processors are necessary In terms of raw computing power, traditional supercomputers with upwards of 1 processing elements cannot be matched by a cluster In terms of cost, the Beowulf cluster, with a relatively small number of processors will be far less expensive 9

10 References McCarthy, Ellen. The Washington Post. February 16, 00. p. E1. Jordan, Harry F. and Gita Alaghband. Fundamentals of Parallel Processing. Pearson Education, Inc. Upper Saddle River, NJ Dongarra, Jack J. Performance of Various Computers Using Standard Linear Equation Software. April 1, 00 Varki, Elizabeth. Response Time Analysis of Parallel Computer and Storage Systems. June 13,

Presentations: Jack Dongarra, University of Tennessee & ORNL. The HPL Benchmark: Past, Present & Future. Mike Heroux, Sandia National Laboratories

Presentations: Jack Dongarra, University of Tennessee & ORNL. The HPL Benchmark: Past, Present & Future. Mike Heroux, Sandia National Laboratories HPC Benchmarking Presentations: Jack Dongarra, University of Tennessee & ORNL The HPL Benchmark: Past, Present & Future Mike Heroux, Sandia National Laboratories The HPCG Benchmark: Challenges It Presents

More information

ANALYSIS OF CLUSTER INTERCONNECTION NETWORK TOPOLOGIES

ANALYSIS OF CLUSTER INTERCONNECTION NETWORK TOPOLOGIES ANALYSIS OF CLUSTER INTERCONNECTION NETWORK TOPOLOGIES Sergio N. Zapata, David H. Williams and Patricia A. Nava Department of Electrical and Computer Engineering The University of Texas at El Paso El Paso,

More information

Making a Case for a Green500 List

Making a Case for a Green500 List Making a Case for a Green500 List S. Sharma, C. Hsu, and W. Feng Los Alamos National Laboratory Virginia Tech Outline Introduction What Is Performance? Motivation: The Need for a Green500 List Challenges

More information

LINPACK Benchmark. on the Fujitsu AP The LINPACK Benchmark. Assumptions. A popular benchmark for floating-point performance. Richard P.

LINPACK Benchmark. on the Fujitsu AP The LINPACK Benchmark. Assumptions. A popular benchmark for floating-point performance. Richard P. 1 2 The LINPACK Benchmark on the Fujitsu AP 1000 Richard P. Brent Computer Sciences Laboratory The LINPACK Benchmark A popular benchmark for floating-point performance. Involves the solution of a nonsingular

More information

On the Performance of Simple Parallel Computer of Four PCs Cluster

On the Performance of Simple Parallel Computer of Four PCs Cluster On the Performance of Simple Parallel Computer of Four PCs Cluster H. K. Dipojono and H. Zulhaidi High Performance Computing Laboratory Department of Engineering Physics Institute of Technology Bandung

More information

Performance, Power, Die Yield. CS301 Prof Szajda

Performance, Power, Die Yield. CS301 Prof Szajda Performance, Power, Die Yield CS301 Prof Szajda Administrative HW #1 assigned w Due Wednesday, 9/3 at 5:00 pm Performance Metrics (How do we compare two machines?) What to Measure? Which airplane has the

More information

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture The Computer Revolution Progress in computer technology Underpinned by Moore s Law Makes novel applications

More information

Fabio AFFINITO.

Fabio AFFINITO. Introduction to High Performance Computing Fabio AFFINITO What is the meaning of High Performance Computing? What does HIGH PERFORMANCE mean??? 1976... Cray-1 supercomputer First commercial successful

More information

Development of efficient computational kernels and linear algebra routines for out-of-order superscalar processors

Development of efficient computational kernels and linear algebra routines for out-of-order superscalar processors Future Generation Computer Systems 21 (2005) 743 748 Development of efficient computational kernels and linear algebra routines for out-of-order superscalar processors O. Bessonov a,,d.fougère b, B. Roux

More information

Cluster Computing Paul A. Farrell 9/15/2011. Dept of Computer Science Kent State University 1. Benchmarking CPU Performance

Cluster Computing Paul A. Farrell 9/15/2011. Dept of Computer Science Kent State University 1. Benchmarking CPU Performance Many benchmarks available MHz (cycle speed of processor) MIPS (million instructions per second) Peak FLOPS Whetstone Stresses unoptimized scalar performance, since it is designed to defeat any effort to

