Math 126: Calculus III Section 12.5: Equation of Lines and Planes

Size: px
Start display at page:

Download "Math 126: Calculus III Section 12.5: Equation of Lines and Planes"

Transcription

1 1 Math 16: Calculus III Section 1.5: Equation of Lines and Planes

2 Vector equations of lines Consider the position vector r 0 (which gives points to a point on the line) and the direction v line). Additional points on the line can be reached by multiplying the vector v by the scaling v tv r 0 Origin r 0 Origin

3 3 Vector equations of lines, continued Thus, a line in n through a point given by the position vector r0 and in the direction of v ca r r 0 tv (where t is a parameter). line r 0 r r 0 tv Origin

4 4 Vector equations of lines, continued So, when we allow tto vary, we are left with a line as below (animation)

5 5 Lines: Parametric Equations So, if r 0 is a position vector (for a point on the line), v is a direction vector for the line, and r (where t is a parameter), then: r 0 x 0, y 0, z 0 v a, b, c and r x, y, z then x, y, z x 0 t a, y 0 t b, z 0 t c is the vector equation of a line L parallel to the vector v. Or, the parametric equations are: x x 0 t a; y y 0 t b; z

6 6 Example 1 Find the parametric equations of the line through 1,, 3 and parallel to 4, 5, 6.

7 7 Eliminating the Parameter Eliminating the parameter leads to what are known as symmetric equations. That is, assumin equation in (1.) x x 0 t a; y y 0 t b; z z 0 t c for the parameter t. For example: t xx 0 a Setting the three equations equal gives the symmetric equation (.) xx 0 a yy 0 b zz 0 c when a, b, c 0 In the case where v has a zero component in a given direction (e.g., a 0), then the symmetr yy 0 zz 0 when b, c 0. This is a line on the plane x x 0. (Note: these symmetric b c (1.) rather than from the symmetric equations (.)).

8 8 Example a.) Find the symmetric equations of the line from example 1. b.) Find the point were the line intersects the xy plane (where z 0)

9 9 The Equation of Line between Points: The Picture We are trying to find the line between two points. In the illustration, the points would be r 0 green line represents the line segment between the two points (on 0 t 1) and the blue line for all values of t. r 1 7,1, r 0 6,6,5

10 1 The Equation of Line between Points: The Formula To describe the line from r 0 to r 1, begin with 1r 0 0r 1 and go to 0r 0 1r 1. T equation: r 1tr 0 t r 1, 0 t 1. This is a powerful formula - understand the derivation rather than memorizing it.

11 1 Example 3 Find the parametric representation of a line from 1,, 3 to3, 7, 11.

12 1 Planes in 3. A plane can be determined by a point and a vector orthogonal to the plane (a normal vector). Why? Notice that this is similar to finding a line by having its slope and a point.

13 1 Forming a Plane - Seeing Dimension The following animation shows two position vectors r 0 and r of points on a plane, the vecto a normal vector to the plane n. The purpose of the animation is to help the student see the dim r Origin r r 0 r 0 n

14 1 Forming a Plane - the Normal Vector The following graph shows two position vectors r 0 and r of points on a plane, the vector r normal vector to the plane n. The origin and z-axis are shown to help the student visualize di orthogonal to the vector r r 0. n r 0 Origin r r 0 r Thus, n r r 0 0.

15 1 The Equation of a Plane Let n, r, and r 0 be defined as follows: n a, b, c (normal vector) r x, y, z (position vector for an arbitrary point on the plane) r 0 x 0, y 0, z 0 (position vector for a given point on the plane)s Since n r r 0 0, we have 0 a, b, c x, y, z x 0, y 0, z 0 0 a, b, c xx 0, yy 0, zz 0 0 axx 0 byy 0 czz 0 This can also be written as axbyczd 0

16 1 Example 4 Find the equation of the plane that includes the point 1,, 3 and that has normal vector

17 1 Question How would we find the equation of the plane through three points (assuming that they are no

18 1 Definition We define the angle between planes to be the angle between their normal vectors.

19 1 Example 5 Find the parametric equations for the line Lof intersection of the planes z xyand x Use the following steps. 1.) Find normal vectors to each plane..) Find the cross product of the normals to determine the direction of the line L.

