Efficient Regression for Computational Imaging: from Color Management to Omnidirectional Superresolution

Size: px
Start display at page:

Download "Efficient Regression for Computational Imaging: from Color Management to Omnidirectional Superresolution"

Transcription

1 Efficient Regression for Computational Imaging: from Color Management to Omnidirectional Superresolution Maya R. Gupta Eric Garcia Raman Arora

2 Regression 2

3 Regression

4 Regression

5 Linear Regression: fast, not good enough

6 Problem: Device Dependent Colors Depend on Device

7 Color Management For each device, characterize the mapping between the native color space and a device independent color space. ICC Profile ICC Profile CIELab (Lab) ICC Profile ICC Profile 8/5/2009 7

8 Color Management For each device, characterize the mapping between the native color space and a device independent color space. ICC Profile ICC Profile CIELab (Lab) ICC Profile ICC Profile CIELab is a widely used deviceindependent color space that is perceptually uniform (i.e. Euclidean distance approximates human judgement of color dissimilarity) 8/5/2009 8

9 Color Management For each device, characterize the mapping between the native color space and a device independent color space. ICC Profile ICC Profile CIELab (Lab) ICC Profile ICC Profile Mapping from RGB -> CIELab and CIELab -> CMYK can be highly nonlinear 8/5/2009 9

10 Gamut mapping: linear transforms not adequate Original gamut Extended gamut Skin tones Skin tones Original Gamut Linear regression Nonlinear regression

11 Creating Custom Color Enhancements Ex: simulating illumination effects original transformed by artist to sunset 2 hrs. work in Photoshop

12 Example Convert an image to how it would look in Cinecolor based on 16 sample color pairs Original cinecolor

13 Color management: speed by LUT 8/5/

14 Color management: speed by LUT 8/5/

15 Color management: speed by LUT 15

16 Color management: speed by LUT

17 Color management: speed by LUT

18 Color management: speed by LUT

19 Color management: speed by LUT

20 Linear Interpolation is linear in the outputs

21 Linear Interpolation is linear in the outputs

22 Linear Interpolation is linear in the outputs

23 Lattice Regression Choose the lattice outputs to minimize the post-linear interpolation empirical risk on the data: 8/5/

24 Lattice Regression Choose the lattice outputs to minimize the post-linear interpolation empirical risk on the data: 8/5/

25 Lattice Regression Choose the lattice outputs to minimize the post-linear interpolation empirical risk on the data:

26 Effect of Different Lattice Regression Regularizers 8/5/

27 Effect of Different Lattice Regression Regularizers 8/5/

28 Lattice Regression Closed Form Solution Sparse: No more than 7 d m non-zero entries (of m 2 ) with cubic interpolation. 9/15/

29 Example Color Management Results

30 Example Color Management Results

31 Omnidirectional Super-resolution: 9/15/

32 Omnidirectional Superres Related Work State of the Art: Arican and Frossard (ICPR 2008 Best Paper Award) Interpolation with spherical harmonics Alignment with an iterative conjugate gradient approach.

33 Lattice Regression Approach Finding the correct registration of the low-resolution images is challenging non-convex optimization problem. Evaluate a candidate registration: use lattice regression on image subset -> high-res spherical grid sum interpolation error for all left-out low res image data

34 Lattice Regression Approach Finding the correct registration of the low-resolution images is challenging non-convex optimization problem. Evaluate a candidate registration: use lattice regression on image subset -> high-res spherical grid sum interpolation error for all left-out low res image data Finding the optimal joint registration is a 3(N-1)-d opt. problem We use FIPS to find the global optimum.

35

36 9/15/

37 Visual Homing START.. Lattice Regression Better For Visual Homing. HOME....

38 Some Conclusions

39 Some Conclusions

40 Some Conclusions

41 Some Conclusions

42 For details, see: Optimized Regression for Efficient Function Evaluation, Eric K. Garcia, Raman Arora, and Maya R. Gupta, (in review draft upon request). Lattice Regression, Eric K. Garcia, Maya R. Gupta, Neural Information Processing Systems (NIPS) Building Accurate and Smooth ICC Profiles by Lattice Regression, Eric K. Garcia, Maya R. Gupta, 17 th IS&T Color Imaging Conference "Adaptive Local Linear Regression with Application to Printer Color Management," Maya R. Gupta, Eric K. Garcia, and Erika Chin, IEEE Trans. on Image Processing, vol. 17, no. 6, , "Learning Custom Color Transformations with Adaptive Neighborhoods," Maya R. Gupta, Eric K. Garcia, and Andrey Stroilov, Journal of Electronic Imaging, vol. 17, no. 3, "Gamut Expansion for Video and Image Sets," Hyrum Anderson, Eric K. Garcia, and Maya R. Gupta, Computational Color Imaging Workshop, /5/

43 Color is an event light source reflection human cones respond: human perceives color L = long wave = red M = medium wave = green S = short wave = blue

44 What does it mean to see black? light source??? human perceives color human cones respond L = long wave = red M = medium wave = green S = short wave = blue