More information

Benchmarking CPU Performance. Benchmarking CPU Performance

Benchmarking CPU Performance. Benchmarking CPU Performance Cluster Computing Benchmarking CPU Performance Many benchmarks available MHz (cycle speed of processor) MIPS (million instructions per second) Peak FLOPS Whetstone Stresses unoptimized scalar performance,

More information

PARALLEL PROGRAMMING MULTI- CORE COMPUTERS

PARALLEL PROGRAMMING MULTI- CORE COMPUTERS 2016 HAWAII UNIVERSITY INTERNATIONAL CONFERENCES SCIENCE, TECHNOLOGY, ENGINEERING, ART, MATH & EDUCATION JUNE 10-12, 2016 HAWAII PRINCE HOTEL WAIKIKI, HONOLULU PARALLEL PROGRAMMING MULTI- CORE COMPUTERS

More information

Outline. Course Administration /6.338/SMA5505. Parallel Machines in Applications Special Approaches Our Class Computer.

Outline. Course Administration /6.338/SMA5505. Parallel Machines in Applications Special Approaches Our Class Computer. Outline Course Administration 18.337/6.338/SMA5505 Parallel Machines in 2003 Overview Details Applications Special Approaches Our Class Computer Parallel Computer Architectures MPP Massively Parallel Processors

More information

Chapter 5 Supercomputers

Chapter 5 Supercomputers Chapter 5 Supercomputers Part I. Preliminaries Chapter 1. What Is Parallel Computing? Chapter 2. Parallel Hardware Chapter 3. Parallel Software Chapter 4. Parallel Applications Chapter 5. Supercomputers

More information

Automatic Tuning of the High Performance Linpack Benchmark

Automatic Tuning of the High Performance Linpack Benchmark Automatic Tuning of the High Performance Linpack Benchmark Ruowei Chen Supervisor: Dr. Peter Strazdins The Australian National University What is the HPL Benchmark? World s Top 500 Supercomputers http://www.top500.org

More information

ECE 669 Parallel Computer Architecture

ECE 669 Parallel Computer Architecture ECE 669 Parallel Computer Architecture Lecture 9 Workload Evaluation Outline Evaluation of applications is important Simulation of sample data sets provides important information Working sets indicate

More information

Measuring Performance. Speed-up, Amdahl s Law, Gustafson s Law, efficiency, benchmarks

Measuring Performance. Speed-up, Amdahl s Law, Gustafson s Law, efficiency, benchmarks Measuring Performance Speed-up, Amdahl s Law, Gustafson s Law, efficiency, benchmarks Why Measure Performance? Performance tells you how you are doing and whether things can be improved appreciably When

More information

What have we learned from the TOP500 lists?

What have we learned from the TOP500 lists? What have we learned from the TOP500 lists? Hans Werner Meuer University of Mannheim and Prometeus GmbH Sun HPC Consortium Meeting Heidelberg, Germany June 19-20, 2001 Outlook TOP500 Approach Snapshots

More information

Designing for Performance. Patrick Happ Raul Feitosa

Designing for Performance. Patrick Happ Raul Feitosa Designing for Performance Patrick Happ Raul Feitosa Objective In this section we examine the most common approach to assessing processor and computer system performance W. Stallings Designing for Performance

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 1. Computer Abstractions and Technology

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 1. Computer Abstractions and Technology COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 1 Computer Abstractions and Technology The Computer Revolution Progress in computer technology Underpinned by Moore

More information

A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers

A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers Maxime Martinasso, Grzegorz Kwasniewski, Sadaf R. Alam, Thomas C. Schulthess, Torsten Hoefler Swiss National Supercomputing

More information

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić How to perform HPL on CPU&GPU clusters Dr.sc. Draško Tomić email: drasko.tomic@hp.com Forecasting is not so easy, HPL benchmarking could be even more difficult Agenda TOP500 GPU trends Some basics about

More information

Advanced Numerical Techniques for Cluster Computing

Advanced Numerical Techniques for Cluster Computing Advanced Numerical Techniques for Cluster Computing Presented by Piotr Luszczek http://icl.cs.utk.edu/iter-ref/ Presentation Outline Motivation hardware Dense matrix calculations Sparse direct solvers