20 3.) Determine a point on the line L (one method would be to set z 0). In this case, when z0, we are left with x ) Express your answer. and y 1 3. Or, the line goes thru 1, 1 3 3,

21 Note There are an infinite number of vectors normal to a plane at a point.

22 Distance from a Plane to a Point - The Scenario To find the distance D from a plane to a fixed point, we need to to find determine the magnitu plane and whose tip is at the point. As we have seen, finding normal vectors to a plane is not difficult. Unfortunately, the norma axbyczd 0 only gives the direction from the plane to the point, not the magnitude P 1 x 1,y 1,z 1 n

23 Distance from a Plane to a Point - The Picture Deriv To find the distance D from the plane axbyczd 0 to the point P 1, we will pick so ax 0 by 0 cz 0 d 0) and find the magnitude of the projection of the vector v from P 0 P 1 x 1,y 1,z 1 v n P 0 x 0,y 0,z 0

24 Distance from a Plane to a Point - The Derivation We have the following vectors: n a, b, c (the normal to the plane axbyczd 0) v x 1 x 0, y 1 y 0, z 1 z 0 (a vector from P 0 to P 1 ) To find the distance D from the plane to P 1, we need to find: D comp n v D n v n D ax 1 x 0 by 1 y 0 cz 1 z 0 n D ax 1 ax 0 by 1 by 0 cz 1 cz 0 n D ax 1 ax 0 by 1 by 0 cz 1 cz 0 dd (add 0 dd) n D ax 1 ax 0 by 1 by 0 cz 1 cz 0 dd n (recall that ax 0 by 0 cz 0 d 0 since P 0 is on D ax 1 by 1 cz 1 d n

25 Mathematica Scratch Work: Lines in 3 Needs"VisualLA`" $TextStyle FontSize 1; $FormatType TraditionalForm; WINDOW : 0, 10, 0, 10, 0, 10; Origin 0, 0, 0; A 1,, 3; B 6, 5, 4; V BA; ShowDrawVector3DA, DisplayFunction Identity, DrawVector3DV, DisplayFunction Identity, PlotRange W DisplayFunction $DisplayFunction; TableShowDrawVector3DA t V, DisplayFunction Identity, DisplayFunction $DisplayFunction, PlotRange WINDOW, Ticks t, 0, 1.5, 0.05; TableShowParametricPlot3DA s B, s, 0.05, t, DisplayFunct DrawVector3DA t B, DisplayFunction Identity, DisplayF PlotRange WINDOW, Ticks False, t, 0, 1.5, 0.05; TableShowGraphics3DLineA, A t V, DrawVector3DA, Dis DrawVector3DA t V, DisplayFunction Identity, DisplayF PlotRange WINDOW, Ticks False, t, 0.05, 1.5, 0.05; WINDOW :, 10, 0, 10, 0, 5;

26 t 1.5; P1 : Show P : Graphics3DText"Origin", 0, 0, 0, 0, 1, Text"r 0", A Text"v ", A V, 0, 1, DrawVector3DA, DisplayFun DrawVector3DA, A V, DisplayFunction Identity, Plo Ticks False, Boxed False; Show Graphics3DText"Origin", 0, 0, 0, 0, 1, Text"r 0", A Text"tv ", A 1.5 V, 0, 1, DrawVector3DA, Displ DrawVector3DA, A t V, DisplayFunction Identity, P Ticks False, Boxed False; ShowGraphicsArrayP1, P, DisplayFunction $DisplayFunctio P3 : P3; Show Graphics3DText"Origin", 0, 0, 0, 0, 1, Text"r 0", A Text"line", A 1.5 V, 0, 1, Text"r r 0tv ", A t V, DrawVector3DA, DisplayFunction Identity, DrawVector3DA t V, DisplayFunction Identity, PlotRa Ticks False, Boxed False;

27 WINDOW : 3, 3, 4, 3, 40, 0; fx_, y_ : xy0; P4 : Plot3Dfx, y, x, 3, 3, y, 3, 3, Mesh False, Displa A,, f, ; B, 1, f, 1; NORMAL 1,, 1; t 1; Table Show P4, Graphics3DLineA, B, Line0, 0, 40, 0, 0, 0 Text"Origin", 0, 0, 0, 1, 1, Text"r 0", A, 4, 0, Text"r r 0", A B, 0, 1, Text"n ", A NORMAL,, 0 DrawVector3DA, HeadLength 0.1, HeadAngle 0.05, Displa DrawVector3DB, HeadLength 0.1, HeadAngle 0.05, Displa DrawVector3DA, A NORMAL, HeadLength 0.0, HeadAngle DisplayFunction Identity, PlotRange WINDOW, Ticks F ViewPoint 3, s, 5, DisplayFunction $DisplayFunction, WINDOW : 0, 4, 8, 1, 40, 0; fx_, y_ : xy0; P4 : Plot3Dfx, y, x, 0, 4, y, 8, 1, Mesh False, DisplayF A,, f, ; B 3, 5, f3, 5; NORMAL 1,, 1; t 1; ShowP4, PointPlot3DA, A NORMAL, DisplayFunction Identi Graphics3DText"P 1 x 1,y 1,z 1 ", A NORMAL, 1.1, 0, Text DrawVector3DA, A NORMAL, HeadLength 0.0, HeadAngle DisplayFunction Identity, PlotRange WINDOW, Ticks Fa ViewPoint 3, 3, 5, DisplayFunction $DisplayFunction;