45 What does it mean to see white? light source??? human perceives color human cones respond L = long wave = red M = medium wave = green S = short wave = blue

46 What does it mean to see white? images from: You can see white given light made up of 2-spectra

47 Color Science Crash Course What we see can be represented by three primaries. match monochromatic light at some wavelength mixture of three primary colors Stiles-Burch 10 color matching functions averaged across 37 observers. Adapted from (Wyszecki & Stiles, 1982) by handprint.com. 8/5/

48 CIELab Based on spectral measurements integrated over CMF Color Distances of color, envelopes. Euclidean distance between two colors approximates the perceptual difference noticed by a human observer. Distance metrics created to correct for perceptual nonuniformities in the space: image source: 8/5/

49 2-D and 3-D Simulation d=2 d=3 8/5/

50 Color management for printers 8 bit RGB color patch Color printer printed color patch Human eye Measure CIEL*a*b* Goal: Print a given CIEL*a*b* value. Problem: What RGB value to input?

51 Inverse Device Characterization Step 1 Sample the device CIELab Output Measure Step 2 Build an inverse look-up-table Regression Look-up-table 8/5/

52 8/5/

53 Gaussian Process Regression Models data as being drawn from a Gaussian Process A leading method in geostatistics (2-d regression) also known as Kriging. Generally considered a state-of-the-art method by machine learning folks Parameters: Covariance Function (length scale L), Noise Power σ 2. (L large, σ 2 small) (L small, σ 2 small) (L large, σ 2 large) 8/5/

54 Gaussian Process Regression Models data as being drawn from a Gaussian Process A leading method in geostatistics (2-d regression) also known as Kriging. Generally considered a state-of-the-art method by machine learning folks Parameters: Covariance Function (length scale L), Noise Power σ 2. (L large, σ 2 small) (L small, σ 2 small) (L large, σ 2 large) Given Covariance form, parameters can be learned by maximizing marginal likelihood. (i.e. automatically from data). 8/5/

55 2-D Simulation 50 Training Samples 1000 Training Samples Gaussian Process Regression (Direct) Gaussian Process Regression (to nodes of lattice) Lattice Regression (GPR bias) Lattice Regression (Bilinear bias) 8/5/

56 3-D Simulation 50 Training Samples 1000 Training Samples Gaussian Process Regression (Direct) Gaussian Process Regression (to nodes of lattice) Lattice Regression (GPR bias) Lattice Regression (Bilinear bias) 8/5/

Color Management Experiments using Adaptive Neighborhoods for Local Regression

Color Management Experiments using Adaptive Neighborhoods for Local Regression COLOR MANAGEMENT EXPERIMENTS USING ADAPTIVE NEIGHBORHOODS FOR LOCAL REGRESSION 1 Color Management Experiments using Adaptive Neighborhoods for Local Regression Erika Chin, University of Virginia, Charlottesville,

More information

Lattice Regression. Abstract

Lattice Regression. Abstract Lattice Regression Eric Garcia Department of Electrical Engineering University of Washington Seattle, WA 98195 garciaer@ee.washington.edu Maya Gupta Department of Electrical Engineering University of Washington

More information

Comparison of 1-D, 2-D and 3-D Printer Calibration Algorithms with Printer Drift

Comparison of 1-D, 2-D and 3-D Printer Calibration Algorithms with Printer Drift Comparison of 1-D, 2-D and 3-D rinter Calibration Algorithms with rinter Drift rudhvi K. Gurram*, Sohail A. Dianat*, Lalit K. Mestha**, Raja Bala*** *Department of Electrical Engineering, Rochester Institute

More information

Introduction to Image Super-resolution. Presenter: Kevin Su

Introduction to Image Super-resolution. Presenter: Kevin Su Introduction to Image Super-resolution Presenter: Kevin Su References 1. S.C. Park, M.K. Park, and M.G. KANG, Super-Resolution Image Reconstruction: A Technical Overview, IEEE Signal Processing Magazine,

More information

Using Trichromatic and Multi-channel Imaging

Using Trichromatic and Multi-channel Imaging Reconstructing Spectral and Colorimetric Data Using Trichromatic and Multi-channel Imaging Daniel Nyström Dept. of Science and Technology (ITN), Linköping University SE-674, Norrköping, Sweden danny@itn.liu.se

More information

Color Vision. Spectral Distributions Various Light Sources

Color Vision. Spectral Distributions Various Light Sources Color Vision Light enters the eye Absorbed by cones Transmitted to brain Interpreted to perceive color Foundations of Vision Brian Wandell Spectral Distributions Various Light Sources Cones and Rods Cones:

More information

Lecture #13. Point (pixel) transformations. Neighborhood processing. Color segmentation

Lecture #13. Point (pixel) transformations. Neighborhood processing. Color segmentation Lecture #13 Point (pixel) transformations Color modification Color slicing Device independent color Color balancing Neighborhood processing Smoothing Sharpening Color segmentation Color Transformations

More information

Black generation using lightness scaling

Black generation using lightness scaling Black generation using lightness scaling Tomasz J. Cholewo Software Research, Lexmark International, Inc. 740 New Circle Rd NW, Lexington, KY 40511 e-mail: cholewo@lexmark.com ABSTRACT This paper describes