More information

represent parallel computers, so distributed systems such as Does not consider storage or I/O issues

represent parallel computers, so distributed systems such as Does not consider storage or I/O issues Top500 Supercomputer list represent parallel computers, so distributed systems such as SETI@Home are not considered Does not consider storage or I/O issues Both custom designed machines and commodity machines

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

Real Parallel Computers

Real Parallel Computers Real Parallel Computers Modular data centers Overview Short history of parallel machines Cluster computing Blue Gene supercomputer Performance development, top-500 DAS: Distributed supercomputing Short

More information

Chapter 7. Multicores, Multiprocessors, and Clusters. Goal: connecting multiple computers to get higher performance

Chapter 7. Multicores, Multiprocessors, and Clusters. Goal: connecting multiple computers to get higher performance Chapter 7 Multicores, Multiprocessors, and Clusters Introduction Goal: connecting multiple computers to get higher performance Multiprocessors Scalability, availability, power efficiency Job-level (process-level)

More information

Benchmarking CPU Performance

Benchmarking CPU Performance Benchmarking CPU Performance Many benchmarks available MHz (cycle speed of processor) MIPS (million instructions per second) Peak FLOPS Whetstone Stresses unoptimized scalar performance, since it is designed

More information

How to Write Fast Numerical Code Spring 2011 Lecture 7. Instructor: Markus Püschel TA: Georg Ofenbeck

How to Write Fast Numerical Code Spring 2011 Lecture 7. Instructor: Markus Püschel TA: Georg Ofenbeck How to Write Fast Numerical Code Spring 2011 Lecture 7 Instructor: Markus Püschel TA: Georg Ofenbeck Last Time: Locality Temporal and Spatial memory memory Last Time: Reuse FFT: O(log(n)) reuse MMM: O(n)

More information

Chapter 1 Computer System Overview

Chapter 1 Computer System Overview Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Ninth Edition By William Stallings Operating System Exploits the hardware resources of one or more processors Provides

More information

Algorithms and Architecture. William D. Gropp Mathematics and Computer Science

Algorithms and Architecture. William D. Gropp Mathematics and Computer Science Algorithms and Architecture William D. Gropp Mathematics and Computer Science www.mcs.anl.gov/~gropp Algorithms What is an algorithm? A set of instructions to perform a task How do we evaluate an algorithm?

More information

Tiling: A Data Locality Optimizing Algorithm

Tiling: A Data Locality Optimizing Algorithm Tiling: A Data Locality Optimizing Algorithm Announcements Monday November 28th, Dr. Sanjay Rajopadhye is talking at BMAC Friday December 2nd, Dr. Sanjay Rajopadhye will be leading CS553 Last Monday Kelly

More information

Multiple Context Processors. Motivation. Coping with Latency. Architectural and Implementation. Multiple-Context Processors.

Multiple Context Processors. Motivation. Coping with Latency. Architectural and Implementation. Multiple-Context Processors. Architectural and Implementation Tradeoffs for Multiple-Context Processors Coping with Latency Two-step approach to managing latency First, reduce latency coherent caches locality optimizations pipeline

More information

CS650 Computer Architecture. Lecture 10 Introduction to Multiprocessors and PC Clustering

CS650 Computer Architecture. Lecture 10 Introduction to Multiprocessors and PC Clustering CS650 Computer Architecture Lecture 10 Introduction to Multiprocessors and PC Clustering Andrew Sohn Computer Science Department New Jersey Institute of Technology Lecture 10: Intro to Multiprocessors/Clustering

More information

Response Time and Throughput

Response Time and Throughput Response Time and Throughput Response time How long it takes to do a task Throughput Total work done per unit time e.g., tasks/transactions/ per hour How are response time and throughput affected by Replacing

More information

Center Extreme Scale CS Research

Center Extreme Scale CS Research Center Extreme Scale CS Research Center for Compressible Multiphase Turbulence University of Florida Sanjay Ranka Herman Lam Outline 10 6 10 7 10 8 10 9 cores Parallelization and UQ of Rocfun and CMT-Nek

More information

CS Understanding Parallel Computing

CS Understanding Parallel Computing CS 594 001 Understanding Parallel Computing Web page for the course: http://www.cs.utk.edu/~dongarra/web-pages/cs594-2006.htm CS 594 001 Wednesday s 1:30 4:00 Understanding Parallel Computing: From Theory