28 WINDOW : 0, 4, 8, 1, 40, 0; fx_, y_ : xy0; P4 : Plot3Dfx, y, x, 0, 4, y, 8, 1, Mesh False, DisplayF A,, f, ; B 3, 5, f3, 5; NORMAL 1,, 1; t 1; ShowP4, PointPlot3DA, A NORMAL, B, DisplayFunction Ide Graphics3DDashing0.01, 0.01, LineA, B, LineA N Text"P 0 x 0,y 0,z 0 ", B, 1, 1.5, Text"P 1 x 1,y 1,z 1 ", A Text"n ", A NORMAL,, 0, Text"v BA NORMAL ",,, 0, DrawVector3DB, A NORMAL, HeadLength 0.05, HeadAngle DisplayFunction Identity, DrawVector3DA, A NORMAL, HeadAngle 0.05, ShaftColor Red, DisplayFunction Identi Ticks False, Boxed True, ViewPoint 3, 3, 5, DisplayFunc

29 Line Segment between two points In[88]:= Needs"VisualLA`" rt_ 1t6, 6, 5t7, 1, ; A0 ParametricPlot3DFlattenrt, RGBColor0, 0, 1, t, 5 DisplayFunction Identity; A1 ParametricPlot3DFlattenrt, RGBColor0, 0, 1, t, 1, DisplayFunction Identity; B ParametricPlot3DFlattenrt, RGBColor0, 1, 0, t, 0, 1 PTS PointPlot3Dr0, r1, DisplayFunction Identity; LBL Text"r 06,6,5", r0, 1.5, 1, Text"r 17,1, ShowGraphics3DLBL, A0, B, A1, PTS, DisplayFunction $Displ PlotRange 10, 10, 10, 10, 10, 10, Ticks False, A Boxed True, ViewPoint.49, 1.548, 1.775;

30 Intersection of planes In[414]:= Planes P1x_, y_ xy; Px_, y_ x5y1; F Plot3DP1x, y, x, 3, 3, y, 3, 3, DisplayFunction Ide G Plot3DPx, y, x, 3, 3, y, 3, 3, DisplayFunction Ide Vectors N1 1, 1, 1; N, 5, 1; N1xN CrossN1, N; PN1 DrawVector3D13, 13, P113, 13, 13, 13, DisplayFunction Identity; PN DrawVector3D13, 13, P13, 13, 13, 13, DisplayFunction Identity; DIRVEC DrawVector3D13, 13, P13, 13, 13, 1 DisplayFunction Identity; Graph ShowF, G, PN1, PN, DisplayFunction $DisplayFunction, Ticks ShowF, G, PN1, PN, DIRVEC, DisplayFunction $DisplayFunctio ViewPoint, 1, ;

Updated: January 11, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University

Updated: January 11, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University Math 232 Calculus III Brian Veitch Fall 2015 Northern Illinois University 12.5 Equations of Lines and Planes Definition 1: Vector Equation of a Line L Let L be a line in three-dimensional space. P (x,

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 1.5. EQUATIONS OF LINES AND PLANES IN 3-D 55 Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from the

More information

12.5 Lines and Planes in 3D Lines: We use parametric equations for 3D lines. Here s a 2D warm-up:

12.5 Lines and Planes in 3D Lines: We use parametric equations for 3D lines. Here s a 2D warm-up: Closing Thu: 12.4(1)(2), 12.5(1) Closing next Tue: 12.5(2)(3), 12.6 Closing next Thu: 13.1, 13.2 12.5 Lines and Planes in 3D Lines: We use parametric equations for 3D lines. Here s a 2D warm-up: Consider

More information

OffPlot::"plnr"; OffGraphics::"gptn"; OffParametricPlot3D::"plld" Needs"Graphics`Arrow`" Needs"VisualLA`"

OffPlot::plnr; OffGraphics::gptn; OffParametricPlot3D::plld NeedsGraphics`Arrow` NeedsVisualLA` Printed from the Mathematica Help Browser of.: Transformation of Functions In this section, we will explore three types of transformations:.) Shifting.) Reflections (or flips).) Stretches and compressions

More information

Topic 1.6: Lines and Planes

Topic 1.6: Lines and Planes Math 275 Notes (Ultman) Topic 1.6: Lines and Planes Textbook Section: 12.5 From the Toolbox (what you need from previous classes): Plotting points, sketching vectors. Be able to find the component form

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from

More information

Assignment 1. Prolog to Problem 1. Two cylinders. ü Visualization. Problems by Branko Curgus

Assignment 1. Prolog to Problem 1. Two cylinders. ü Visualization. Problems by Branko Curgus Assignment In[]:= Problems by Branko Curgus SetOptions $FrontEndSession, Magnification Prolog to Problem. Two cylinders In[]:= This is a tribute to a problem that I was assigned as an undergraduate student

More information

Suggested problems - solutions

Suggested problems - solutions Suggested problems - solutions Writing equations of lines and planes Some of these are similar to ones you have examples for... most of them aren t. P1: Write the general form of the equation of the plane

More information

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane.