More information

I Introduction to PSR V2. I Renate Rewer. I Comparison of PSR V1 and PSR V2

I Introduction to PSR V2. I Renate Rewer. I Comparison of PSR V1 and PSR V2 I Introduction to PSR V2 I Renate Rewer I Comparison of PSR V1 and PSR V2 Basic conditions homogeneity Print Homogeneous grey axis alignment No excess colour Evenly distributed brightness control Characterisation

More information

CS681 Computational Colorimetry

CS681 Computational Colorimetry 9/14/17 CS681 Computational Colorimetry Min H. Kim KAIST School of Computing COLOR (3) 2 1 Color matching functions User can indeed succeed in obtaining a match for all visible wavelengths. So color space

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 14 130307 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Stereo Dense Motion Estimation Translational

More information

Mutoh America Inc. G7 Calibrator. G7 Calibrator. G7 System Certification Application Data Sheet. Manufacturer. Certification Seal Here.

Mutoh America Inc. G7 Calibrator. G7 Calibrator. G7 System Certification Application Data Sheet. Manufacturer. Certification Seal Here. G7 System Certification Application Data Sheet G7 Calibrator The IDEAlliance Print Properties Working Group has established a certification process for G7 Systems. In accordance with this process The G7

More information

DIGITAL COLOR RESTORATION OF OLD PAINTINGS. Michalis Pappas and Ioannis Pitas

DIGITAL COLOR RESTORATION OF OLD PAINTINGS. Michalis Pappas and Ioannis Pitas DIGITAL COLOR RESTORATION OF OLD PAINTINGS Michalis Pappas and Ioannis Pitas Department of Informatics Aristotle University of Thessaloniki, Box 451, GR-54006 Thessaloniki, GREECE phone/fax: +30-31-996304

More information

Design & Use of the Perceptual Rendering Intent for v4 Profiles

Design & Use of the Perceptual Rendering Intent for v4 Profiles Design & Use of the Perceptual Rendering Intent for v4 Profiles Jack Holm Principal Color Scientist Hewlett Packard Company 19 March 2007 Chiba University Outline What is ICC v4 perceptual rendering? What

More information

Geodesic Based Ink Separation for Spectral Printing

Geodesic Based Ink Separation for Spectral Printing Geodesic Based Ink Separation for Spectral Printing Behnam Bastani*, Brian Funt**, *Hewlett-Packard Company, San Diego, CA, USA **Simon Fraser University, Vancouver, BC, Canada Abstract An ink separation

More information

Color Management for Color Facsimile

Color Management for Color Facsimile Color Management for Color Facsimile Jon Yngve Hardeberg, Francis Schmitt, Ingeborg Tastl, Hans Brettel and Jean-Pierre Crettez École Nationale Supérieure des Télécommunications, Département Images Paris,

More information

Face Hallucination Based on Eigentransformation Learning

Face Hallucination Based on Eigentransformation Learning Advanced Science and Technology etters, pp.32-37 http://dx.doi.org/10.14257/astl.2016. Face allucination Based on Eigentransformation earning Guohua Zou School of software, East China University of Technology,

More information

The Elements of Colour

The Elements of Colour Color science 1 The Elements of Colour Perceived light of different wavelengths is in approximately equal weights achromatic.

More information

Locally Adaptive Regression Kernels with (many) Applications

Locally Adaptive Regression Kernels with (many) Applications Locally Adaptive Regression Kernels with (many) Applications Peyman Milanfar EE Department University of California, Santa Cruz Joint work with Hiro Takeda, Hae Jong Seo, Xiang Zhu Outline Introduction/Motivation

More information

Algorithms for 3D Isometric Shape Correspondence

Algorithms for 3D Isometric Shape Correspondence Algorithms for 3D Isometric Shape Correspondence Yusuf Sahillioğlu Computer Eng. Dept., Koç University, Istanbul, Turkey (PhD) Computer Eng. Dept., METU, Ankara, Turkey (Asst. Prof.) 2 / 53 Problem Definition

More information

Image Processing. David Kauchak cs160 Fall Empirical Evaluation of Dissimilarity Measures for Color and Texture

Image Processing. David Kauchak cs160 Fall Empirical Evaluation of Dissimilarity Measures for Color and Texture Image Processing Empirical Evaluation of Dissimilarity Measures for Color and Texture Jan Puzicha, Joachim M. Buhmann, Yossi Rubner & Carlo Tomasi David Kauchak cs160 Fall 2009 Administrative 11/4 class

More information

Machine Learning : Clustering, Self-Organizing Maps

Machine Learning : Clustering, Self-Organizing Maps Machine Learning Clustering, Self-Organizing Maps 12/12/2013 Machine Learning : Clustering, Self-Organizing Maps Clustering The task: partition a set of objects into meaningful subsets (clusters). The

More information

Introduction to ANSYS DesignXplorer

Introduction to ANSYS DesignXplorer Lecture 4 14. 5 Release Introduction to ANSYS DesignXplorer 1 2013 ANSYS, Inc. September 27, 2013 s are functions of different nature where the output parameters are described in terms of the input parameters