More information

Computing architectures Part 2 TMA4280 Introduction to Supercomputing

Computing architectures Part 2 TMA4280 Introduction to Supercomputing Computing architectures Part 2 TMA4280 Introduction to Supercomputing NTNU, IMF January 16. 2017 1 Supercomputing What is the motivation for Supercomputing? Solve complex problems fast and accurately:

More information

Advanced Topics in Computer Architecture

Advanced Topics in Computer Architecture Advanced Topics in Computer Architecture Lecture 7 Data Level Parallelism: Vector Processors Marenglen Biba Department of Computer Science University of New York Tirana Cray I m certainly not inventing

More information

Introduction to High-Performance Computing

Introduction to High-Performance Computing Introduction to High-Performance Computing Dr. Axel Kohlmeyer Associate Dean for Scientific Computing, CST Associate Director, Institute for Computational Science Assistant Vice President for High-Performance

More information

Outline. CSC 447: Parallel Programming for Multi- Core and Cluster Systems

Outline. CSC 447: Parallel Programming for Multi- Core and Cluster Systems CSC 447: Parallel Programming for Multi- Core and Cluster Systems Performance Analysis Instructor: Haidar M. Harmanani Spring 2018 Outline Performance scalability Analytical performance measures Amdahl

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 1 Computer Abstractions and Technology (Ch.1) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations

More information

Performance. February 12, Howard Huang 1

Performance. February 12, Howard Huang 1 Performance Today we ll try to answer several questions about performance. Why is performance important? How can you define performance more precisely? How do hardware and software design affect performance?

More information

MIMD Overview. Intel Paragon XP/S Overview. XP/S Usage. XP/S Nodes and Interconnection. ! Distributed-memory MIMD multicomputer

MIMD Overview. Intel Paragon XP/S Overview. XP/S Usage. XP/S Nodes and Interconnection. ! Distributed-memory MIMD multicomputer MIMD Overview Intel Paragon XP/S Overview! MIMDs in the 1980s and 1990s! Distributed-memory multicomputers! Intel Paragon XP/S! Thinking Machines CM-5! IBM SP2! Distributed-memory multicomputers with hardware

More information

2: Computer Performance

2: Computer Performance 2: Computer Performance John Burkardt Information Technology Department Virginia Tech... FDI Summer Track V: Parallel Programming... http://people.sc.fsu.edu/ jburkardt/presentations/ performance 2008

More information

Lecture 1: Introduction and Computational Thinking

Lecture 1: Introduction and Computational Thinking PASI Summer School Advanced Algorithmic Techniques for GPUs Lecture 1: Introduction and Computational Thinking 1 Course Objective To master the most commonly used algorithm techniques and computational

More information

CUDA Accelerated Linpack on Clusters. E. Phillips, NVIDIA Corporation

CUDA Accelerated Linpack on Clusters. E. Phillips, NVIDIA Corporation CUDA Accelerated Linpack on Clusters E. Phillips, NVIDIA Corporation Outline Linpack benchmark CUDA Acceleration Strategy Fermi DGEMM Optimization / Performance Linpack Results Conclusions LINPACK Benchmark

More information

CHAPTER 4 AN INTEGRATED APPROACH OF PERFORMANCE PREDICTION ON NETWORKS OF WORKSTATIONS. Xiaodong Zhang and Yongsheng Song

CHAPTER 4 AN INTEGRATED APPROACH OF PERFORMANCE PREDICTION ON NETWORKS OF WORKSTATIONS. Xiaodong Zhang and Yongsheng Song CHAPTER 4 AN INTEGRATED APPROACH OF PERFORMANCE PREDICTION ON NETWORKS OF WORKSTATIONS Xiaodong Zhang and Yongsheng Song 1. INTRODUCTION Networks of Workstations (NOW) have become important distributed

More information

Affordable and power efficient computing for high energy physics: CPU and FFT benchmarks of ARM processors

Affordable and power efficient computing for high energy physics: CPU and FFT benchmarks of ARM processors Affordable and power efficient computing for high energy physics: CPU and FFT benchmarks of ARM processors Mitchell A Cox, Robert Reed and Bruce Mellado School of Physics, University of the Witwatersrand.