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane. Math 21a Tangent Lines and Planes Fall, 2016 What do we know about the gradient f? Tangent Lines to Curves in the Plane. 1. For each of the following curves, find the tangent line to the curve at the point

More information

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the Review Exercise 1. Determine vector and parametric equations of the plane that contains the points A11, 2, 12, B12, 1, 12, and C13, 1, 42. 2. In question 1, there are a variety of different answers possible,

More information

3.5 Equations of Lines and Planes

3.5 Equations of Lines and Planes 3.5 Equations of Lines and Planes Objectives Iknowhowtodefinealineinthree-dimensionalspace. I can write a line as a parametric equation, a symmetric equation, and a vector equation. I can define a plane

More information

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ Math 0 Prelim I Solutions Spring 010 1. Let f(x, y) = x3 y for (x, y) (0, 0). x 6 + y (4 pts) (a) Show that the cubic curves y = x 3 are level curves of the function f. Solution. Substituting y = x 3 in

More information

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives Recall that if z = f(x, y), then the partial derivatives f x and f y are defined as and represent the rates of change of z in the x- and y-directions, that is, in the directions of the unit vectors i and

More information

If the center of the sphere is the origin the the equation is. x y z 2ux 2vy 2wz d 0 -(2)

If the center of the sphere is the origin the the equation is. x y z 2ux 2vy 2wz d 0 -(2) Sphere Definition: A sphere is the locus of a point which remains at a constant distance from a fixed point. The fixed point is called the centre and the constant distance is the radius of the sphere.

More information

Lines and Planes in 3D

Lines and Planes in 3D Lines and Planes in 3D Philippe B. Laval KSU January 28, 2013 Philippe B. Laval (KSU) Lines and Planes in 3D January 28, 2013 1 / 20 Introduction Recall that given a point P = (a, b, c), one can draw a

More information

MATH 200 (Fall 2016) Exam 1 Solutions (a) (10 points) Find an equation of the sphere with center ( 2, 1, 4).

MATH 200 (Fall 2016) Exam 1 Solutions (a) (10 points) Find an equation of the sphere with center ( 2, 1, 4). MATH 00 (Fall 016) Exam 1 Solutions 1 1. (a) (10 points) Find an equation of the sphere with center (, 1, 4). (x ( )) + (y 1) + (z ( 4)) 3 (x + ) + (y 1) + (z + 4) 9 (b) (10 points) Find an equation of

More information

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY True/False 10 points: points each) For the problems below, circle T if the answer is true and circle F is the answer is false. After you ve chosen

More information

The Three Dimensional Coordinate System

The Three Dimensional Coordinate System The Three-Dimensional Coordinate System The Three Dimensional Coordinate System You can construct a three-dimensional coordinate system by passing a z-axis perpendicular to both the x- and y-axes at the

More information

1 EquationsofLinesandPlanesin 3-D

1 EquationsofLinesandPlanesin 3-D 1 EquationsofLinesandPlanesin 3-D Recall that given a point P (a, b, c), one can draw a vector from the origin to P. Such a vector is called the position vector of the point P and its coordinates are a,

More information

5. In the Cartesian plane, a line runs through the points (5, 6) and (-2, -2). What is the slope of the line?

5. In the Cartesian plane, a line runs through the points (5, 6) and (-2, -2). What is the slope of the line? Slope review Using two points to find the slope In mathematics, the slope of a line is often called m. We can find the slope if we have two points on the line. We'll call the first point and the second

More information

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines Math 18.02 (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines February 12 Reading Material: From Simmons: 17.1 and 17.2. Last time: Square Systems. Word problem. How many solutions?

More information

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes Section 13.5: Equations of Lines and Planes 1 Objectives 1. Find vector, symmetric, or parametric equations for a line in space given two points on the line, given a point on the line and a vector parallel

More information

GEOMETRY IN THREE DIMENSIONS

GEOMETRY IN THREE DIMENSIONS 1 CHAPTER 5. GEOMETRY IN THREE DIMENSIONS 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW GEOMETRY IN THREE DIMENSIONS Contents 1 Geometry in R 3 2 1.1 Lines...............................................

More information

12.7 Tangent Planes and Normal Lines

12.7 Tangent Planes and Normal Lines .7 Tangent Planes and Normal Lines Tangent Plane and Normal Line to a Surface Suppose we have a surface S generated by z f(x,y). We can represent it as f(x,y)-z 0 or F(x,y,z) 0 if we wish. Hence we can

More information

Math 1313 Prerequisites/Test 1 Review

Math 1313 Prerequisites/Test 1 Review Math 1313 Prerequisites/Test 1 Review Test 1 (Prerequisite Test) is the only exam that can be done from ANYWHERE online. Two attempts. See Online Assignments in your CASA account. Note the deadline too.