More information

Colour Reading: Chapter 6. Black body radiators

Colour Reading: Chapter 6. Black body radiators Colour Reading: Chapter 6 Light is produced in different amounts at different wavelengths by each light source Light is differentially reflected at each wavelength, which gives objects their natural colours

More information

Estimating the wavelength composition of scene illumination from image data is an

Estimating the wavelength composition of scene illumination from image data is an Chapter 3 The Principle and Improvement for AWB in DSC 3.1 Introduction Estimating the wavelength composition of scene illumination from image data is an important topics in color engineering. Solutions

More information

ICC color management for print production

ICC color management for print production ICC color management for print production TAGA Annual Technical Conference 2002 W Craig Revie Principal Consultant Fuji Film Electronic Imaging Limited ICC Chair of the Graphic Arts Special Interest Group

More information

IMAGE PROCESSING >FILTERS AND EDGE DETECTION FOR COLOR IMAGES UTRECHT UNIVERSITY RONALD POPPE

IMAGE PROCESSING >FILTERS AND EDGE DETECTION FOR COLOR IMAGES UTRECHT UNIVERSITY RONALD POPPE IMAGE PROCESSING >FILTERS AND EDGE DETECTION FOR COLOR IMAGES UTRECHT UNIVERSITY RONALD POPPE OUTLINE Filters for color images Edge detection for color images Canny edge detection FILTERS FOR COLOR IMAGES

More information

Opponent Color Spaces

Opponent Color Spaces EE637 Digital Image Processing I: Purdue University VISE - May 1, 2002 1 Opponent Color Spaces Perception of color is usually not best represented in RGB. A better model of HVS is the so-call opponent

More information

LOCAL learning, which includes nearest neighbor (NN)

LOCAL learning, which includes nearest neighbor (NN) 936 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 6, JUNE 2008 Adaptive Local Linear Regression With Application to Printer Color Management Maya R. Gupta, Member, IEEE, Eric K. Garcia, and Erika

More information

EFFICIENT PERCEPTUAL, SELECTIVE,

EFFICIENT PERCEPTUAL, SELECTIVE, EFFICIENT PERCEPTUAL, SELECTIVE, AND ATTENTIVE SUPER-RESOLUTION RESOLUTION Image, Video & Usability (IVU) Lab School of Electrical, Computer, & Energy Engineering Arizona State University karam@asu.edu

More information

Learning based face hallucination techniques: A survey

Learning based face hallucination techniques: A survey Vol. 3 (2014-15) pp. 37-45. : A survey Premitha Premnath K Department of Computer Science & Engineering Vidya Academy of Science & Technology Thrissur - 680501, Kerala, India (email: premithakpnath@gmail.com)

More information

CS 490: Computer Vision Image Segmentation: Thresholding. Fall 2015 Dr. Michael J. Reale

CS 490: Computer Vision Image Segmentation: Thresholding. Fall 2015 Dr. Michael J. Reale CS 490: Computer Vision Image Segmentation: Thresholding Fall 205 Dr. Michael J. Reale FUNDAMENTALS Introduction Before we talked about edge-based segmentation Now, we will discuss a form of regionbased

More information

Characterizing and Controlling the. Spectral Output of an HDR Display

Characterizing and Controlling the. Spectral Output of an HDR Display Characterizing and Controlling the Spectral Output of an HDR Display Ana Radonjić, Christopher G. Broussard, and David H. Brainard Department of Psychology, University of Pennsylvania, Philadelphia, PA

More information

Illumination and Shading

Illumination and Shading Illumination and Shading Light sources emit intensity: assigns intensity to each wavelength of light Humans perceive as a colour - navy blue, light green, etc. Exeriments show that there are distinct I

More information

Probabilistic Facial Feature Extraction Using Joint Distribution of Location and Texture Information

Probabilistic Facial Feature Extraction Using Joint Distribution of Location and Texture Information Probabilistic Facial Feature Extraction Using Joint Distribution of Location and Texture Information Mustafa Berkay Yilmaz, Hakan Erdogan, Mustafa Unel Sabanci University, Faculty of Engineering and Natural

More information

Region-based Segmentation

Region-based Segmentation Region-based Segmentation Image Segmentation Group similar components (such as, pixels in an image, image frames in a video) to obtain a compact representation. Applications: Finding tumors, veins, etc.

More information

CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture #7: Color and Shading Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday,

More information

Iterative methods for use with the Fast Multipole Method

Iterative methods for use with the Fast Multipole Method Iterative methods for use with the Fast Multipole Method Ramani Duraiswami Perceptual Interfaces and Reality Lab. Computer Science & UMIACS University of Maryland, College Park, MD Joint work with Nail

More information

An LED based spectrophotometric instrument

An LED based spectrophotometric instrument An LED based spectrophotometric instrument Michael J. Vrhel Color Savvy Systems Limited, 35 South Main Street, Springboro, OH ABSTRACT The performance of an LED-based, dual-beam, spectrophotometer is discussed.