More information

MATE-EC2: A Middleware for Processing Data with Amazon Web Services

MATE-EC2: A Middleware for Processing Data with Amazon Web Services MATE-EC2: A Middleware for Processing Data with Amazon Web Services Tekin Bicer David Chiu* and Gagan Agrawal Department of Compute Science and Engineering Ohio State University * School of Engineering

More information

Contents. Preface xvii Acknowledgments. CHAPTER 1 Introduction to Parallel Computing 1. CHAPTER 2 Parallel Programming Platforms 11

Contents. Preface xvii Acknowledgments. CHAPTER 1 Introduction to Parallel Computing 1. CHAPTER 2 Parallel Programming Platforms 11 Preface xvii Acknowledgments xix CHAPTER 1 Introduction to Parallel Computing 1 1.1 Motivating Parallelism 2 1.1.1 The Computational Power Argument from Transistors to FLOPS 2 1.1.2 The Memory/Disk Speed

More information

Portland State University ECE 588/688. Cray-1 and Cray T3E

Portland State University ECE 588/688. Cray-1 and Cray T3E Portland State University ECE 588/688 Cray-1 and Cray T3E Copyright by Alaa Alameldeen 2018 Cray-1 A successful Vector processor from the 1970s Vector instructions are examples of SIMD Contains vector

More information

How to Write Fast Numerical Code Spring 2012 Lecture 9. Instructor: Markus Püschel TAs: Georg Ofenbeck & Daniele Spampinato

How to Write Fast Numerical Code Spring 2012 Lecture 9. Instructor: Markus Püschel TAs: Georg Ofenbeck & Daniele Spampinato How to Write Fast Numerical Code Spring 2012 Lecture 9 Instructor: Markus Püschel TAs: Georg Ofenbeck & Daniele Spampinato Today Linear algebra software: history, LAPACK and BLAS Blocking (BLAS 3): key

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #2 1/17/2017 Xuehai Qian xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 Outline Opportunities

More information

Motivation Goal Idea Proposition for users Study

Motivation Goal Idea Proposition for users Study Exploring Tradeoffs Between Power and Performance for a Scientific Visualization Algorithm Stephanie Labasan Computer and Information Science University of Oregon 23 November 2015 Overview Motivation:

More information

Parallel Systems. Part 7: Evaluation of Computers and Programs. foils by Yang-Suk Kee, X. Sun, T. Fahringer

Parallel Systems. Part 7: Evaluation of Computers and Programs. foils by Yang-Suk Kee, X. Sun, T. Fahringer Parallel Systems Part 7: Evaluation of Computers and Programs foils by Yang-Suk Kee, X. Sun, T. Fahringer How To Evaluate Computers and Programs? Learning objectives: Predict performance of parallel programs

More information

Lecture 1. Introduction Course Overview

Lecture 1. Introduction Course Overview Lecture 1 Introduction Course Overview Welcome to CSE 260! Your instructor is Scott Baden baden@ucsd.edu Office: room 3244 in EBU3B Office hours Week 1: Today (after class), Tuesday (after class) Remainder

More information

Complexity and Advanced Algorithms. Introduction to Parallel Algorithms

Complexity and Advanced Algorithms. Introduction to Parallel Algorithms Complexity and Advanced Algorithms Introduction to Parallel Algorithms Why Parallel Computing? Save time, resources, memory,... Who is using it? Academia Industry Government Individuals? Two practical

More information

Algorithm Engineering with PRAM Algorithms

Algorithm Engineering with PRAM Algorithms Algorithm Engineering with PRAM Algorithms Bernard M.E. Moret moret@cs.unm.edu Department of Computer Science University of New Mexico Albuquerque, NM 87131 Rome School on Alg. Eng. p.1/29 Measuring and

More information

Performance Analysis of LS-DYNA in Huawei HPC Environment

Performance Analysis of LS-DYNA in Huawei HPC Environment Performance Analysis of LS-DYNA in Huawei HPC Environment Pak Lui, Zhanxian Chen, Xiangxu Fu, Yaoguo Hu, Jingsong Huang Huawei Technologies Abstract LS-DYNA is a general-purpose finite element analysis

More information

Introduction to GPU computing

Introduction to GPU computing Introduction to GPU computing Nagasaki Advanced Computing Center Nagasaki, Japan The GPU evolution The Graphic Processing Unit (GPU) is a processor that was specialized for processing graphics. The GPU

More information

Outline. Parallel Algorithms for Linear Algebra. Number of Processors and Problem Size. Speedup and Efficiency