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

Final Examination. Math1339 (C) Calculus and Vectors. December 22, :30-12:30. Sanghoon Baek. Department of Mathematics and Statistics

Final Examination. Math1339 (C) Calculus and Vectors. December 22, :30-12:30. Sanghoon Baek. Department of Mathematics and Statistics Math1339 (C) Calculus and Vectors December 22, 2010 09:30-12:30 Sanghoon Baek Department of Mathematics and Statistics University of Ottawa Email: sbaek@uottawa.ca MAT 1339 C Instructor: Sanghoon Baek

More information

14.6 Directional Derivatives and the Gradient Vector

14.6 Directional Derivatives and the Gradient Vector 14 Partial Derivatives 14.6 and the Gradient Vector Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and the Gradient Vector In this section we introduce

More information

MATH 261 EXAM I PRACTICE PROBLEMS

MATH 261 EXAM I PRACTICE PROBLEMS MATH 261 EXAM I PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 1 typically has 6 problems on it, with no more than one problem of any given type (e.g.,

More information

Date: 16 July 2016, Saturday Time: 14:00-16:00 STUDENT NO:... Math 102 Calculus II Midterm Exam II Solutions TOTAL. Please Read Carefully:

Date: 16 July 2016, Saturday Time: 14:00-16:00 STUDENT NO:... Math 102 Calculus II Midterm Exam II Solutions TOTAL. Please Read Carefully: Date: 16 July 2016, Saturday Time: 14:00-16:00 NAME:... STUDENT NO:... YOUR DEPARTMENT:... Math 102 Calculus II Midterm Exam II Solutions 1 2 3 4 TOTAL 25 25 25 25 100 Please do not write anything inside

More information

Let s write this out as an explicit equation. Suppose that the point P 0 = (x 0, y 0, z 0 ), P = (x, y, z) and n = (A, B, C).

Let s write this out as an explicit equation. Suppose that the point P 0 = (x 0, y 0, z 0 ), P = (x, y, z) and n = (A, B, C). 4. Planes and distances How do we represent a plane Π in R 3? In fact the best way to specify a plane is to give a normal vector n to the plane and a point P 0 on the plane. Then if we are given any point

More information

Elements of three dimensional geometry

Elements of three dimensional geometry Lecture No-3 Elements of three dimensional geometr Distance formula in three dimension Let P( x1, 1, z1) and Q( x2, 2, z 2) be two points such that PQ is not parallel to one of the 2 2 2 coordinate axis

More information

Properties of Quadratic functions

Properties of Quadratic functions Name Today s Learning Goals: #1 How do we determine the axis of symmetry and vertex of a quadratic function? Properties of Quadratic functions Date 5-1 Properties of a Quadratic Function A quadratic equation

More information

Math 126 Final Examination Autumn CHECK that your exam contains 9 problems on 10 pages.

Math 126 Final Examination Autumn CHECK that your exam contains 9 problems on 10 pages. Math 126 Final Examination Autumn 2016 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name CHECK that your exam contains 9 problems on 10 pages. This exam is closed book. You

More information

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f Gradients and the Directional Derivative In 14.3, we discussed the partial derivatives f f and, which tell us the rate of change of the x y height of the surface defined by f in the x direction and the

More information

Vertical Line Test a relationship is a function, if NO vertical line intersects the graph more than once

Vertical Line Test a relationship is a function, if NO vertical line intersects the graph more than once Algebra 2 Chapter 2 Domain input values, X (x, y) Range output values, Y (x, y) Function For each input, there is exactly one output Example: Vertical Line Test a relationship is a function, if NO vertical

More information

Mathematics Computer Laboratory - Math Version 11 Lab 7 - Graphics c

Mathematics Computer Laboratory - Math Version 11 Lab 7 - Graphics c Mathematics Computer Laboratory - Math 1200 - Version 11 Lab 7 - Graphics c Due You should only turn in exercises in this lab with its title and your name in Title and Subtitle font, respectively. Edit

More information

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 1 Linear Equations and Straight Lines 2 of 71 Outline 1.1 Coordinate Systems and Graphs 1.4 The Slope of a Straight Line 1.3 The Intersection Point of a Pair of Lines 1.2 Linear Inequalities 1.5

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

Introduction to Mathematica and Graphing in 3-Space

Introduction to Mathematica and Graphing in 3-Space 1 Mathematica is a powerful tool that can be used to carry out computations and construct graphs and images to help deepen our understanding of mathematical concepts. This document will serve as a living

More information

Lesson 20: Every Line is a Graph of a Linear Equation

Lesson 20: Every Line is a Graph of a Linear Equation Student Outcomes Students know that any non vertical line is the graph of a linear equation in the form of, where is a constant. Students write the equation that represents the graph of a line. Lesson

More information

You can drag the graphs using your mouse to rotate the surface.