More information

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures:

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures: Homework Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression 3.0-3.2 Pod-cast lecture on-line Next lectures: I posted a rough plan. It is flexible though so please come with suggestions Bayes

More information

Tracking Computer Vision Spring 2018, Lecture 24

Tracking Computer Vision Spring 2018, Lecture 24 Tracking http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 24 Course announcements Homework 6 has been posted and is due on April 20 th. - Any questions about the homework? - How

More information

Optimum Array Processing

Optimum Array Processing Optimum Array Processing Part IV of Detection, Estimation, and Modulation Theory Harry L. Van Trees WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Preface xix 1 Introduction 1 1.1 Array Processing

More information

CS452/552; EE465/505. Color Display Issues

CS452/552; EE465/505. Color Display Issues CS452/552; EE465/505 Color Display Issues 4-16 15 2 Outline! Color Display Issues Color Systems Dithering and Halftoning! Splines Hermite Splines Bezier Splines Catmull-Rom Splines Read: Angel, Chapter

More information

Chapter 6 Color Image Processing

Chapter 6 Color Image Processing Image Comm. Lab EE/NTHU 1 Chapter 6 Color Image Processing Color is a powerful descriptor Human can discern thousands of color shades. "color" is more pleasing than "black and white. Full Color: color

More information

DEEP LEARNING OF COMPRESSED SENSING OPERATORS WITH STRUCTURAL SIMILARITY (SSIM) LOSS

DEEP LEARNING OF COMPRESSED SENSING OPERATORS WITH STRUCTURAL SIMILARITY (SSIM) LOSS DEEP LEARNING OF COMPRESSED SENSING OPERATORS WITH STRUCTURAL SIMILARITY (SSIM) LOSS ABSTRACT Compressed sensing (CS) is a signal processing framework for efficiently reconstructing a signal from a small

More information

Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group

Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group Deep Learning Vladimir Golkov Technical University of Munich Computer Vision Group 1D Input, 1D Output target input 2 2D Input, 1D Output: Data Distribution Complexity Imagine many dimensions (data occupies

More information

Enhancing DubaiSat-1 Satellite Imagery Using a Single Image Super-Resolution

Enhancing DubaiSat-1 Satellite Imagery Using a Single Image Super-Resolution Enhancing DubaiSat-1 Satellite Imagery Using a Single Image Super-Resolution Saeed AL-Mansoori 1 and Alavi Kunhu 2 1 Associate Image Processing Engineer, SIPAD Image Enhancement Section Emirates Institution

More information

The Use of Extrapolation in Computing Color Look-Up

The Use of Extrapolation in Computing Color Look-Up The Use of Extrapolation in Computing Color Look-Up Tables S. A. Rajala A. P. Kakodkar

More information

TWO APPROACHES IN SCANNER-PRINTER CALIBRATION: COLORIMETRIC SPACE-BASED VS. CLOSED-LOOP.

TWO APPROACHES IN SCANNER-PRINTER CALIBRATION: COLORIMETRIC SPACE-BASED VS. CLOSED-LOOP. TWO APPROACHES I SCAER-PRITER CALIBRATIO: COLORIMETRIC SPACE-BASED VS. CLOSED-LOOP. V. Ostromoukhov, R.D. Hersch, C. Péraire, P. Emmel, I. Amidror Swiss Federal Institute of Technology (EPFL) CH-15 Lausanne,

More information

A Statistical Model of Tristimulus Measurements Within and Between OLED Displays

A Statistical Model of Tristimulus Measurements Within and Between OLED Displays 7 th European Signal Processing Conference (EUSIPCO) A Statistical Model of Tristimulus Measurements Within and Between OLED Displays Matti Raitoharju Department of Automation Science and Engineering Tampere

More information

Reading. 2. Color. Emission spectra. The radiant energy spectrum. Watt, Chapter 15.

Reading. 2. Color. Emission spectra. The radiant energy spectrum. Watt, Chapter 15. Reading Watt, Chapter 15. Brian Wandell. Foundations of Vision. Chapter 4. Sinauer Associates, Sunderland, MA, pp. 69-97, 1995. 2. Color 1 2 The radiant energy spectrum We can think of light as waves,

More information

William Yang Group 14 Mentor: Dr. Rogerio Richa Visual Tracking of Surgical Tools in Retinal Surgery using Particle Filtering

William Yang Group 14 Mentor: Dr. Rogerio Richa Visual Tracking of Surgical Tools in Retinal Surgery using Particle Filtering Mutual Information Computation and Maximization Using GPU Yuping Lin and Gérard Medioni Computer Vision and Pattern Recognition Workshops (CVPR) Anchorage, AK, pp. 1-6, June 2008 Project Summary and Paper

More information

(0, 1, 1) (0, 1, 1) (0, 1, 0) What is light? What is color? Terminology

(0, 1, 1) (0, 1, 1) (0, 1, 0) What is light? What is color? Terminology lecture 23 (0, 1, 1) (0, 0, 0) (0, 0, 1) (0, 1, 1) (1, 1, 1) (1, 1, 0) (0, 1, 0) hue - which ''? saturation - how pure? luminance (value) - intensity What is light? What is? Light consists of electromagnetic