Outline. Parallel Algorithms for Linear Algebra. Number of Processors and Problem Size. Speedup and Efficiency 1 2 Parallel Algorithms for Linear Algebra Richard P. Brent Computer Sciences Laboratory Australian National University Outline Basic concepts Parallel architectures Practical design issues Programming

More information

High-End Computing Systems

High-End Computing Systems High-End Computing Systems EE380 State-of-the-Art Lecture Hank Dietz Professor & Hardymon Chair in Networking Electrical & Computer Engineering Dept. University of Kentucky Lexington, KY 40506-0046 http://aggregate.org/hankd/

More information

Cluster Computing. Cluster Architectures

Cluster Computing. Cluster Architectures Cluster Architectures Overview The Problem The Solution The Anatomy of a Cluster The New Problem A big cluster example The Problem Applications Many fields have come to depend on processing power for progress:

More information

Parallel Computing Platforms. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Parallel Computing Platforms. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Parallel Computing Platforms Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Elements of a Parallel Computer Hardware Multiple processors Multiple

More information

Performance Characteristics of a Cost-Effective Medium-Sized Beowulf Cluster Supercomputer

Performance Characteristics of a Cost-Effective Medium-Sized Beowulf Cluster Supercomputer Performance Characteristics of a Cost-Effective Medium-Sized Beowulf Cluster Supercomputer Andre L.C. Barczak 1, Chris H. Messom 1, and Martin J. Johnson 1 Massey University, Institute of Information and

More information

The Fusion Distributed File System

The Fusion Distributed File System Slide 1 / 44 The Fusion Distributed File System Dongfang Zhao February 2015 Slide 2 / 44 Outline Introduction FusionFS System Architecture Metadata Management Data Movement Implementation Details Unique

More information

CACHE-GUIDED SCHEDULING

CACHE-GUIDED SCHEDULING CACHE-GUIDED SCHEDULING EXPLOITING CACHES TO MAXIMIZE LOCALITY IN GRAPH PROCESSING Anurag Mukkara, Nathan Beckmann, Daniel Sanchez 1 st AGP Toronto, Ontario 24 June 2017 Graph processing is memory-bound

More information

Composite Metrics for System Throughput in HPC

Composite Metrics for System Throughput in HPC Composite Metrics for System Throughput in HPC John D. McCalpin, Ph.D. IBM Corporation Austin, TX SuperComputing 2003 Phoenix, AZ November 18, 2003 Overview The HPC Challenge Benchmark was announced last

More information

NAMD Serial and Parallel Performance

NAMD Serial and Parallel Performance NAMD Serial and Parallel Performance Jim Phillips Theoretical Biophysics Group Serial performance basics Main factors affecting serial performance: Molecular system size and composition. Cutoff distance

More information

Multi-core Programming - Introduction

Multi-core Programming - Introduction Multi-core Programming - Introduction Based on slides from Intel Software College and Multi-Core Programming increasing performance through software multi-threading by Shameem Akhter and Jason Roberts,

More information

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Outline History & Motivation Architecture Core architecture Network Topology Memory hierarchy Brief comparison to GPU & Tilera Programming Applications

More information

Parallel Computing Platforms

Parallel Computing Platforms Parallel Computing Platforms Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE3054: Multicore Systems, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

8/28/12. CSE 820 Graduate Computer Architecture. Richard Enbody. Dr. Enbody. 1 st Day 2

8/28/12. CSE 820 Graduate Computer Architecture. Richard Enbody. Dr. Enbody. 1 st Day 2 CSE 820 Graduate Computer Architecture Richard Enbody Dr. Enbody 1 st Day 2 1 Why Computer Architecture? Improve coding. Knowledge to make architectural choices. Ability to understand articles about architecture.