You can drag the graphs using your mouse to rotate the surface. The following are some notes for relative maxima and mimima using surfaces plotted in Mathematica. The way to run the code is: Select Menu bar -- Evaluation -- Evaluate Notebook You can drag the graphs

More information

LINEAR PROGRAMMING: A GEOMETRIC APPROACH. Copyright Cengage Learning. All rights reserved.

LINEAR PROGRAMMING: A GEOMETRIC APPROACH. Copyright Cengage Learning. All rights reserved. 3 LINEAR PROGRAMMING: A GEOMETRIC APPROACH Copyright Cengage Learning. All rights reserved. 3.1 Graphing Systems of Linear Inequalities in Two Variables Copyright Cengage Learning. All rights reserved.

More information

Midterm Review II Math , Fall 2018

Midterm Review II Math , Fall 2018 Midterm Review II Math 2433-3, Fall 218 The test will cover section 12.5 of chapter 12 and section 13.1-13.3 of chapter 13. Examples in class, quizzes and homework problems are the best practice for the

More information

September 18, B Math Test Chapter 1 Name: x can be expressed as: {y y 0, y R}.

September 18, B Math Test Chapter 1 Name: x can be expressed as: {y y 0, y R}. September 8, 208 62B Math Test Chapter Name: Part : Objective Questions [ mark each, total 2 marks]. State whether each of the following statements is TRUE or FALSE a) The mapping rule (x, y) (-x, y) represents

More information

Math-2. Lesson 3-1. Equations of Lines

Math-2. Lesson 3-1. Equations of Lines Math-2 Lesson 3-1 Equations of Lines How can an equation make a line? y = x + 1 x -4-3 -2-1 0 1 2 3 Fill in the rest of the table rule x + 1 f(x) -4 + 1-3 -3 + 1-2 -2 + 1-1 -1 + 1 0 0 + 1 1 1 + 1 2 2 +

More information

Graded Assignment 2 Maple plots

Graded Assignment 2 Maple plots Graded Assignment 2 Maple plots The Maple part of the assignment is to plot the graphs corresponding to the following problems. I ll note some syntax here to get you started see tutorials for more. Problem

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 11. Show all your work on the standard

More information

Equations of planes in

Equations of planes in Roberto s Notes on Linear Algebra Chapter 6: Lines, planes and other straight objects Section Equations of planes in What you need to know already: What vectors and vector operations are. What linear systems

More information

Problems of Plane analytic geometry

Problems of Plane analytic geometry 1) Consider the vectors u(16, 1) and v( 1, 1). Find out a vector w perpendicular (orthogonal) to v and verifies u w = 0. 2) Consider the vectors u( 6, p) and v(10, 2). Find out the value(s) of parameter

More information

SNAP Centre Workshop. Graphing Lines

SNAP Centre Workshop. Graphing Lines SNAP Centre Workshop Graphing Lines 45 Graphing a Line Using Test Values A simple way to linear equation involves finding test values, plotting the points on a coordinate plane, and connecting the points.

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

Parametric Curves, Lines in Space

Parametric Curves, Lines in Space Parametric Curves, Lines in Space Calculus III Josh Engwer TTU 02 September 2014 Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September 2014 1 / 37 PART I PART I: 2D PARAMETRIC CURVES Josh Engwer

More information

Section 2.2 Graphs of Linear Functions

Section 2.2 Graphs of Linear Functions Section. Graphs of Linear Functions Section. Graphs of Linear Functions When we are working with a new function, it is useful to know as much as we can about the function: its graph, where the function

More information

Math 126C: Week 3 Review

Math 126C: Week 3 Review Math 126C: Week 3 Review Note: These are in no way meant to be comprehensive reviews; they re meant to highlight the main topics and formulas for the week. Doing homework and extra problems is always the

More information

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section.

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section. Chapter 12 Vector Geometry Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible to view 3-D plots generated by Mathematica

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations 1 Definition of polar coordinates Let us first recall the definition of Cartesian coordinates: to each point in the plane we can

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

Algebra 1 Semester 2 Final Review

Algebra 1 Semester 2 Final Review Team Awesome 011 Name: Date: Period: Algebra 1 Semester Final Review 1. Given y mx b what does m represent? What does b represent?. What axis is generally used for x?. What axis is generally used for y?