More information

IMAGE DENOISING TO ESTIMATE THE GRADIENT HISTOGRAM PRESERVATION USING VARIOUS ALGORITHMS

IMAGE DENOISING TO ESTIMATE THE GRADIENT HISTOGRAM PRESERVATION USING VARIOUS ALGORITHMS IMAGE DENOISING TO ESTIMATE THE GRADIENT HISTOGRAM PRESERVATION USING VARIOUS ALGORITHMS P.Mahalakshmi 1, J.Muthulakshmi 2, S.Kannadhasan 3 1,2 U.G Student, 3 Assistant Professor, Department of Electronics

More information

Color Appearance in Image Displays. O Canada!

Color Appearance in Image Displays. O Canada! Color Appearance in Image Displays Mark D. Fairchild RIT Munsell Color Science Laboratory ISCC/CIE Expert Symposium 75 Years of the CIE Standard Colorimetric Observer Ottawa 26 O Canada Image Colorimetry

More information

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS HOUSEKEEPING Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS Quizzes Lab 8? WEEK EIGHT Lecture INTERPOLATION & SPATIAL ESTIMATION Joe Wheaton READING FOR TODAY WHAT CAN WE COLLECT AT POINTS?

More information

Colour computer vision: fundamentals, applications and challenges. Dr. Ignacio Molina-Conde Depto. Tecnología Electrónica Univ.

Colour computer vision: fundamentals, applications and challenges. Dr. Ignacio Molina-Conde Depto. Tecnología Electrónica Univ. Colour computer vision: fundamentals, applications and challenges Dr. Ignacio Molina-Conde Depto. Tecnología Electrónica Univ. of Málaga (Spain) Outline Part 1: colorimetry and colour perception: What

More information

What is machine learning?

What is machine learning? Machine learning, pattern recognition and statistical data modelling Lecture 12. The last lecture Coryn Bailer-Jones 1 What is machine learning? Data description and interpretation finding simpler relationship

More information

Spatial Interpolation & Geostatistics

Spatial Interpolation & Geostatistics (Z i Z j ) 2 / 2 Spatial Interpolation & Geostatistics Lag Lag Mean Distance between pairs of points 1 Tobler s Law All places are related, but nearby places are related more than distant places Corollary:

More information

Adaptive Kernel Regression for Image Processing and Reconstruction

Adaptive Kernel Regression for Image Processing and Reconstruction Adaptive Kernel Regression for Image Processing and Reconstruction Peyman Milanfar* EE Department University of California, Santa Cruz *Joint work with Sina Farsiu, Hiro Takeda AFOSR Sensing Program Review,

More information

Modeling the Spectral Envelope of Musical Instruments

Modeling the Spectral Envelope of Musical Instruments Modeling the Spectral Envelope of Musical Instruments Juan José Burred burred@nue.tu-berlin.de IRCAM Équipe Analyse/Synthèse Axel Röbel / Xavier Rodet Technical University of Berlin Communication Systems

More information

Lecture 12 Color model and color image processing

Lecture 12 Color model and color image processing Lecture 12 Color model and color image processing Color fundamentals Color models Pseudo color image Full color image processing Color fundamental The color that humans perceived in an object are determined

More information

Lecture 1 Image Formation.

Lecture 1 Image Formation. Lecture 1 Image Formation peimt@bit.edu.cn 1 Part 3 Color 2 Color v The light coming out of sources or reflected from surfaces has more or less energy at different wavelengths v The visual system responds

More information

Spatial Interpolation - Geostatistics 4/3/2018

Spatial Interpolation - Geostatistics 4/3/2018 Spatial Interpolation - Geostatistics 4/3/201 (Z i Z j ) 2 / 2 Spatial Interpolation & Geostatistics Lag Distance between pairs of points Lag Mean Tobler s Law All places are related, but nearby places

More information

A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coecients

A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coecients A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coecients Javier Portilla and Eero P. Simoncelli Center for Neural Science, and Courant Institute of Mathematical Sciences, New York

More information

Visual Tracking. Image Processing Laboratory Dipartimento di Matematica e Informatica Università degli studi di Catania.

Visual Tracking. Image Processing Laboratory Dipartimento di Matematica e Informatica Università degli studi di Catania. Image Processing Laboratory Dipartimento di Matematica e Informatica Università degli studi di Catania 1 What is visual tracking? estimation of the target location over time 2 applications Six main areas:

More information

e-bridge Color Profile Tool Quick Start Guide

e-bridge Color Profile Tool Quick Start Guide e-bridge Color Profile Tool Quick Start Guide 1 Contents 1. Installation... 3 1.1. Installing the e-bridge Color Profile Tool Software... 3 1.1. Removing the e-bridge Color Profile Tool... 4 1.2. Installing

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

Spectral Adaptation. Chromatic Adaptation

Spectral Adaptation. Chromatic Adaptation Spectral Adaptation Mark D. Fairchild RIT Munsell Color Science Laboratory IS&T/SID 14th Color Imaging Conference Scottsdale 2006 Chromatic Adaptation Spectra-to-XYZ-to-LMS Chromatic adaptation models