More information

Memory hierarchy review. ECE 154B Dmitri Strukov

Memory hierarchy review. ECE 154B Dmitri Strukov Memory hierarchy review ECE 154B Dmitri Strukov Outline Cache motivation Cache basics Six basic optimizations Virtual memory Cache performance Opteron example Processor-DRAM gap in latency Q1. How to deal

More information

Unit 9 : Fundamentals of Parallel Processing

Unit 9 : Fundamentals of Parallel Processing Unit 9 : Fundamentals of Parallel Processing Lesson 1 : Types of Parallel Processing 1.1. Learning Objectives On completion of this lesson you will be able to : classify different types of parallel processing

More information

PLB-HeC: A Profile-based Load-Balancing Algorithm for Heterogeneous CPU-GPU Clusters

PLB-HeC: A Profile-based Load-Balancing Algorithm for Heterogeneous CPU-GPU Clusters PLB-HeC: A Profile-based Load-Balancing Algorithm for Heterogeneous CPU-GPU Clusters IEEE CLUSTER 2015 Chicago, IL, USA Luis Sant Ana 1, Daniel Cordeiro 2, Raphael Camargo 1 1 Federal University of ABC,

More information

How to Write Fast Numerical Code

How to Write Fast Numerical Code How to Write Fast Numerical Code Lecture: Dense linear algebra, LAPACK, MMM optimizations in ATLAS Instructor: Markus Püschel TA: Daniele Spampinato & Alen Stojanov Today Linear algebra software: history,

More information

Parallel computer architecture classification

Parallel computer architecture classification Parallel computer architecture classification Hardware Parallelism Computing: execute instructions that operate on data. Computer Instructions Data Flynn s taxonomy (Michael Flynn, 1967) classifies computer

More information

High Performance Computing in Europe and USA: A Comparison

High Performance Computing in Europe and USA: A Comparison High Performance Computing in Europe and USA: A Comparison Hans Werner Meuer University of Mannheim and Prometeus GmbH 2nd European Stochastic Experts Forum Baden-Baden, June 28-29, 2001 Outlook Introduction

More information

CS 590: High Performance Computing. Parallel Computer Architectures. Lab 1 Starts Today. Already posted on Canvas (under Assignment) Let s look at it

CS 590: High Performance Computing. Parallel Computer Architectures. Lab 1 Starts Today. Already posted on Canvas (under Assignment) Let s look at it Lab 1 Starts Today Already posted on Canvas (under Assignment) Let s look at it CS 590: High Performance Computing Parallel Computer Architectures Fengguang Song Department of Computer Science IUPUI 1

More information

Lecture 7: Parallel Processing

Lecture 7: Parallel Processing Lecture 7: Parallel Processing Introduction and motivation Architecture classification Performance evaluation Interconnection network Zebo Peng, IDA, LiTH 1 Performance Improvement Reduction of instruction

More information

LU FACTORIZATION USING MULTITHREADED SYSTEM

LU FACTORIZATION USING MULTITHREADED SYSTEM LU FACTORIZATION USING MULTITHREADED SYSTEM Mohammad Osama Badawy College of Computing and Information Technology Arab Academy for Science and Technology and Maritime Transport Alexandria, Egypt mohammad.osama.badawy@gmail.co

More information

Green Destiny and Its Evolving Parts:

Green Destiny and Its Evolving Parts: 2004 International Supercomputer Conference Most Innovative Supercomputer Architecture Award Green Destiny and Its Evolving Parts: Supercomputing for the Rest of Us and Research & Development in Advanced

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 1. Computer Abstractions and Technology

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 1. Computer Abstractions and Technology COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 1 Computer Abstractions and Technology Classes of Computers Personal computers General purpose, variety of software

More information

Automatic Identification of Application I/O Signatures from Noisy Server-Side Traces. Yang Liu Raghul Gunasekaran Xiaosong Ma Sudharshan S.

Automatic Identification of Application I/O Signatures from Noisy Server-Side Traces. Yang Liu Raghul Gunasekaran Xiaosong Ma Sudharshan S. Automatic Identification of Application I/O Signatures from Noisy Server-Side Traces Yang Liu Raghul Gunasekaran Xiaosong Ma Sudharshan S. Vazhkudai Instance of Large-Scale HPC Systems ORNL s TITAN (World

More information

Parallel and Distributed Systems. Hardware Trends. Why Parallel or Distributed Computing? What is a parallel computer?