More information

Parametric Curves and Polar Coordinates

Parametric Curves and Polar Coordinates Parametric Curves and Polar Coordinates Math 251, Fall 2017 Juergen Gerlach Radford University Parametric Curves We will investigate several aspects of parametric curves in the plane. The curve given by

More information

Parametric Curves and Polar Coordinates

Parametric Curves and Polar Coordinates Parametric Curves and Polar Coordinates Math 251, Fall 2017 Juergen Gerlach Radford University Parametric Curves We will investigate several aspects of parametric curves in the plane. The curve given by

More information

Mathematics (www.tiwariacademy.com)

Mathematics (www.tiwariacademy.com) () Miscellaneous Exercise on Chapter 10 Question 1: Find the values of k for which the line is (a) Parallel to the x-axis, (b) Parallel to the y-axis, (c) Passing through the origin. Answer 1: The given

More information

Graphs and transformations, Mixed Exercise 4

Graphs and transformations, Mixed Exercise 4 Graphs and transformations, Mixed Exercise 4 a y = x (x ) 0 = x (x ) So x = 0 or x = The curve crosses the x-axis at (, 0) and touches it at (0, 0). y = x x = x( x) As a = is negative, the graph has a

More information

CS 325 Computer Graphics

CS 325 Computer Graphics CS 325 Computer Graphics 02 / 29 / 2012 Instructor: Michael Eckmann Today s Topics Questions? Comments? Specifying arbitrary views Transforming into Canonical view volume View Volumes Assuming a rectangular

More information

Gradient and Directional Derivatives

Gradient and Directional Derivatives Gradient and Directional Derivatives MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Given z = f (x, y) we understand that f : gives the rate of change of z in

More information

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle.

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle. Algebra I Chapter 4 Notes Name Sec 4.1 Coordinates and Scatter Plots Coordinate Plane: Formed by two real number lines that intersect at a right angle. X-axis: The horizontal axis Y-axis: The vertical

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY For more important questions visit : www4onocom CHAPTER 11 THREE DIMENSIONAL GEOMETRY POINTS TO REMEMBER Distance between points P(x 1 ) and Q(x, y, z ) is PQ x x y y z z 1 1 1 (i) The coordinates of point

More information

Revision Problems for Examination 2 in Algebra 1

Revision Problems for Examination 2 in Algebra 1 Centre for Mathematical Sciences Mathematics, Faculty of Science Revision Problems for Examination in Algebra. Let l be the line that passes through the point (5, 4, 4) and is at right angles to the plane

More information

WHAT YOU SHOULD LEARN

WHAT YOU SHOULD LEARN GRAPHS OF EQUATIONS WHAT YOU SHOULD LEARN Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs of equations. Find equations of and sketch graphs of

More information

B ABC is mapped into A'B'C'

B ABC is mapped into A'B'C' h. 00 Transformations Sec. 1 Mappings & ongruence Mappings Moving a figure around a plane is called mapping. In the figure below, was moved (mapped) to a new position in the plane and the new triangle

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

B. Examples Set up the integral(s) needed to find the area of the region bounded by

B. Examples Set up the integral(s) needed to find the area of the region bounded by Math 176 Calculus Sec. 6.1: Area Between Curves I. Area between the Curve and the x Axis A. Let f(x) 0 be continuous on [a,b]. The area of the region between the graph of f and the x-axis is A = f ( x)

More information

Lagrange multipliers October 2013

Lagrange multipliers October 2013 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 1 1 3/2 Example: Optimization

More information

Did You Find a Parking Space?

Did You Find a Parking Space? Lesson.4 Skills Practice Name Date Did You Find a Parking Space? Parallel and Perpendicular Lines on the Coordinate Plane Vocabulary Complete the sentence. 1. The point-slope form of the equation of the

More information

7.1 INVERSE FUNCTIONS

7.1 INVERSE FUNCTIONS 1 7.1 INVERSE FUNCTIONS One to one functions are important because their equations, f(x) = k, have (at most) a single solution. One to one functions are also important because they are the functions that

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

Lagrange multipliers 14.8

Lagrange multipliers 14.8 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 Maximum? 1 1 Minimum? 3/2 Idea:

More information

Surfaces and Partial Derivatives

Surfaces and Partial Derivatives Surfaces and James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 15, 2017 Outline 1 2 Tangent Planes Let s go back to our simple surface

More information

Learning Packet. Lesson 6 Exponents and Rational Functions THIS BOX FOR INSTRUCTOR GRADING USE ONLY

Learning Packet. Lesson 6 Exponents and Rational Functions THIS BOX FOR INSTRUCTOR GRADING USE ONLY Learning Packet Student Name Due Date Class Time/Day Submission Date THIS BOX FOR INSTRUCTOR GRADING USE ONLY Mini-Lesson is complete and information presented is as found on media links (0 5 pts) Comments:

More information

Put your initials on the top of every page, in case the pages become separated.