More information

Logistic Regression. Abstract

Logistic Regression. Abstract Logistic Regression Tsung-Yi Lin, Chen-Yu Lee Department of Electrical and Computer Engineering University of California, San Diego {tsl008, chl60}@ucsd.edu January 4, 013 Abstract Logistic regression

More information

Color Image Processing

Color Image Processing Color Image Processing Inel 5327 Prof. Vidya Manian Introduction Color fundamentals Color models Histogram processing Smoothing and sharpening Color image segmentation Edge detection Color fundamentals

More information

Super-Resolution (SR) image re-construction is the process of combining the information from multiple

Super-Resolution (SR) image re-construction is the process of combining the information from multiple Super-Resolution Super-Resolution (SR) image re-construction is the process of combining the information from multiple Low-Resolution (LR) aliased and noisy frames of the same scene to estimate a High-Resolution

More information

Appearance Editing: Compensation Compliant Alterations to Physical Objects

Appearance Editing: Compensation Compliant Alterations to Physical Objects Editing: Compensation Compliant Alterations to Physical Objects Daniel G. Aliaga Associate Professor of CS @ Purdue University www.cs.purdue.edu/homes/aliaga www.cs.purdue.edu/cgvlab Presentation

More information

Solution Sketches Midterm Exam COSC 6342 Machine Learning March 20, 2013

Solution Sketches Midterm Exam COSC 6342 Machine Learning March 20, 2013 Your Name: Your student id: Solution Sketches Midterm Exam COSC 6342 Machine Learning March 20, 2013 Problem 1 [5+?]: Hypothesis Classes Problem 2 [8]: Losses and Risks Problem 3 [11]: Model Generation

More information

Classification: Linear Discriminant Functions

Classification: Linear Discriminant Functions Classification: Linear Discriminant Functions CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Discriminant functions Linear Discriminant functions

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

Illumination and Reflectance

Illumination and Reflectance COMP 546 Lecture 12 Illumination and Reflectance Tues. Feb. 20, 2018 1 Illumination and Reflectance Shading Brightness versus Lightness Color constancy Shading on a sunny day N(x) L N L Lambert s (cosine)

More information

Automatic Colorization of Grayscale Images

Automatic Colorization of Grayscale Images Automatic Colorization of Grayscale Images Austin Sousa Rasoul Kabirzadeh Patrick Blaes Department of Electrical Engineering, Stanford University 1 Introduction ere exists a wealth of photographic images,

More information

Color. making some recognition problems easy. is 400nm (blue) to 700 nm (red) more; ex. X-rays, infrared, radio waves. n Used heavily in human vision

Color. making some recognition problems easy. is 400nm (blue) to 700 nm (red) more; ex. X-rays, infrared, radio waves. n Used heavily in human vision Color n Used heavily in human vision n Color is a pixel property, making some recognition problems easy n Visible spectrum for humans is 400nm (blue) to 700 nm (red) n Machines can see much more; ex. X-rays,

More information

Multimedia Databases. 2. Summary. 2 Color-based Retrieval. 2.1 Multimedia Data Retrieval. 2.1 Multimedia Data Retrieval 4/14/2016.

Multimedia Databases. 2. Summary. 2 Color-based Retrieval. 2.1 Multimedia Data Retrieval. 2.1 Multimedia Data Retrieval 4/14/2016. 2. Summary Multimedia Databases Wolf-Tilo Balke Younes Ghammad Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de Last week: What are multimedia databases?

More information

Last time... Bias-Variance decomposition. This week

Last time... Bias-Variance decomposition. This week Machine learning, pattern recognition and statistical data modelling Lecture 4. Going nonlinear: basis expansions and splines Last time... Coryn Bailer-Jones linear regression methods for high dimensional

More information

Estimating basis functions for spectral sensitivity of digital cameras

Estimating basis functions for spectral sensitivity of digital cameras (MIRU2009) 2009 7 Estimating basis functions for spectral sensitivity of digital cameras Abstract Hongxun ZHAO, Rei KAWAKAMI, Robby T.TAN, and Katsushi IKEUCHI Institute of Industrial Science, The University

More information

Spatially variant dimensionality reduction for the visualization of multi/hyperspectral images

Spatially variant dimensionality reduction for the visualization of multi/hyperspectral images Author manuscript, published in "International Conference on Image Analysis and Recognition, Burnaby : Canada (2011)" DOI : 10.1007/978-3-642-21593-3_38 Spatially variant dimensionality reduction for the

More information

Configuration of Light Sources

Configuration of Light Sources UseCase.0012 (1.0) Configuration of Light Sources Keywords: LED, laser, harmonic fields, harmonic fields set, spectra, pulses, polarization Description This use case explains how light sources are configured

More information

Halftoning and quasi-monte Carlo

Halftoning and quasi-monte Carlo Halftoning and quasi-monte Carlo Ken Hanson CCS-2, Methods for Advanced Scientific Simulations Los Alamos National Laboratory This presentation available at http://www.lanl.gov/home/kmh/ LA-UR-04-1854