Parallel and Distributed Systems. Hardware Trends. Why Parallel or Distributed Computing? What is a parallel computer? Parallel and Distributed Systems Instructor: Sandhya Dwarkadas Department of Computer Science University of Rochester What is a parallel computer? A collection of processing elements that communicate and

More information

Method-Level Phase Behavior in Java Workloads

Method-Level Phase Behavior in Java Workloads Method-Level Phase Behavior in Java Workloads Andy Georges, Dries Buytaert, Lieven Eeckhout and Koen De Bosschere Ghent University Presented by Bruno Dufour dufour@cs.rutgers.edu Rutgers University DCS

More information

What are Clusters? Why Clusters? - a Short History

What are Clusters? Why Clusters? - a Short History What are Clusters? Our definition : A parallel machine built of commodity components and running commodity software Cluster consists of nodes with one or more processors (CPUs), memory that is shared by

More information

Sparse Linear Solver for Power System Analyis using FPGA

Sparse Linear Solver for Power System Analyis using FPGA Sparse Linear Solver for Power System Analyis using FPGA J. R. Johnson P. Nagvajara C. Nwankpa 1 Extended Abstract Load flow computation and contingency analysis is the foundation of power system analysis.

More information

Cluster Computing. Cluster Architectures

Cluster Computing. Cluster Architectures Cluster Architectures Overview The Problem The Solution The Anatomy of a Cluster The New Problem A big cluster example The Problem Applications Many fields have come to depend on processing power for progress:

More information

Bigtable. A Distributed Storage System for Structured Data. Presenter: Yunming Zhang Conglong Li. Saturday, September 21, 13

Bigtable. A Distributed Storage System for Structured Data. Presenter: Yunming Zhang Conglong Li. Saturday, September 21, 13 Bigtable A Distributed Storage System for Structured Data Presenter: Yunming Zhang Conglong Li References SOCC 2010 Key Note Slides Jeff Dean Google Introduction to Distributed Computing, Winter 2008 University

More information

File Memory for Extended Storage Disk Caches

File Memory for Extended Storage Disk Caches File Memory for Disk Caches A Master s Thesis Seminar John C. Koob January 16, 2004 John C. Koob, January 16, 2004 File Memory for Disk Caches p. 1/25 Disk Cache File Memory ESDC Design Experimental Results

More information

A Study of High Performance Computing and the Cray SV1 Supercomputer. Michael Sullivan TJHSST Class of 2004

A Study of High Performance Computing and the Cray SV1 Supercomputer. Michael Sullivan TJHSST Class of 2004 A Study of High Performance Computing and the Cray SV1 Supercomputer Michael Sullivan TJHSST Class of 2004 June 2004 0.1 Introduction A supercomputer is a device for turning compute-bound problems into

More information

RESTORE: REUSING RESULTS OF MAPREDUCE JOBS. Presented by: Ahmed Elbagoury

RESTORE: REUSING RESULTS OF MAPREDUCE JOBS. Presented by: Ahmed Elbagoury RESTORE: REUSING RESULTS OF MAPREDUCE JOBS Presented by: Ahmed Elbagoury Outline Background & Motivation What is Restore? Types of Result Reuse System Architecture Experiments Conclusion Discussion Background

More information

6.1 Multiprocessor Computing Environment

6.1 Multiprocessor Computing Environment 6 Parallel Computing 6.1 Multiprocessor Computing Environment The high-performance computing environment used in this book for optimization of very large building structures is the Origin 2000 multiprocessor,

More information

CS533 Modeling and Performance Evaluation of Network and Computer Systems

CS533 Modeling and Performance Evaluation of Network and Computer Systems CS533 Modeling and Performance Evaluation of Network and Computer Systems Selection of Techniques and Metrics (Chapter 3) 1 Overview One or more systems, real or hypothetical You want to evaluate their

More information

Technical Brief: Specifying a PC for Mascot

Technical Brief: Specifying a PC for Mascot Technical Brief: Specifying a PC for Mascot Matrix Science 8 Wyndham Place London W1H 1PP United Kingdom Tel: +44 (0)20 7723 2142 Fax: +44 (0)20 7725 9360 info@matrixscience.com http://www.matrixscience.com

More information

PowerEdge 3250 Features and Performance Report

PowerEdge 3250 Features and Performance Report Performance Brief Jan 2004 Revision 3.2 Executive Summary Dell s Itanium Processor Strategy and 1 Product Line 2 Transitioning to the Itanium Architecture 3 Benefits of the Itanium processor Family PowerEdge

More information

Storage Hierarchy Management for Scientific Computing

Storage Hierarchy Management for Scientific Computing Storage Hierarchy Management for Scientific Computing by Ethan Leo Miller Sc. B. (Brown University) 1987 M.S. (University of California at Berkeley) 1990 A dissertation submitted in partial satisfaction

More information