Put your initials on the top of every page, in case the pages become separated. Math 1201, Fall 2016 Name (print): Dr. Jo Nelson s Calculus III Practice for 1/2 of Final, Midterm 1 Material Time Limit: 90 minutes DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED TO DO SO. This exam contains

More information

Finite Math - J-term Homework. Section Inverse of a Square Matrix

Finite Math - J-term Homework. Section Inverse of a Square Matrix Section.5-77, 78, 79, 80 Finite Math - J-term 017 Lecture Notes - 1/19/017 Homework Section.6-9, 1, 1, 15, 17, 18, 1, 6, 9, 3, 37, 39, 1,, 5, 6, 55 Section 5.1-9, 11, 1, 13, 1, 17, 9, 30 Section.5 - Inverse

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

Rigid Motion vs. Non-rigid Motion Transformations

Rigid Motion vs. Non-rigid Motion Transformations Rigid Motion vs. Non-rigid Motion Transformations What are some things you think of when we say going to a theme park. Have you ever been to a theme park? If so, when and where was it? What was your best

More information

Slide 1 / 220. Linear Relations and Functions

Slide 1 / 220. Linear Relations and Functions Slide 1 / 220 Linear Relations and Functions Slide 2 / 220 Table of Contents Domain and Range Discrete v Continuous Relations and Functions Function Notation Linear Equations Graphing a Linear Equation

More information

1.5 Part - 2 Inverse Relations and Inverse Functions

1.5 Part - 2 Inverse Relations and Inverse Functions 1.5 Part - 2 Inverse Relations and Inverse Functions What happens when we reverse the coordinates of all the ordered pairs in a relation? We obviously get another relation, but does it have any similarities

More information

Math 126 Final Examination SPR CHECK that your exam contains 8 problems on 8 pages.

Math 126 Final Examination SPR CHECK that your exam contains 8 problems on 8 pages. Math 126 Final Examination SPR 2018 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name CHECK that your exam contains 8 problems on 8 pages. This exam is closed book. You may

More information

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables Guided Practice Example 1 Find the y-intercept and vertex of the function f(x) = 2x 2 + x + 3. Determine whether the vertex is a minimum or maximum point on the graph. 1. Determine the y-intercept. The

More information

Lesson 24: Matrix Notation Encompasses New Transformations!

Lesson 24: Matrix Notation Encompasses New Transformations! Classwork Example 1 Determine the following: a. 1 0 0 1 3 b. 1 0 7 0 1 1 c. 1 0 3 5 0 1 1 d. 1 0 3 1 0 1 7 6 e. 9 1 0 1 3 1 0 1 f. 1 0 cc aa 0 1 bb dd xx yy 0 g. 1 zz ww 0 1 Date: 1/5/15 S.14 Example Can

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

Parametric Curves, Polar Plots and 2D Graphics

Parametric Curves, Polar Plots and 2D Graphics Parametric Curves, Polar Plots and 2D Graphics Fall 2016 In[213]:= Clear "Global`*" 2 2450notes2_fall2016.nb Parametric Equations In chapter 9, we introduced parametric equations so that we could easily

More information

Intro. To Graphing Linear Equations

Intro. To Graphing Linear Equations Intro. To Graphing Linear Equations The Coordinate Plane A. The coordinate plane has 4 quadrants. B. Each point in the coordinate plain has an x-coordinate (the abscissa) and a y-coordinate (the ordinate).

More information

Calculus III Meets the Final

Calculus III Meets the Final Calculus III Meets the Final Peter A. Perry University of Kentucky December 7, 2018 Homework Review for Final Exam on Thursday, December 13, 6:00-8:00 PM Be sure you know which room to go to for the final!

More information

B ABC is mapped into A'B'C'

B ABC is mapped into A'B'C' h. 00 Transformations Sec. 1 Mappings & ongruence Mappings Moving a figure around a plane is called mapping. In the figure below, was moved (mapped) to a new position in the plane and the new triangle

More information

SPM Add Math Form 5 Chapter 3 Integration

SPM Add Math Form 5 Chapter 3 Integration SPM Add Math Form Chapter Integration INDEFINITE INTEGRAL CHAPTER : INTEGRATION Integration as the reverse process of differentiation ) y if dy = x. Given that d Integral of ax n x + c = x, where c is

More information

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative Polar (BC Only) Polar coordinates are another way of expressing points in a plane. Instead of being centered at an origin and moving horizontally or vertically, polar coordinates are centered at the pole

More information

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA:

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA: MA 114 Exam 3 Spring 217 Exam 3 Name: Section and/or TA: Last Four Digits of Student ID: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test.

More information

PetShop (BYU Students, SIGGRAPH 2006)

PetShop (BYU Students, SIGGRAPH 2006) Now Playing: PetShop (BYU Students, SIGGRAPH 2006) My Mathematical Mind Spoon From Gimme Fiction Released May 10, 2005 Geometric Objects in Computer Graphics Rick Skarbez, Instructor COMP 575 August 30,

More information

27. Tangent Planes & Approximations

27. Tangent Planes & Approximations 27. Tangent Planes & Approximations If z = f(x, y) is a differentiable surface in R 3 and (x 0, y 0, z 0 ) is a point on this surface, then it is possible to construct a plane passing through this point,

More information

Question 2: How do you solve a linear programming problem with a graph?

Question 2: How do you solve a linear programming problem with a graph? Question : How do you solve a linear programming problem with a graph? Now that we have several linear programming problems, let s look at how we can solve them using the graph of the system of inequalities.

More information