More information

arxiv: v1 [cs.cv] 2 May 2016

arxiv: v1 [cs.cv] 2 May 2016 16-811 Math Fundamentals for Robotics Comparison of Optimization Methods in Optical Flow Estimation Final Report, Fall 2015 arxiv:1605.00572v1 [cs.cv] 2 May 2016 Contents Noranart Vesdapunt Master of Computer

More information

Alwan LinkProfiler. ICC DeviceLink Profile Generator. 15 juin 2016

Alwan LinkProfiler. ICC DeviceLink Profile Generator.  15 juin 2016 Alwan LinkProfiler 15 juin 2016 ICC DeviceLink Profile Generator www.alwancolor.com Copyrights 2009-2016 Alwan Color Expertise. All rights reserved. All mentioned products, marks and trademarks are copyright

More information

GRID WARPING IN TOTAL VARIATION IMAGE ENHANCEMENT METHODS. Andrey Nasonov, and Andrey Krylov

GRID WARPING IN TOTAL VARIATION IMAGE ENHANCEMENT METHODS. Andrey Nasonov, and Andrey Krylov GRID WARPING IN TOTAL VARIATION IMAGE ENHANCEMENT METHODS Andrey Nasonov, and Andrey Krylov Lomonosov Moscow State University, Moscow, Department of Computational Mathematics and Cybernetics, e-mail: nasonov@cs.msu.ru,

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Dynamic Range and Weber s Law HVS is capable of operating over an enormous dynamic range, However, sensitivity is far from uniform over this range Example:

More information

COLOR imaging and reproduction devices are extremely

COLOR imaging and reproduction devices are extremely IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 10, OCTOBER 2004 1319 Indexing of Multidimensional Lookup Tables in Embedded Systems Michael J. Vrhel, Senior Member, IEEE Abstract The proliferation

More information

Graphic Arts Special Interest Group

Graphic Arts Special Interest Group Graphic Arts Special Interest Group June 19, 2007 Chiba University Craig Revie Fujifilm Chair, Graphic Arts Special Interest Group Graphic Arts SIG Charter The primary focus of this working group is to

More information

Recovering Neugebauer colorant reflectances and ink spreading curves from printed color images

Recovering Neugebauer colorant reflectances and ink spreading curves from printed color images Thomas Bugnon, Roger D. Hersch, Ecole Polytechnique Fédérale de Lausanne, Switzerland, final version published in Color Research and Applications, Vol. 39, No. 3, pp. 216-233 (J. Wiley). Recovering Neugebauer

More information

Note to users of this presentation (this slide does not display during show)

Note to users of this presentation (this slide does not display during show) ICC Colour Management Venue Presenter Organisation Date Note to users of this presentation (this slide does not display during show) Some content in this presentation is excerpted, with permission, from

More information

Color Uniformity Improvement for an Inkjet Color 3D Printing System

Color Uniformity Improvement for an Inkjet Color 3D Printing System Color Uniformity Improvement for an Inkjet Color 3D Printing System Pei-Li SUN, Yu-Ping SIE; Graduate Institute of Color and Illumination Technology, National Taiwan University of Science and Technology;

More information

Locally Adaptive Regression Kernels with (many) Applications

Locally Adaptive Regression Kernels with (many) Applications Locally Adaptive Regression Kernels with (many) Applications Peyman Milanfar EE Department University of California, Santa Cruz Joint work with Hiro Takeda, Hae Jong Seo, Xiang Zhu Outline Introduction/Motivation

More information

Visual Tracking. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania

Visual Tracking. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania Visual Tracking Antonino Furnari Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania furnari@dmi.unict.it 11 giugno 2015 What is visual tracking? estimation

More information

Spectral Reproduction from Scene to Hardcopy II: Image Processing Mitchell Rosen, Francisco Imai, Xiao-Yun (Willie) Jiang, Noboru Ohta

Spectral Reproduction from Scene to Hardcopy II: Image Processing Mitchell Rosen, Francisco Imai, Xiao-Yun (Willie) Jiang, Noboru Ohta Spectral Reproduction from Scene to Hardcopy II: Image Processing Mitchell Rosen, Francisco Imai, Xiao-Yun (Willie) Jiang, Noboru Ohta Munsell Color Science Laboratory, RIT ABSTRACT Traditional processing

More information

On Color Image Quantization by the K-Means Algorithm

On Color Image Quantization by the K-Means Algorithm On Color Image Quantization by the K-Means Algorithm Henryk Palus Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 GLIWICE Poland, hpalus@polsl.gliwice.pl Abstract.

More information

Color. Computational Photography MIT Feb. 14, 2006 Bill Freeman and Fredo Durand

Color. Computational Photography MIT Feb. 14, 2006 Bill Freeman and Fredo Durand Color Computational Photography MIT Feb. 14, 2006 Bill Freeman and Fredo Durand Why does a visual system need color? http://www.hobbylinc.com/gr/pll/pll5019.jpg Why does a visual system need color? (an

More information